Rat is one of the most widely-used models in chemical safety evaluation and biomedical research. However, the knowledge about its microRNA (miRNA) expression patterns across multiple organs and various developmental stages is still limited. Here, we constructed a comprehensive rat miRNA expression BodyMap using a diverse collection of 320 RNA samples from 11 organs of both sexes of juvenile, adolescent, adult and aged Fischer 344 rats with four biological replicates per group. Following the Illumina TruSeq Small RNA protocol, an average of 5.1 million 50 bp single-end reads was generated per sample, yielding a total of 1.6 billion reads. The quality of the resulting miRNA-seq data was deemed to be high from raw sequences, mapped sequences, and biological reproducibility. Importantly, aliquots of the same RNA samples have previously been used to construct the mRNA BodyMap. The currently presented miRNA-seq dataset along with the existing mRNA-seq dataset from the same RNA samples provides a unique resource for studying the expression characteristics of existing and novel miRNAs, and for integrative analysis of miRNA-mRNA interactions, thereby facilitating better utilization of rats for biomarker discovery.
Mastitis is one of the most frequent and costly production diseases of dairy cattle. It is frequently treated with broad-spectrum antimicrobials. The objectives of this work were to investigate the prevalence of Staphylococcus aureus and Escherichia coli, find out the antimicrobials used in mastitis treatment, and explore the antimicrobial resistance profile including detection of resistance genes. Bacterial species and antimicrobial resistance genes were confirmed by the polymerase-chain reaction. A total of 450 cows were screened, where 23 (5.11%) and 173 (38.44%) were affected with clinical and sub-clinical mastitis, respectively. The prevalence of S. aureus was 39.13% (n = 9) and 47.97%(n = 83) while, E. coli was 30.43% (n = 7) and 15.60% (n = 27) in clinical and sub-clinical mastitis affected cows, respectively. The highest antimicrobials used for mastitis treatment were ciprofloxacin (83.34%), amoxycillin (80%) and ceftriaxone (76.67%). More than, 70% of S. aureus showed resistance against ampicillin, oxacillin, and tetracycline and more than 60% of E. coli exhibited resistance against oxacillin and sulfamethoxazole-trimethoprim. Selected antimicrobial resistance genes (mecA, tetK, tetL, tetM, tetA, tetB, tetC, sul1, sul2 and sul3) were identified from S. aureus and E. coli. Surprisingly, 7 (7.61%) S. aureus carried the mecA gene and were confirmed as methicillin-resistant S. aureus (MRSA). The most prevalent resistance genes were tetK 18 (19.57%) and tetL 13 (14.13%) for S. aureus, whereas sul1 16 (47.06%), tetA 12 (35.29%), sul2 11 (32.35%) and tetB 7 (20.59%) were the most common resistance genes in E. coli. Indiscriminate use of antimicrobials and the presence of multidrug-resistant bacteria suggest a potential threat to public health.