首页 > 最新文献

IEEE Magnetics Letters最新文献

英文 中文
Synthesis of Hexagonal Close-Packed Cobalt Nanoparticles From Thermolysis of Cobalt Carbonyl 羰基钴热裂解制备六角紧密堆积钴纳米粒子
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-09-18 DOI: 10.1109/LMAG.2023.3316608
Kyohei Takahashi;Hiroshi Ito;Isao Kanada;Hiroyuki Matsumoto
Magnetic materials with low magnetic loss are required to realize both a high-frequency support and a miniaturization of radio frequency components. Hexagonal close-packed cobalt (hcp-Co) nanoparticles are considered suitable for high frequencies due to their nanoparticle morphology and high magnetocrystalline anisotropy. However, the face-centered cubic (fcc) or the ϵ phase with low magnetocrystalline anisotropy is fabricated in the synthetization of Co nanoparticles with a size of less than a few hundred nanometers. In this letter, we investigate the synthesis of Co nanoparticles by the thermolysis of dicobalt octacarbonyl at various temperatures for obtaining Co particles with a single hcp phase. Although Co nanoparticles synthesized at 453 K exhibited a mixture of hcp and fcc phases with an hcp phase ratio of 25%, Co nanoparticles almost achieved the hcp phase ratio of 100% by decreasing the thermolysis temperature to 333 K or lower. Furthermore, we evaluated the permeability spectrum of the composite with Co particles of 10 vol% dispersed in polystyrene. Although the real part of the permeability in the composite containing Co nanoparticles with the mixed phase of fcc and hcp monotonously decreased with frequency, the composite contained Co nanoparticles with a single phase with a suitable constant value up to 3 GHz for high-frequency applications.
需要具有低磁损耗的磁性材料来实现射频部件的高频支撑和小型化。六角紧密堆积的钴(hcp-Co)纳米颗粒由于其纳米颗粒形态和高磁晶各向异性而被认为适用于高频。然而,在合成尺寸小于几百纳米的Co纳米颗粒的过程中,制备了具有低磁晶各向异性的面心立方(fcc)或ε相。在这封信中,我们研究了通过在不同温度下热解八羰基二钴来合成Co纳米颗粒,以获得具有单一hcp相的Co颗粒。尽管在453K下合成的Co纳米颗粒表现出hcp和fcc相的混合物,hcp相比率为25%,但通过将热解温度降低到333K或更低,Co纳米颗粒几乎实现了100%的hcp相比例。此外,我们评估了具有分散在聚苯乙烯中的10体积%的Co颗粒的复合材料的渗透光谱。尽管含有具有fcc和hcp混合相的Co纳米颗粒的复合材料中的磁导率的实部随着频率单调降低,但对于高频应用,该复合材料含有具有高达3GHz的合适恒定值的单相Co纳米颗粒。
{"title":"Synthesis of Hexagonal Close-Packed Cobalt Nanoparticles From Thermolysis of Cobalt Carbonyl","authors":"Kyohei Takahashi;Hiroshi Ito;Isao Kanada;Hiroyuki Matsumoto","doi":"10.1109/LMAG.2023.3316608","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3316608","url":null,"abstract":"Magnetic materials with low magnetic loss are required to realize both a high-frequency support and a miniaturization of radio frequency components. Hexagonal close-packed cobalt (hcp-Co) nanoparticles are considered suitable for high frequencies due to their nanoparticle morphology and high magnetocrystalline anisotropy. However, the face-centered cubic (fcc) or the ϵ phase with low magnetocrystalline anisotropy is fabricated in the synthetization of Co nanoparticles with a size of less than a few hundred nanometers. In this letter, we investigate the synthesis of Co nanoparticles by the thermolysis of dicobalt octacarbonyl at various temperatures for obtaining Co particles with a single hcp phase. Although Co nanoparticles synthesized at 453 K exhibited a mixture of hcp and fcc phases with an hcp phase ratio of 25%, Co nanoparticles almost achieved the hcp phase ratio of 100% by decreasing the thermolysis temperature to 333 K or lower. Furthermore, we evaluated the permeability spectrum of the composite with Co particles of 10 vol% dispersed in polystyrene. Although the real part of the permeability in the composite containing Co nanoparticles with the mixed phase of fcc and hcp monotonously decreased with frequency, the composite contained Co nanoparticles with a single phase with a suitable constant value up to 3 GHz for high-frequency applications.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-4"},"PeriodicalIF":1.2,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67763015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic Susceptibility-Based Detection of Fusobacterium Nucleatum in Human Saliva 基于磁化率的唾液中核梭杆菌的检测
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-08-23 DOI: 10.1109/LMAG.2023.3308062
Kazuhiko Okita;Youcheng Pu;Loi Tonthat;Toru Murayama;Shin Yabukami;Yohei Ozawa;Seji Asamitsu;Hiroshi Okamoto;Takashi Kamei
This letter presents an innovative method for rapid and precise measurement of bacteria in liquid samples for point-of-care testing. The method utilizes the bacteria concentration-dependent ac susceptibility of magnetic nanoparticles, allowing for efficient and practical bacterial detection. The ac susceptibility of the magnetic nanoparticles/bacteria aggregate exhibits a decrease proportional to the bacteria concentration, attributed to the influence of bacteria on the magnetic coupling between the magnetic nanoparticles and magnetic dynamic response of the aggregate. To validate the performance of our method, we conducted measurements on Fusobacterium nucleatum samples obtained from both healthy individuals and cancer patients. The results demonstrated a robust correlation (correlation factor up to 0.94) between our measurements and the results obtained through quantitative polymerase chain reaction (qPCR) analysis, highlighting the high precision and accuracy of our method in quantifying bacteria, which is comparable to a qPCR system. The simplified apparatus not only reduces costs but also saves time by eliminating the need for DNA amplification of short segments, making it a promising alternative for rapid and precise bacterial measurement in point-of-care testing.
这封信提出了一种创新的方法,可以快速准确地测量护理点测试液体样本中的细菌。该方法利用了磁性纳米颗粒的细菌浓度依赖性交流磁化率,实现了高效实用的细菌检测。磁性纳米颗粒/细菌聚集体的交流磁化率与细菌浓度成比例下降,这归因于细菌对磁性纳米颗粒之间的磁耦合和聚集体的磁动力学响应的影响。为了验证我们方法的性能,我们对健康个体和癌症患者的有核梭杆菌样品进行了测量。结果表明,我们的测量结果与定量聚合酶链式反应(qPCR)分析结果之间存在强大的相关性(相关系数高达0.94),这突出了我们的方法在定量细菌方面的高精度和准确性,与qPCR系统相当。简化的设备不仅降低了成本,而且通过消除对短片段DNA扩增的需要节省了时间,使其成为在护理点检测中快速精确测量细菌的一种有前途的替代品。
{"title":"Magnetic Susceptibility-Based Detection of Fusobacterium Nucleatum in Human Saliva","authors":"Kazuhiko Okita;Youcheng Pu;Loi Tonthat;Toru Murayama;Shin Yabukami;Yohei Ozawa;Seji Asamitsu;Hiroshi Okamoto;Takashi Kamei","doi":"10.1109/LMAG.2023.3308062","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3308062","url":null,"abstract":"This letter presents an innovative method for rapid and precise measurement of bacteria in liquid samples for point-of-care testing. The method utilizes the bacteria concentration-dependent ac susceptibility of magnetic nanoparticles, allowing for efficient and practical bacterial detection. The ac susceptibility of the magnetic nanoparticles/bacteria aggregate exhibits a decrease proportional to the bacteria concentration, attributed to the influence of bacteria on the magnetic coupling between the magnetic nanoparticles and magnetic dynamic response of the aggregate. To validate the performance of our method, we conducted measurements on \u0000<italic>Fusobacterium nucleatum</i>\u0000 samples obtained from both healthy individuals and cancer patients. The results demonstrated a robust correlation (correlation factor up to 0.94) between our measurements and the results obtained through quantitative polymerase chain reaction (qPCR) analysis, highlighting the high precision and accuracy of our method in quantifying bacteria, which is comparable to a qPCR system. The simplified apparatus not only reduces costs but also saves time by eliminating the need for DNA amplification of short segments, making it a promising alternative for rapid and precise bacterial measurement in point-of-care testing.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-4"},"PeriodicalIF":1.2,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67763007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Method of Shear-Horizontal EMAT Based on Dual-Reception Magnetic Encoded Spatial Pulse Compression for Multiple Cracks Identification and Location 基于双接收磁编码空间脉冲压缩的剪切水平EMAT多裂纹识别定位方法
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-08-22 DOI: 10.1109/LMAG.2023.3307296
Qiangxin Li;Jian Feng;Qi Xiao;Xiong Gao
The lowest order mode of a shear-horizontal electromagnetic acoustic transducer (EMAT) typically exhibits a low signal-to-noise ratio and poor spatial resolution in defect detection. To solve this issue, this letter presents a crack identification and location method based on dual-reception magnetic encoded spatial pulse compression technology. On the one hand, the method implements spatial pulse compression technology by adjusting the spatial distribution of the magnetic field to obtain a high amplitude and narrow pulse detection signal. On the other hand, this method multiplexes the excitation EMAT as a receiver through signal processing technology, so that the position of cracks can be more accurately judged by analyzing the signals of the dual EMATs. Most importantly, this method does not require additional EMAT and complex excitation equipment. Finally, a simulation model was built to verify the method. The simulation results show, that compared with the detection signal of the traditional method, the SNR is improved by over 1.1 dB, and the spatial resolution is improved by over 18%. Additionally, the method can effectively distinguish the crack defects on both sides of EMATs, and the localization accuracy exceeds 95%.
剪切水平电磁声换能器(EMAT)的最低阶模式在缺陷检测中通常表现出低信噪比和差的空间分辨率。为了解决这个问题,本文提出了一种基于双接收磁编码空间脉冲压缩技术的裂纹识别和定位方法。一方面,该方法通过调整磁场的空间分布来实现空间脉冲压缩技术,以获得高振幅、窄脉冲检测信号。另一方面,该方法通过信号处理技术将激励EMAT复用为接收器,通过分析双EMAT的信号可以更准确地判断裂纹的位置。最重要的是,这种方法不需要额外的EMAT和复杂的励磁设备。最后,建立了仿真模型对该方法进行了验证。仿真结果表明,与传统方法的检测信号相比,信噪比提高了1.1dB以上,空间分辨率提高了18%以上。此外,该方法可以有效地区分EMAT两侧的裂纹缺陷,定位精度超过95%。
{"title":"A Method of Shear-Horizontal EMAT Based on Dual-Reception Magnetic Encoded Spatial Pulse Compression for Multiple Cracks Identification and Location","authors":"Qiangxin Li;Jian Feng;Qi Xiao;Xiong Gao","doi":"10.1109/LMAG.2023.3307296","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3307296","url":null,"abstract":"The lowest order mode of a shear-horizontal electromagnetic acoustic transducer (EMAT) typically exhibits a low signal-to-noise ratio and poor spatial resolution in defect detection. To solve this issue, this letter presents a crack identification and location method based on dual-reception magnetic encoded spatial pulse compression technology. On the one hand, the method implements spatial pulse compression technology by adjusting the spatial distribution of the magnetic field to obtain a high amplitude and narrow pulse detection signal. On the other hand, this method multiplexes the excitation EMAT as a receiver through signal processing technology, so that the position of cracks can be more accurately judged by analyzing the signals of the dual EMATs. Most importantly, this method does not require additional EMAT and complex excitation equipment. Finally, a simulation model was built to verify the method. The simulation results show, that compared with the detection signal of the traditional method, the SNR is improved by over 1.1 dB, and the spatial resolution is improved by over 18%. Additionally, the method can effectively distinguish the crack defects on both sides of EMATs, and the localization accuracy exceeds 95%.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67762114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing in Memory Using Doubled STT-MRAM With the Application of Binarized Neural Networks 双STT-MRAM在存储器中的计算及二值化神经网络的应用
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-08-02 DOI: 10.1109/LMAG.2023.3301384
Seyed Hassan Hadi Nemati;Nima Eslami;Mohammad Hossein Moaiyeri
The computing-in-memory (CiM) approach is a promising option for addressing the processor–memory data transfer bottleneck while performing data-intensive applications. In this letter, we present a novel CiM architecture based on spin-transfer torque magnetic random-access memory, which can work in computing and memory modes. In this letter, two spintronic devices are considered per cell to store the main data and its complement to address the reliability concerns during the read operation, which also provides a fascinating ability for performing reliable Boolean operations (all basic functions), binary/ternary content-addressable memory search operation, and multi-input majority function. Since the developed architecture can perform bitwise xnor operations in one cycle, a resistive-based accumulator has been designed to perform multi-input majority production to improve the structure for implementing fast and low-cost binary neural networks (BNNs). To this end, multiplication, accumulation, and passing through the activation function are accomplished in three cycles. The simulation result of exploiting the architecture in the BNN application indicates 86%–98% lower power-delay product than existing architectures.
内存计算(CiM)方法是一种很有前途的选择,可以在执行数据密集型应用程序时解决处理器-内存数据传输瓶颈。在这封信中,我们提出了一种基于自旋转移力矩磁随机存取存储器的新型CiM架构,该架构可以在计算和存储模式下工作。在这封信中,每个单元考虑两个自旋电子器件来存储主数据及其补码,以解决读取操作期间的可靠性问题,这也为执行可靠的布尔运算(所有基本功能)、二进制/三进制内容可寻址存储器搜索操作和多输入多数功能提供了迷人的能力。由于所开发的架构可以在一个周期内执行逐位xnor运算,因此设计了一种基于电阻的累加器来执行多输入多数产生,以改进实现快速低成本二进制神经网络(BNN)的结构。为此,乘法、累加和通过激活函数在三个循环中完成。在BNN应用中利用该架构的仿真结果表明,功率延迟乘积比现有架构低86%–98%。
{"title":"Computing in Memory Using Doubled STT-MRAM With the Application of Binarized Neural Networks","authors":"Seyed Hassan Hadi Nemati;Nima Eslami;Mohammad Hossein Moaiyeri","doi":"10.1109/LMAG.2023.3301384","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3301384","url":null,"abstract":"The computing-in-memory (CiM) approach is a promising option for addressing the processor–memory data transfer bottleneck while performing data-intensive applications. In this letter, we present a novel CiM architecture based on spin-transfer torque magnetic random-access memory, which can work in computing and memory modes. In this letter, two spintronic devices are considered per cell to store the main data and its complement to address the reliability concerns during the read operation, which also provides a fascinating ability for performing reliable Boolean operations (all basic functions), binary/ternary content-addressable memory search operation, and multi-input majority function. Since the developed architecture can perform bitwise \u0000<sc>xnor</small>\u0000 operations in one cycle, a resistive-based accumulator has been designed to perform multi-input majority production to improve the structure for implementing fast and low-cost binary neural networks (BNNs). To this end, multiplication, accumulation, and passing through the activation function are accomplished in three cycles. The simulation result of exploiting the architecture in the BNN application indicates 86%–98% lower power-delay product than existing architectures.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67919308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of Overlapped Designed Coils for Transcranial Magnetic Stimulations 用于经颅磁刺激的重叠设计线圈的研制
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-07-13 DOI: 10.1109/LMAG.2023.3295271
Sohom Bhattacharjee;Choon Sik Cho;Dong Sik Cho
Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation technique that is used to treat a variety of neurological disorders, including major depression. The development of the deep brain TMS coil for stimulating subcortical structures expands the use of TMS beyond the stimulation of superficial cortical targets. Deep brain stimulation may have beneficial effects on neurological disorders such as Parkinson's disease, post-traumatic stress disorder, and mild traumatic brain injury. Previous studies have shown that the cerebellum plays a very big role in behavior and motor planning. To stimulate the specific areas of the human brain, we require a TMS coil with precise focal abilities because the material, design, and position of a TMS coil play a significant role in adjusting the coil's focusing power. Therefore, we studied stimulation of the frontal brain and cerebellum with two different new coil designs positioned on different locations. A rare design of the TMS coil made with Litz wire was developed to enhance excitation focality in the brain and was compared with a traditional figure-of-eight (FOE) coil and double-cone coil. The finite-element simulation tool ANSYS Maxwell 3-D has been used to simulate and compare the magnetic field and electric field induced inside the model of the human brain. The coil studies are as follows: a FOE coil, an overlapped copper coil, and a Litz wire overlapped coil. This was followed by experimental validation which shows great agreement with the simulation results.
经颅磁刺激(TMS)是一种无创的神经调控技术,用于治疗各种神经疾病,包括严重抑郁症。用于刺激皮层下结构的脑深部TMS线圈的开发将TMS的使用扩展到刺激皮层浅部目标之外。脑深部刺激可能对帕金森病、创伤后应激障碍和轻度创伤性脑损伤等神经系统疾病有有益影响。先前的研究表明,小脑在行为和运动规划中发挥着非常重要的作用。为了刺激人脑的特定区域,我们需要一个具有精确聚焦能力的TMS线圈,因为TMS线圈的材料、设计和位置在调节线圈的聚焦功率方面起着重要作用。因此,我们研究了在不同位置放置两种不同的新线圈设计对额叶和小脑的刺激。开发了一种罕见的由Litz线制成的TMS线圈设计,以增强大脑中的激励聚焦,并与传统的八字形(FOE)线圈和双锥形线圈进行了比较。有限元模拟工具ANSYS Maxwell 3-D已用于模拟和比较人脑模型内部感应的磁场和电场。线圈研究如下:FOE线圈、重叠铜线圈和Litz线重叠线圈。随后进行了实验验证,结果与模拟结果非常一致。
{"title":"Development of Overlapped Designed Coils for Transcranial Magnetic Stimulations","authors":"Sohom Bhattacharjee;Choon Sik Cho;Dong Sik Cho","doi":"10.1109/LMAG.2023.3295271","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3295271","url":null,"abstract":"Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation technique that is used to treat a variety of neurological disorders, including major depression. The development of the deep brain TMS coil for stimulating subcortical structures expands the use of TMS beyond the stimulation of superficial cortical targets. Deep brain stimulation may have beneficial effects on neurological disorders such as Parkinson's disease, post-traumatic stress disorder, and mild traumatic brain injury. Previous studies have shown that the cerebellum plays a very big role in behavior and motor planning. To stimulate the specific areas of the human brain, we require a TMS coil with precise focal abilities because the material, design, and position of a TMS coil play a significant role in adjusting the coil's focusing power. Therefore, we studied stimulation of the frontal brain and cerebellum with two different new coil designs positioned on different locations. A rare design of the TMS coil made with Litz wire was developed to enhance excitation focality in the brain and was compared with a traditional figure-of-eight (FOE) coil and double-cone coil. The finite-element simulation tool ANSYS Maxwell 3-D has been used to simulate and compare the magnetic field and electric field induced inside the model of the human brain. The coil studies are as follows: a FOE coil, an overlapped copper coil, and a Litz wire overlapped coil. This was followed by experimental validation which shows great agreement with the simulation results.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67762070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Density 1T1D1SOT-MRAM With Multimode Ultrahigh-Speed Magnetization Switching 具有多模超高速磁化开关的高密度1T1D1SOT-MRAM
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-07-07 DOI: 10.1109/LMAG.2023.3293407
Hao Zhang;Di Wang;Long Liu;Xuefeng Zhao;Huai Lin;Changqing Xie
In this letter, we present a 1T1D1M-based (one transistor, one diode, and one magnetic tunnel junction) spin-orbit torque, magnetic random-access memory (SOT-MRAM) with multimode magnetization switching for high-density memory, ultrahigh-speed writing, and energy-efficient on-chip memory application. The conventional spin-transfer torque (STT)-MRAM or SOT-MRAM is limited by the unipolar (or bipolar) switching property and demands the utilization of a common channel with bidirectional write current, which not only brings about source degradation of the access transistor but also increases the energy consumption in the write operation. By introducing a Schottky diode, the 1T1D1SOT-MRAM cell based on ultrafast switching of multiple modes outperforms conventional MRAMs in terms of decoupling of current channels in different directions and high-density integration. Simulation results show that the MRAM achieves 82% and 100% reduction in bit-cell area compared with STT-MRAM and SOT-MRAM, respectively, and ∼3.3× improvement in write energy consumption in comparison with STT-MRAM.
在这封信中,我们提出了一种基于1T1D1M(一个晶体管、一个二极管和一个磁性隧道结)的自旋轨道转矩、具有多模磁化切换的磁性随机存取存储器(SOT-MRAM),用于高密度存储器、超高速写写和高能效片上存储器应用。传统的自旋转移力矩(STT)-MRAM或SOT-MRAM受到单极(或双极)开关特性的限制,并且需要利用具有双向写入电流的公共沟道,这不仅导致存取晶体管的源极退化,而且增加了写入操作中的能量消耗。通过引入肖特基二极管,基于多模式超快切换的1T1D1SOT-MRAM单元在不同方向的电流通道去耦和高密度集成方面优于传统MRAM。仿真结果表明,与STT-MRAM和SOT-MRAM相比,MRAM的位单元面积分别减少了82%和100%,并且与STT-MRAM相比,写入能耗提高了~3.3倍。
{"title":"High-Density 1T1D1SOT-MRAM With Multimode Ultrahigh-Speed Magnetization Switching","authors":"Hao Zhang;Di Wang;Long Liu;Xuefeng Zhao;Huai Lin;Changqing Xie","doi":"10.1109/LMAG.2023.3293407","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3293407","url":null,"abstract":"In this letter, we present a 1T1D1M-based (one transistor, one diode, and one magnetic tunnel junction) spin-orbit torque, magnetic random-access memory (SOT-MRAM) with multimode magnetization switching for high-density memory, ultrahigh-speed writing, and energy-efficient on-chip memory application. The conventional spin-transfer torque (STT)-MRAM or SOT-MRAM is limited by the unipolar (or bipolar) switching property and demands the utilization of a common channel with bidirectional write current, which not only brings about source degradation of the access transistor but also increases the energy consumption in the write operation. By introducing a Schottky diode, the 1T1D1SOT-MRAM cell based on ultrafast switching of multiple modes outperforms conventional MRAMs in terms of decoupling of current channels in different directions and high-density integration. Simulation results show that the MRAM achieves 82% and 100% reduction in bit-cell area compared with STT-MRAM and SOT-MRAM, respectively, and ∼3.3× improvement in write energy consumption in comparison with STT-MRAM.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67763004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Moderate Static Magnetic Field on Membrane Potential of Abdominal Nerve Fiber in Metapenaeus Ensis 中等静磁场对对虾腹神经纤维膜电位的影响
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-07-07 DOI: 10.1109/LMAG.2023.3293391
Siyuan Liu;Shupeng Liu;Yongyong Gong;Jinbo Chen;Hengyu Li;Zhizheng Wu;Ze Cui;Mei Liu;Jingtao Lei;Tao Wang
The effects of uniform and static moderate magnetic fields (0–400 mT) on the membrane potential of nerve fibers in Metapenaeus ensis shrimps were investigated. The results showed that the magnetic field caused an increase in membrane potential, eventually reaching a static state, and that effects of short-term exposure were largely reversible. A nonlinear relationship between the percentage change in membrane potential (V%) and magnetic field induction was observed, where V% increased rapidly below an inflection point (around 200 mT) and slowed down thereafter. Hypotheses suggest that ion channels in the membrane have varying sensitivities to magnetic fields and presented the distribution of ion channel activation thresholds within the 0–400 mT range. The identification of the inflection point holds great practical value in the fields of magnetic field therapy, exposure limits, and magnetic shielding design.
研究了均匀和静态中等磁场(0–400mT)对Metapenaeus ensis虾神经纤维膜电位的影响。结果表明,磁场导致膜电位增加,最终达到静态,短期暴露的影响在很大程度上是可逆的。观察到膜电位(V%)的百分比变化和磁场感应之间的非线性关系,其中V%在拐点(约200mT)以下快速增加,此后减慢。假设表明,膜中的离子通道对磁场具有不同的敏感性,并呈现出离子通道激活阈值在0–400 mT范围内的分布。拐点的识别在磁场治疗、暴露极限和磁屏蔽设计等领域具有重要的实用价值。
{"title":"Effect of Moderate Static Magnetic Field on Membrane Potential of Abdominal Nerve Fiber in Metapenaeus Ensis","authors":"Siyuan Liu;Shupeng Liu;Yongyong Gong;Jinbo Chen;Hengyu Li;Zhizheng Wu;Ze Cui;Mei Liu;Jingtao Lei;Tao Wang","doi":"10.1109/LMAG.2023.3293391","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3293391","url":null,"abstract":"The effects of uniform and static moderate magnetic fields (0–400 mT) on the membrane potential of nerve fibers in \u0000<italic>Metapenaeus ensis</i>\u0000 shrimps were investigated. The results showed that the magnetic field caused an increase in membrane potential, eventually reaching a static state, and that effects of short-term exposure were largely reversible. A nonlinear relationship between the percentage change in membrane potential (\u0000<italic>V%</i>\u0000) and magnetic field induction was observed, where \u0000<italic>V%</i>\u0000 increased rapidly below an inflection point (around 200 mT) and slowed down thereafter. Hypotheses suggest that ion channels in the membrane have varying sensitivities to magnetic fields and presented the distribution of ion channel activation thresholds within the 0–400 mT range. The identification of the inflection point holds great practical value in the fields of magnetic field therapy, exposure limits, and magnetic shielding design.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67919307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Error Characteristic Analysis and Error Source Identification of Aeromagnetic Field Gradient Tensor Measurements 航空磁场梯度张量测量的误差特性分析及误差源识别
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-06-28 DOI: 10.1109/LMAG.2023.3290534
Ke Liu;Hongsong Miao;Qiang Fu;Yuqi Pang;Yangyi Sui
Aeromagnetic gradient tensor measurement has become a powerful method in geological surveys, mineral resource exploration, and other applications due to its ability to resist temporal changes of the geomagnetic field and its ability to provide rich information and be highly efficient. Various factors may affect the quality of aeromagnetic gradient tensor measurements, including systematic errors of the measurement system, magnetic interference from the carrying platform, and unexpected environmental impacts. But there are no methods for analyzing and identifying them at present. Therefore, we model an error source identification method based on a transforming deviation matrix, which is constructed according to the generalized Hilbert transform relations among the tensor components and reflects the error characteristics of the measurements. Our method provides a basis for guiding data processing and reducing waste of financial, material, and human resources through timely adjustments of experimental schemes. The correctness and engineering practicality of the method have been verified by simulation and field experiments.
航空磁梯度张量测量由于其抵抗地磁场随时间变化的能力以及提供丰富信息和高效的能力,已成为地质调查、矿产资源勘探和其他应用中的一种强大方法。各种因素可能会影响航磁梯度张量测量的质量,包括测量系统的系统误差、来自运载平台的磁干扰以及意外的环境影响。但目前还没有分析和识别它们的方法。因此,我们建立了一种基于变换偏差矩阵的误差源识别方法,该方法是根据张量分量之间的广义希尔伯特变换关系构建的,反映了测量的误差特性。我们的方法为指导数据处理提供了基础,并通过及时调整实验方案来减少财政、物质和人力资源的浪费。仿真和现场实验验证了该方法的正确性和工程实用性。
{"title":"Error Characteristic Analysis and Error Source Identification of Aeromagnetic Field Gradient Tensor Measurements","authors":"Ke Liu;Hongsong Miao;Qiang Fu;Yuqi Pang;Yangyi Sui","doi":"10.1109/LMAG.2023.3290534","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3290534","url":null,"abstract":"Aeromagnetic gradient tensor measurement has become a powerful method in geological surveys, mineral resource exploration, and other applications due to its ability to resist temporal changes of the geomagnetic field and its ability to provide rich information and be highly efficient. Various factors may affect the quality of aeromagnetic gradient tensor measurements, including systematic errors of the measurement system, magnetic interference from the carrying platform, and unexpected environmental impacts. But there are no methods for analyzing and identifying them at present. Therefore, we model an error source identification method based on a transforming deviation matrix, which is constructed according to the generalized Hilbert transform relations among the tensor components and reflects the error characteristics of the measurements. Our method provides a basis for guiding data processing and reducing waste of financial, material, and human resources through timely adjustments of experimental schemes. The correctness and engineering practicality of the method have been verified by simulation and field experiments.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67762117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics-Informed Sparse Neural Network for Permanent Magnet Eddy Current Device Modeling and Analysis 基于物理信息的稀疏神经网络永磁涡流器件建模与分析
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-06-22 DOI: 10.1109/LMAG.2023.3288388
Dazhi Wang;Sihan Wang;Deshan Kong;Jiaxing Wang;Wenhui Li;Michael Pecht
The objective is to study the prediction of the electromagnetic (EM) field and the output performance of permanent magnet eddy current devices (PMECDs) based on a physics-informed sparse neural network (PISNN). In order to achieve this goal, a unified physical model is first defined according to different types of PMECDs, which is equivalent to solving a parameterized magnetic quasi-static problem. A soft constraint module and a hard constraint module, composed of physical equations, are constructed. The soft constraints are then integrated into the neural network's objective function, while the hard constraint module is utilized to predict device performance and physical field. Stochastic gradient descent is used to minimize the residual of the physical equations during PISNN training. Subsequently, the structural parameters and operating parameters of the PMECD are modified to verify the generalization ability of the model. Our results indicate that PISNN accurately and efficiently predicts the EM field distribution and the output torque. Furthermore, our prediction results for permanent magnet eddy current devices with different parameters demonstrate the potential of the method for transfer learning.
目的是研究基于物理知情稀疏神经网络(PISNN)的永磁涡流器件(PMECS)的电磁场和输出性能的预测。为了实现这一目标,首先根据不同类型的PMECS定义了一个统一的物理模型,这相当于解决了一个参数化的磁准静态问题。构造了由物理方程组成的软约束模块和硬约束模块。然后将软约束集成到神经网络的目标函数中,而硬约束模块用于预测设备性能和物理场。在PISNN训练过程中,使用随机梯度下降来最小化物理方程的残差。随后,对PMECS的结构参数和运行参数进行了修改,以验证模型的泛化能力。我们的结果表明,PISNN准确有效地预测了EM场分布和输出转矩。此外,我们对不同参数的永磁涡流器件的预测结果表明了该方法在迁移学习中的潜力。
{"title":"Physics-Informed Sparse Neural Network for Permanent Magnet Eddy Current Device Modeling and Analysis","authors":"Dazhi Wang;Sihan Wang;Deshan Kong;Jiaxing Wang;Wenhui Li;Michael Pecht","doi":"10.1109/LMAG.2023.3288388","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3288388","url":null,"abstract":"The objective is to study the prediction of the electromagnetic (EM) field and the output performance of permanent magnet eddy current devices (PMECDs) based on a physics-informed sparse neural network (PISNN). In order to achieve this goal, a unified physical model is first defined according to different types of PMECDs, which is equivalent to solving a parameterized magnetic quasi-static problem. A soft constraint module and a hard constraint module, composed of physical equations, are constructed. The soft constraints are then integrated into the neural network's objective function, while the hard constraint module is utilized to predict device performance and physical field. Stochastic gradient descent is used to minimize the residual of the physical equations during PISNN training. Subsequently, the structural parameters and operating parameters of the PMECD are modified to verify the generalization ability of the model. Our results indicate that PISNN accurately and efficiently predicts the EM field distribution and the output torque. Furthermore, our prediction results for permanent magnet eddy current devices with different parameters demonstrate the potential of the method for transfer learning.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67762115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance Simulation of Multiferroic Neuron Device Driven by an Inclined Monopulse Clock 倾斜单脉冲时钟驱动多铁神经元器件的性能仿真
IF 1.2 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2023-06-19 DOI: 10.1109/LMAG.2023.3287396
Shuqing Dou;Xiaokuo Yang;Jiahui Yuan;Yongshun Xia;Xin Bai;Huanqing Cui;Bo Wei
Multiferroic nanomagnet neuron devices have the advantages of ultralow power consumption and high integration, which give them promising applications in neuromorphic computing. In this letter, a multiferroic nanomagnet neuron device driven by an inclined monopulse clock is modeled. The strain field direction of the device is at an angle to the nanomagnet's long axis, and the nanomagnet's magnetic moment can be driven to switch randomly 0°/180° by applying a pulse voltage of 0.1 ns pulse width only, thus realizing artificial neuron functions. The numerical model of the neuron device is established based on the Landau–Lifshitz–Gilbert equation. The numerical simulation results indicate that the neuron device can complete high-speed neuromorphic computation with tiny energy use (∼2.65 aJ). Additionally, a three-layer artificial neural network based on neuron devices is built. The simulation results demonstrate that the network can recognize handwritten digits in the Modified National Institute of Standards and Technology (MNIST) dataset at a rate of more than 98% and has a high tolerance for process error. The device has significant advantages over conventional spin neuron devices, including a simple structure, ultralow energy consumption, fast computation capabilities, and a wide fabrication process error tolerance range. The study results in this letter offer crucial theoretical recommendations for applying strain magneto-electronic devices in neuromorphic computing.
多铁磁性纳米磁体神经元器件具有超低功耗和高集成度的优点,在神经形态计算中有着广阔的应用前景。在这封信中,对由倾斜单脉冲时钟驱动的多铁性纳米磁体神经元器件进行了建模。该器件的应变场方向与纳米磁体的长轴成一定角度,只需施加0.1ns脉冲宽度的脉冲电压,就可以驱动纳米磁体的磁矩随机切换0°/180°,从而实现人工神经元功能。基于Landau–Lifshitz–Gilbert方程建立了神经元器件的数值模型。数值模拟结果表明,该神经元装置可以以极小的能量消耗(~2.65aJ)完成高速神经形态计算。此外,还构建了一个基于神经元设备的三层人工神经网络。仿真结果表明,该网络能够以98%以上的识别率识别修改后的国家标准与技术研究所(MNIST)数据集中的手写数字,并且对过程误差具有很高的容忍度。与传统的自旋神经元器件相比,该器件具有显著的优势,包括结构简单、能耗极低、计算能力快和制造工艺误差容限范围宽。这封信中的研究结果为应变磁电子器件在神经形态计算中的应用提供了重要的理论建议。
{"title":"Performance Simulation of Multiferroic Neuron Device Driven by an Inclined Monopulse Clock","authors":"Shuqing Dou;Xiaokuo Yang;Jiahui Yuan;Yongshun Xia;Xin Bai;Huanqing Cui;Bo Wei","doi":"10.1109/LMAG.2023.3287396","DOIUrl":"https://doi.org/10.1109/LMAG.2023.3287396","url":null,"abstract":"Multiferroic nanomagnet neuron devices have the advantages of ultralow power consumption and high integration, which give them promising applications in neuromorphic computing. In this letter, a multiferroic nanomagnet neuron device driven by an inclined monopulse clock is modeled. The strain field direction of the device is at an angle to the nanomagnet's long axis, and the nanomagnet's magnetic moment can be driven to switch randomly 0°/180° by applying a pulse voltage of 0.1 ns pulse width only, thus realizing artificial neuron functions. The numerical model of the neuron device is established based on the Landau–Lifshitz–Gilbert equation. The numerical simulation results indicate that the neuron device can complete high-speed neuromorphic computation with tiny energy use (∼2.65 aJ). Additionally, a three-layer artificial neural network based on neuron devices is built. The simulation results demonstrate that the network can recognize handwritten digits in the Modified National Institute of Standards and Technology (MNIST) dataset at a rate of more than 98% and has a high tolerance for process error. The device has significant advantages over conventional spin neuron devices, including a simple structure, ultralow energy consumption, fast computation capabilities, and a wide fabrication process error tolerance range. The study results in this letter offer crucial theoretical recommendations for applying strain magneto-electronic devices in neuromorphic computing.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":"14 ","pages":"1-5"},"PeriodicalIF":1.2,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67762071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Magnetics Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1