Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779531
J. Saglia, A. D. Luca, V. Squeri, Lucia Ciaccia, Carlo Sanfilippo, Simone Ungaro, L. Michieli
This article describes the motivation behind and the technical aspects at the basis of the development of the innovative rehabilitation robot hunova®. The paper describes in detail the hardware and software design of the system and summarizes the clinical studies carried out to validate the technology.
{"title":"Design and Development of a Novel Core, Balance and Lower Limb Rehabilitation Robot: hunova®","authors":"J. Saglia, A. D. Luca, V. Squeri, Lucia Ciaccia, Carlo Sanfilippo, Simone Ungaro, L. Michieli","doi":"10.1109/ICORR.2019.8779531","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779531","url":null,"abstract":"This article describes the motivation behind and the technical aspects at the basis of the development of the innovative rehabilitation robot hunova®. The paper describes in detail the hardware and software design of the system and summarizes the clinical studies carried out to validate the technology.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122209385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779466
J. Skidmore, P. Artemiadis
Rehabilitation robotics is an emerging field in which gait training has been largely automated allowing more intensive, repetitive motions which are important for facilitating recovery. However, there is no clear evidence that robot-assisted gait training is superior to conventional therapy. A limitation of current approaches to gait therapy is that they do not consider mechanisms of inter-leg coordination and how the sensory feedback from one leg affects the motion of the other leg. Instead they impose motion on the impaired limb. Recent research suggests that utilizing the coupling between limbs in stroke rehabilitation therapies could lead to improved functional outcome. Therefore, a fundamental understanding of underlying sensorimotor mechanisms of inter-leg coordination may facilitate improved interventions in gait therapy. This paper systematically explores and analyzes a sensorimotor mechanism of inter-leg coordination that is stimulated through sudden unilateral low-stiffness perturbations to the walking surface. The potential contribution of each sensory modality to the perception and response of the perturbation will be investigated. Additionally, the neural pathway that relays the sensory signal into the motor output will be described in order to fully characterize this sensorimotor mechanism of inter-leg coordination. This work provides physiological understanding of inter-leg coordination that will benefit robot-assisted gait therapies.
{"title":"A Comprehensive Analysis of Sensorimotor Mechanisms of Inter-Leg Coordination in Gait Using the Variable Stiffness Treadmill: Physiological Insights for Improved Robot-Assisted Gait Therapy","authors":"J. Skidmore, P. Artemiadis","doi":"10.1109/ICORR.2019.8779466","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779466","url":null,"abstract":"Rehabilitation robotics is an emerging field in which gait training has been largely automated allowing more intensive, repetitive motions which are important for facilitating recovery. However, there is no clear evidence that robot-assisted gait training is superior to conventional therapy. A limitation of current approaches to gait therapy is that they do not consider mechanisms of inter-leg coordination and how the sensory feedback from one leg affects the motion of the other leg. Instead they impose motion on the impaired limb. Recent research suggests that utilizing the coupling between limbs in stroke rehabilitation therapies could lead to improved functional outcome. Therefore, a fundamental understanding of underlying sensorimotor mechanisms of inter-leg coordination may facilitate improved interventions in gait therapy. This paper systematically explores and analyzes a sensorimotor mechanism of inter-leg coordination that is stimulated through sudden unilateral low-stiffness perturbations to the walking surface. The potential contribution of each sensory modality to the perception and response of the perturbation will be investigated. Additionally, the neural pathway that relays the sensory signal into the motor output will be described in order to fully characterize this sensorimotor mechanism of inter-leg coordination. This work provides physiological understanding of inter-leg coordination that will benefit robot-assisted gait therapies.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131338760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779548
Doyoung Park, Jen-Shuan Chang, Hsiao-Ju Cheng, M. Ashsiddique, B.M.O. Hauk, Haoyong Yu
This paper introduces a novel passive wrist bilateral rehabilitation device coupled with a new Virtual Reality (VR) platform. This is the first work to have adapted three-link coaxial spherical parallel manipulator (SPM) to wrist rehabilitation. The device comprises a coaxial SPM and cross-connected cable system. The coaxial SPM facilitates 3 degrees of freedom (DOFs) spherical wrist orientation and singularity-free motion within its workspace. The cross-connected cable system enables bilateral symmetrical exercises in passive mode training. A VR platform with activities of daily living (ADL) task was developed and coupled with the device to increase the adherence of the users to the device. Experiments were conducted with fifteen healthy right-handed individuals with no history of wrist or hand injury to evaluate the feasibility of the system for providing passive bilateral training as well as the effectiveness of the VR platform. Subjects were asked to use their right arms to move the left arms passively through the device to perform four wrist movements, flexion, extension, radial deviation, and ulnar deviation. EMG activations on the left arm were observed when the right arm passively moved the left arm. The results showed that the device was capable of inducing the muscle activation of the left arm and the VR platform increased the motivation to continue the exercises. This demonstrates that this study can serve as the fundamental for larger clinical trials.
{"title":"Development and Evaluation of a Novel Passive Wrist Bilateral Rehabilitation Device paired with Virtual Reality: A Feasibility Study","authors":"Doyoung Park, Jen-Shuan Chang, Hsiao-Ju Cheng, M. Ashsiddique, B.M.O. Hauk, Haoyong Yu","doi":"10.1109/ICORR.2019.8779548","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779548","url":null,"abstract":"This paper introduces a novel passive wrist bilateral rehabilitation device coupled with a new Virtual Reality (VR) platform. This is the first work to have adapted three-link coaxial spherical parallel manipulator (SPM) to wrist rehabilitation. The device comprises a coaxial SPM and cross-connected cable system. The coaxial SPM facilitates 3 degrees of freedom (DOFs) spherical wrist orientation and singularity-free motion within its workspace. The cross-connected cable system enables bilateral symmetrical exercises in passive mode training. A VR platform with activities of daily living (ADL) task was developed and coupled with the device to increase the adherence of the users to the device. Experiments were conducted with fifteen healthy right-handed individuals with no history of wrist or hand injury to evaluate the feasibility of the system for providing passive bilateral training as well as the effectiveness of the VR platform. Subjects were asked to use their right arms to move the left arms passively through the device to perform four wrist movements, flexion, extension, radial deviation, and ulnar deviation. EMG activations on the left arm were observed when the right arm passively moved the left arm. The results showed that the device was capable of inducing the muscle activation of the left arm and the VR platform increased the motivation to continue the exercises. This demonstrates that this study can serve as the fundamental for larger clinical trials.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131230292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779522
R. Goergen, A. C. Valdiero, L. A. Rasia, Mauricio Oberdörfer, J. P. D. Souza, R. S. Gonçalves
Nowadays, many people suffer from physical disabilities caused by illness or accidents. The problems in the lower limb are one of the main that interrupt the activities of daily life of these people. To assist them in the activities of daily living, many support devices for upper and lower limb movement have been developed. In this paper is proposed a new simple and low-cost pneumatic robotic mechanism for lower limb rehabilitation. We employ a pneumatic actuator so that it is possible to obtain safety for the operation and the control of the force by the appropriate regulation of the pressures in the pneumatic cylinder chambers of the robot for rehabilitation. This work deals with the development of the robot for rehabilitation from a methodology of integration of mathematical modeling with the phases of the design process. It is concluded that the results obtained are a modular design that can be improved for multiple degrees of freedom and adapted also for rehabilitation of upper limbs.
{"title":"Development of a Pneumatic Exoskeleton Robot for Lower Limb Rehabilitation*","authors":"R. Goergen, A. C. Valdiero, L. A. Rasia, Mauricio Oberdörfer, J. P. D. Souza, R. S. Gonçalves","doi":"10.1109/ICORR.2019.8779522","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779522","url":null,"abstract":"Nowadays, many people suffer from physical disabilities caused by illness or accidents. The problems in the lower limb are one of the main that interrupt the activities of daily life of these people. To assist them in the activities of daily living, many support devices for upper and lower limb movement have been developed. In this paper is proposed a new simple and low-cost pneumatic robotic mechanism for lower limb rehabilitation. We employ a pneumatic actuator so that it is possible to obtain safety for the operation and the control of the force by the appropriate regulation of the pressures in the pneumatic cylinder chambers of the robot for rehabilitation. This work deals with the development of the robot for rehabilitation from a methodology of integration of mathematical modeling with the phases of the design process. It is concluded that the results obtained are a modular design that can be improved for multiple degrees of freedom and adapted also for rehabilitation of upper limbs.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134200560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779529
Bulmaro A. Valdés, Mahta Khoshnam, J. Neva, C. Menon
Proprioception, the ability to sense body position and limb movements in space without visual feedback, is one of the key factors in controlling body movements and performing activities of daily living. However, this capability might be affected after neural injuries such as stroke. Robotic platforms can be used to monitor and promote arm movements and, therefore, can assist in developing rehabilitation protocols that aim to improve proprioception through repetitive reaching motions without vision. The objective of this paper is to investigate if a robotic training protocol improves the end-position reaching proprioceptive sense in three-dimensional (3D) space. As an initial step towards clinical application, a robotic platform was employed to train the end-position proprioceptive sense in six healthy participants. During the training phase, volunteers used their dominant hand to reach without vision to two different targets in 3D space. Positions of these targets were carefully chosen to create a hand movement pattern similar to that used when self-feeding, which is an important activity of daily living. At the end of each training trial, participants were provided with visual feedback to help them move their hands to the exact locations confirmed through haptic feedback. Their performance was evaluated before and after the training in an assessment phase during which participants were asked to move from the start position to the same two targets as well as an additional third one without any visual or haptic feedback. The results from this study show significant improvements in overall reaching accuracy and trajectory smoothness, demonstrated by 41% decrease in the average end-position error and 13% reduction in the average index of curvature after the training. This research suggests the potential of designing robotic rehabilitation protocols for improving 3D proprioception.
{"title":"Robot-Aided Upper-limb Proprioceptive Training in Three-Dimensional Space","authors":"Bulmaro A. Valdés, Mahta Khoshnam, J. Neva, C. Menon","doi":"10.1109/ICORR.2019.8779529","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779529","url":null,"abstract":"Proprioception, the ability to sense body position and limb movements in space without visual feedback, is one of the key factors in controlling body movements and performing activities of daily living. However, this capability might be affected after neural injuries such as stroke. Robotic platforms can be used to monitor and promote arm movements and, therefore, can assist in developing rehabilitation protocols that aim to improve proprioception through repetitive reaching motions without vision. The objective of this paper is to investigate if a robotic training protocol improves the end-position reaching proprioceptive sense in three-dimensional (3D) space. As an initial step towards clinical application, a robotic platform was employed to train the end-position proprioceptive sense in six healthy participants. During the training phase, volunteers used their dominant hand to reach without vision to two different targets in 3D space. Positions of these targets were carefully chosen to create a hand movement pattern similar to that used when self-feeding, which is an important activity of daily living. At the end of each training trial, participants were provided with visual feedback to help them move their hands to the exact locations confirmed through haptic feedback. Their performance was evaluated before and after the training in an assessment phase during which participants were asked to move from the start position to the same two targets as well as an additional third one without any visual or haptic feedback. The results from this study show significant improvements in overall reaching accuracy and trajectory smoothness, demonstrated by 41% decrease in the average end-position error and 13% reduction in the average index of curvature after the training. This research suggests the potential of designing robotic rehabilitation protocols for improving 3D proprioception.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"649 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132048768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779412
M. Ishmael, M. Tran, T. Lenzi
In this paper, we explore the effect of residual hip assistance in one above-knee amputee subject using a novel lightweight powered hip exoskeleton. Differently from a powered prosthesis, a powered hip exoskeleton adds mass proximally. Thus, we expect that the negative effect of the added mass will be lower for a powered hip exoskeleton than a powered ankle and knee prosthesis. Consequently, residual-hip assistance may more easily lead to a net reduction of metabolic effort. To preliminarily assess this hypothesis, we measured the physiological cost index (PCI) while an above-knee subject walked with and without a powered hip exoskeleton. Experimental results show 20.5% reduction of PCI when walking with the powered hip exoskeleton.
{"title":"ExoProsthetics: Assisting Above-Knee Amputees with a Lightweight Powered Hip Exoskeleton","authors":"M. Ishmael, M. Tran, T. Lenzi","doi":"10.1109/ICORR.2019.8779412","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779412","url":null,"abstract":"In this paper, we explore the effect of residual hip assistance in one above-knee amputee subject using a novel lightweight powered hip exoskeleton. Differently from a powered prosthesis, a powered hip exoskeleton adds mass proximally. Thus, we expect that the negative effect of the added mass will be lower for a powered hip exoskeleton than a powered ankle and knee prosthesis. Consequently, residual-hip assistance may more easily lead to a net reduction of metabolic effort. To preliminarily assess this hypothesis, we measured the physiological cost index (PCI) while an above-knee subject walked with and without a powered hip exoskeleton. Experimental results show 20.5% reduction of PCI when walking with the powered hip exoskeleton.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132297675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779500
J. Fasola, T. Vouga, Romain Baud, H. Bleuler, M. Bouri
This paper investigates sensorimotor adaptation strategies of sagittal postural control in healthy subjects under kinematic constraints. A passive exoskeleton named CAPTUR, with locked ankle joints and legs motion restrained to the sagittal plane is used to restrict and measure participant’s movements. The aim is to assess the role of the orientation of the shank and the trunk segments in maintaining the body center of mass above its support base, while the ankle strategy is inhibited. Five young healthy participants were asked to keep standing, while their balance was challenged by five experimental conditions. Participants mainly regulated quiet standing balance by flexing/extending the knees, in order to affect the shank and feet angles, and move the contact patch along the sagittal axis. In this case, the orientation of the trunk segment changes synchronously with the shank angle to keep an upright posture. Responses to more dramatic excursions of the center of pressure are ensured by changing the trunk tilt angle in opposition of phase with the shank angle. These observations could be used to implement a bioinspired balance controller for such constrained lower-limb exoskeletons.
{"title":"Balance Control Strategies during Standing in a Locked-Ankle Passive Exoskeleton","authors":"J. Fasola, T. Vouga, Romain Baud, H. Bleuler, M. Bouri","doi":"10.1109/ICORR.2019.8779500","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779500","url":null,"abstract":"This paper investigates sensorimotor adaptation strategies of sagittal postural control in healthy subjects under kinematic constraints. A passive exoskeleton named CAPTUR, with locked ankle joints and legs motion restrained to the sagittal plane is used to restrict and measure participant’s movements. The aim is to assess the role of the orientation of the shank and the trunk segments in maintaining the body center of mass above its support base, while the ankle strategy is inhibited. Five young healthy participants were asked to keep standing, while their balance was challenged by five experimental conditions. Participants mainly regulated quiet standing balance by flexing/extending the knees, in order to affect the shank and feet angles, and move the contact patch along the sagittal axis. In this case, the orientation of the trunk segment changes synchronously with the shank angle to keep an upright posture. Responses to more dramatic excursions of the center of pressure are ensured by changing the trunk tilt angle in opposition of phase with the shank angle. These observations could be used to implement a bioinspired balance controller for such constrained lower-limb exoskeletons.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132515168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779535
Matteo Cognolato, Lorenzo Brigato, Yashin Dicente Cid, M. Atzori, Henning Müller
Although remarkable improvements have been made, the natural control of hand prostheses in everyday life is still challenging. Changes in limb position can considerably affect the robustness of pattern recognition-based myoelectric control systems, even if various strategies were proposed to mitigate this effect. In this paper, we investigate the possibility of selecting a set of training movements that is robust to limb position change, performing a trade-off between training time and accuracy. Four able-bodied subjects were recorded while following a training protocol for myoelectric hand prostheses control. The protocol is composed of 210 combinations of arm positions, forearm orientations, wrist orientations and hand grasps. To the best of our knowledge, it is among the most complete including changes in limb positions. A training reduction paradigm was used to select subsets of training movements from a group of subjects that were tested on the left-out subject's data. The results show that a reduced training set (30 to 50 movements) allows a substantial reduction of the training time while maintaining reasonable performance, and that the trade-off between performance and training time appears to depend on the chosen classifier. Although further improvements can be made, the results show that properly selected training sets can be a viable strategy to reduce the training time while maximizing the performance of the classifier against variations in limb position.
{"title":"Analyzing the Trade-Off Between Training Session Time and Performance in Myoelectric Hand Gesture Recognition During Upper Limb Movement","authors":"Matteo Cognolato, Lorenzo Brigato, Yashin Dicente Cid, M. Atzori, Henning Müller","doi":"10.1109/ICORR.2019.8779535","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779535","url":null,"abstract":"Although remarkable improvements have been made, the natural control of hand prostheses in everyday life is still challenging. Changes in limb position can considerably affect the robustness of pattern recognition-based myoelectric control systems, even if various strategies were proposed to mitigate this effect. In this paper, we investigate the possibility of selecting a set of training movements that is robust to limb position change, performing a trade-off between training time and accuracy. Four able-bodied subjects were recorded while following a training protocol for myoelectric hand prostheses control. The protocol is composed of 210 combinations of arm positions, forearm orientations, wrist orientations and hand grasps. To the best of our knowledge, it is among the most complete including changes in limb positions. A training reduction paradigm was used to select subsets of training movements from a group of subjects that were tested on the left-out subject's data. The results show that a reduced training set (30 to 50 movements) allows a substantial reduction of the training time while maintaining reasonable performance, and that the trade-off between performance and training time appears to depend on the chosen classifier. Although further improvements can be made, the results show that properly selected training sets can be a viable strategy to reduce the training time while maximizing the performance of the classifier against variations in limb position.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114957289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779444
Dylan J. A. Brenneis, M. R. Dawson, Hiroki Tanikawa, Jacqueline S. Hebert, J. Carey, P. Pilarski
Upper limb loss is a devastating injury for which current prosthetic replacement inadequately compensates. A lack of wrist movement in prostheses due to mechanical design and control system considerations compels prosthetic users to employ compensatory movements using their upper back and shoulder that can eventually result in strain and overuse injuries. One possible means of easing this control burden is to allow a prosthetic wrist to self-regulate, keeping the terminal device of the prosthesis level relative to the ground when appropriate, such as when raising a cup of liquid. This study aims to outline such a wrist control scheme, and evaluate its function in terms of the effect on compensatory movements, objective system performance, and subjective perception of system performance based on user feedback. To that end, twelve able-bodied participants were recruited to control a body-mounted robotic arm using three different control schemes: fixed-wrist (FW), sequential switching (SS), and automatic levelling (AL). The resulting movement strategies were recorded for two different tasks using 3D motion-capture. SS and AL control schemes induced similar movement strategies and less compensation than FW for horizontal movements, while AL reduced shoulder flexion compared to FW and SS for vertical movements. However, AL was ranked less intuitive and less reliable than the FW. AL and SS both seemed to involve more conscious thought to operate than FW. These results suggest that more complex wrist control schemes may indeed be able to eliminate harmful compensatory movements, but reinforce prior observations that control must be reliable and simple to use or people will opt for an easier system.
{"title":"The Effect of an Automatically Levelling Wrist Control System","authors":"Dylan J. A. Brenneis, M. R. Dawson, Hiroki Tanikawa, Jacqueline S. Hebert, J. Carey, P. Pilarski","doi":"10.1109/ICORR.2019.8779444","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779444","url":null,"abstract":"Upper limb loss is a devastating injury for which current prosthetic replacement inadequately compensates. A lack of wrist movement in prostheses due to mechanical design and control system considerations compels prosthetic users to employ compensatory movements using their upper back and shoulder that can eventually result in strain and overuse injuries. One possible means of easing this control burden is to allow a prosthetic wrist to self-regulate, keeping the terminal device of the prosthesis level relative to the ground when appropriate, such as when raising a cup of liquid. This study aims to outline such a wrist control scheme, and evaluate its function in terms of the effect on compensatory movements, objective system performance, and subjective perception of system performance based on user feedback. To that end, twelve able-bodied participants were recruited to control a body-mounted robotic arm using three different control schemes: fixed-wrist (FW), sequential switching (SS), and automatic levelling (AL). The resulting movement strategies were recorded for two different tasks using 3D motion-capture. SS and AL control schemes induced similar movement strategies and less compensation than FW for horizontal movements, while AL reduced shoulder flexion compared to FW and SS for vertical movements. However, AL was ranked less intuitive and less reliable than the FW. AL and SS both seemed to involve more conscious thought to operate than FW. These results suggest that more complex wrist control schemes may indeed be able to eliminate harmful compensatory movements, but reinforce prior observations that control must be reliable and simple to use or people will opt for an easier system.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115151356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-06-01DOI: 10.1109/ICORR.2019.8779561
Sophie Schneider, W. Popp, M. Brogioli, Urs Albisser, Stefan J Ortmann, Inge-Marie Velstra, László Demkó, R. Gassert, A. Curt
Upper limb (UL) compensation is a common strategy of patients with a high spinal cord injury (SCI), i.e., tetraplegic patients, to perform activities of daily living (ADLs) despite their sensorimotor deficits. Currently, an objective and sensitive tool to assess UL compensation, which is applicable in the clinical routine and in the daily life of patients, is missing. In this work, we propose a metric to quantify this compensation using a single inertial measurement unit (IMU). The spread of forearm pitch angles of an IMU attached to the wrist of 17 SCI patients and 18 healthy controls performing six prehension tasks of the graded redefined assessment of strength, sensibility and prehension (GRASSP) was extracted. Using the spread of the forearm pitch angles, a classification of UL compensation was possible with very good to excellent accuracies in all six different prehension tasks. Furthermore, the spread of forearm pitch angles correlated moderately to very strongly with qualitative and quantitative GRASSP prehension scores and the task duration. Therefore, we conclude that our proposed method has a high potential to classify compensation accurately and objectively and might be used to quantify the degree of UL compensation in ADLs. Thus, this method could be implemented in clinical trials investigating the effectiveness of interventions targeting UL functions.
{"title":"Predicting upper limb compensation during prehension tasks in tetraplegic spinal cord injured patients using a single wearable sensor","authors":"Sophie Schneider, W. Popp, M. Brogioli, Urs Albisser, Stefan J Ortmann, Inge-Marie Velstra, László Demkó, R. Gassert, A. Curt","doi":"10.1109/ICORR.2019.8779561","DOIUrl":"https://doi.org/10.1109/ICORR.2019.8779561","url":null,"abstract":"Upper limb (UL) compensation is a common strategy of patients with a high spinal cord injury (SCI), i.e., tetraplegic patients, to perform activities of daily living (ADLs) despite their sensorimotor deficits. Currently, an objective and sensitive tool to assess UL compensation, which is applicable in the clinical routine and in the daily life of patients, is missing. In this work, we propose a metric to quantify this compensation using a single inertial measurement unit (IMU). The spread of forearm pitch angles of an IMU attached to the wrist of 17 SCI patients and 18 healthy controls performing six prehension tasks of the graded redefined assessment of strength, sensibility and prehension (GRASSP) was extracted. Using the spread of the forearm pitch angles, a classification of UL compensation was possible with very good to excellent accuracies in all six different prehension tasks. Furthermore, the spread of forearm pitch angles correlated moderately to very strongly with qualitative and quantitative GRASSP prehension scores and the task duration. Therefore, we conclude that our proposed method has a high potential to classify compensation accurately and objectively and might be used to quantify the degree of UL compensation in ADLs. Thus, this method could be implemented in clinical trials investigating the effectiveness of interventions targeting UL functions.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128392497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}