This research focuses on increasing wood resistance against UV degradation using trimethoxyphenylsilane as modifying agent and supercritical CO2 as a green solvent and reaction medium. Trimethoxyphenylsilane was successfully grafted on European spruce (Picea abies, H. Karst) and was characterized by SEM-EDX and UV–vis reflectance. SEM-EDX showed the presence of silicium inside the wood cell wall. Increased wood moisture content showed positive effect on weight gain of trimethoxyphenylsilane after treatment. UV resistance of treated wood was evaluated by following the color change during artificial weathering. Modified samples showed improved weathering resistance compared to unmodified wood with a ΔE value around 5 after 260 h. Processing and modifying wood using supercritical CO2 is a promising route to increase wood performances and increase its use as a building material.
以三甲氧基苯基硅烷为改性剂,超临界CO2为绿色溶剂和反应介质,研究提高木材抗紫外线降解能力的方法。将三甲氧基苯基硅烷成功地接枝在欧洲云杉(Picea abies, H. Karst)上,并用SEM-EDX和紫外-可见反射率对其进行了表征。SEM-EDX显示木材细胞壁内有硅的存在。处理后木材含水率的增加对三甲氧基苯基硅烷增重有积极影响。通过观察人工风化过程中木材的颜色变化来评价木材的抗紫外线性能。与未改性木材相比,改性样品在260 h后的耐候性得到了改善,其ΔE值约为5。使用超临界二氧化碳对木材进行加工和改性是提高木材性能和增加其作为建筑材料用途的有希望的途径。
{"title":"Wood modification with trimethoxyphenylsilane via supercritical carbon dioxide for enhanced weathering resistance","authors":"Juliette Triquet, Olivier Renard, Pierre Piluso","doi":"10.1515/hf-2023-0089","DOIUrl":"https://doi.org/10.1515/hf-2023-0089","url":null,"abstract":"This research focuses on increasing wood resistance against UV degradation using trimethoxyphenylsilane as modifying agent and supercritical CO<jats:sub>2</jats:sub> as a green solvent and reaction medium. Trimethoxyphenylsilane was successfully grafted on European spruce (<jats:italic>Picea abies</jats:italic>, H. Karst) and was characterized by SEM-EDX and UV–vis reflectance. SEM-EDX showed the presence of silicium inside the wood cell wall. Increased wood moisture content showed positive effect on weight gain of trimethoxyphenylsilane after treatment. UV resistance of treated wood was evaluated by following the color change during artificial weathering. Modified samples showed improved weathering resistance compared to unmodified wood with a Δ<jats:italic>E</jats:italic> value around 5 after 260 h. Processing and modifying wood using supercritical CO<jats:sub>2</jats:sub> is a promising route to increase wood performances and increase its use as a building material.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":"4 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138630022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To develop an eco-friendly artificial turf filling for replacing rubber elastomer particles, seven kinds of natural materials (cork, soft oak, champagne bark, oak bark, pine bark, willow bark, and vermiculite) were selected and processed into particles with a dimension of 1–2 mm. The water absorption performance, mold resistance, resilience, compression characteristics, and the repose angle were tested, and the surface microscopic morphology of granular materials was observed. The experimental results showed that the champagne bark had the largest plastic deformation range under pressure load, which was 0.21–7.82 KN. And the champagne bark particles had the best resilience, which was respectively 8.9 % and 7.1 % before and after compression, and its angle of repose was 36.8°, which was 9 % higher than that of the thermoplastic elastomer (TPE) particle. Additionally, champagne bark had better mold resistance compared with the other six natural materials, and its mold only occurred in the mold inoculation center. In conclusion, champagne bark could be considered as an artificial turf filling granule to replace TPE rubber.
{"title":"The feasibility and properties of wood used as filler in artificial turf to reduce environment pollution","authors":"Luyang Wang, Ke Shi, Chunxia He","doi":"10.1515/hf-2023-0047","DOIUrl":"https://doi.org/10.1515/hf-2023-0047","url":null,"abstract":"To develop an eco-friendly artificial turf filling for replacing rubber elastomer particles, seven kinds of natural materials (cork, soft oak, champagne bark, oak bark, pine bark, willow bark, and vermiculite) were selected and processed into particles with a dimension of 1–2 mm. The water absorption performance, mold resistance, resilience, compression characteristics, and the repose angle were tested, and the surface microscopic morphology of granular materials was observed. The experimental results showed that the champagne bark had the largest plastic deformation range under pressure load, which was 0.21–7.82 KN. And the champagne bark particles had the best resilience, which was respectively 8.9 % and 7.1 % before and after compression, and its angle of repose was 36.8°, which was 9 % higher than that of the thermoplastic elastomer (TPE) particle. Additionally, champagne bark had better mold resistance compared with the other six natural materials, and its mold only occurred in the mold inoculation center. In conclusion, champagne bark could be considered as an artificial turf filling granule to replace TPE rubber.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":"15 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138530994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Md. Tipu Sultan, Daniela Altgen, Muhammad Awais, Lauri Rautkari, Michael Altgen
The dimensional stabilisation of wood using thermosetting resins relies on the resin uptake into the cell walls. This study tested if a conditioning step after the impregnation and before the final heat-curing enhances the cell wall uptake to improve dimensional stabilisation without increasing the chemical consumption. Small blocks of Scots pine sapwood were vacuum-impregnated with an aqueous melamine formaldehyde solution and conditioned at 33, 70, or 95 % RH for up to 1 week before drying and curing the blocks at 103 °C. However, the conditioning step decreased the cell wall bulking and the moisture exclusion effect compared to the immediate heat curing of the impregnated samples. Analyses of the resin-treated samples by scanning electron microscopy, IR spectroscopy and confocal Raman microspectroscopy provided evidence of wood hydrolysis and polycondensation of the resin within the cell lumen during the conditioning step. Hydrolysis and removal of wood constituents may have counterbalanced the cell wall bulking of the resin. Polycondensation of the resin in the lumen increased its molecule size, which could have hindered the cell wall diffusion of the resin.
{"title":"Impact of a conditioning step during the treatment of wood with melamine-formaldehyde resin on dimensional stabilisation","authors":"Md. Tipu Sultan, Daniela Altgen, Muhammad Awais, Lauri Rautkari, Michael Altgen","doi":"10.1515/hf-2023-0084","DOIUrl":"https://doi.org/10.1515/hf-2023-0084","url":null,"abstract":"The dimensional stabilisation of wood using thermosetting resins relies on the resin uptake into the cell walls. This study tested if a conditioning step after the impregnation and before the final heat-curing enhances the cell wall uptake to improve dimensional stabilisation without increasing the chemical consumption. Small blocks of Scots pine sapwood were vacuum-impregnated with an aqueous melamine formaldehyde solution and conditioned at 33, 70, or 95 % RH for up to 1 week before drying and curing the blocks at 103 °C. However, the conditioning step decreased the cell wall bulking and the moisture exclusion effect compared to the immediate heat curing of the impregnated samples. Analyses of the resin-treated samples by scanning electron microscopy, IR spectroscopy and confocal Raman microspectroscopy provided evidence of wood hydrolysis and polycondensation of the resin within the cell lumen during the conditioning step. Hydrolysis and removal of wood constituents may have counterbalanced the cell wall bulking of the resin. Polycondensation of the resin in the lumen increased its molecule size, which could have hindered the cell wall diffusion of the resin.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":"33 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138530952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glucuronoxylans have been considered as an alternative polymer for petroleum polymers in coatings, films, emulsifiers, and other industries. In this study, different molecule weight glucuronoxylans were obtained through xylanase hydrolysis. Dodecenyl succinic anhydride (DDSA) was used as a modifying agent to functionalize glucuronoxylans. At the same degree of substitution (DS), higher molecule weight glucuronoxylans led to better emulsifying properties and emulsion stability. Higher molecule weight DDSA modified glucuronoxylans showed smaller droplets size, lower zeta potential, higher EA (emulsifying activity) and better emulsion stability. These results suggested that molecule weight has positive impact on the emulsifying properties of DDSA modified glucuronoxylans. Furthermore, DS had positive impact on the emulsifying properties of DDSA modified glucuronoxylans.
{"title":"Effects of molecule weight on the emulsifying properties of dodecenyl succinic anhydride modified glucuronoxylans","authors":"Zhenhua Hu, Xiaotong Fan, Zhouyang Xiang, Luliang Wang, Shengdan Wang, Yushen Liu","doi":"10.1515/hf-2023-0077","DOIUrl":"https://doi.org/10.1515/hf-2023-0077","url":null,"abstract":"Glucuronoxylans have been considered as an alternative polymer for petroleum polymers in coatings, films, emulsifiers, and other industries. In this study, different molecule weight glucuronoxylans were obtained through xylanase hydrolysis. Dodecenyl succinic anhydride (DDSA) was used as a modifying agent to functionalize glucuronoxylans. At the same degree of substitution (DS), higher molecule weight glucuronoxylans led to better emulsifying properties and emulsion stability. Higher molecule weight DDSA modified glucuronoxylans showed smaller droplets size, lower zeta potential, higher EA (emulsifying activity) and better emulsion stability. These results suggested that molecule weight has positive impact on the emulsifying properties of DDSA modified glucuronoxylans. Furthermore, DS had positive impact on the emulsifying properties of DDSA modified glucuronoxylans.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":"1 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138530947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lesley P. Francis, Kate E. Semple, Babar Hassan, Jeffrey J. Morrell
Understanding the durability of emerging plantation hardwood resources is important for optimising their production and use. This study compared timber density, extractives content and decay resistance in 12–13-year-old plantation and native forest regrowth Gympie messmate (Eucalyptus cloeziana) trees. Density increased from pith to bark for both plantation and native forest trees. Inner heartwood density of the plantation timber was significantly lower than that of the native forest regrowth timber. While the total extractives content of the outer heartwood was comparable in the plantation and native forest regrowth trees, the inner heartwood of the latter contained significantly greater extractives levels. Laboratory decay tests showed that all heartwood zones of plantation and native forest regrowth Gympie messmate were resistant to decay by the white rot Pycnoporus coccineus. The inner heartwood of the plantation timber was, however, susceptible to decay by the brown rot Fomitopsis ostreiformis. The results illustrate the potential variations in wood quality parameters to be considered when moving from native forest to plantation resources that are harvested at a younger age and managed for more rapid wood production.
{"title":"Natural durability indicators in young plantation and native forest regrowth Gympie messmate (Eucalyptus cloeziana)","authors":"Lesley P. Francis, Kate E. Semple, Babar Hassan, Jeffrey J. Morrell","doi":"10.1515/hf-2023-0057","DOIUrl":"https://doi.org/10.1515/hf-2023-0057","url":null,"abstract":"Understanding the durability of emerging plantation hardwood resources is important for optimising their production and use. This study compared timber density, extractives content and decay resistance in 12–13-year-old plantation and native forest regrowth Gympie messmate (<jats:italic>Eucalyptus cloeziana</jats:italic>) trees. Density increased from pith to bark for both plantation and native forest trees. Inner heartwood density of the plantation timber was significantly lower than that of the native forest regrowth timber. While the total extractives content of the outer heartwood was comparable in the plantation and native forest regrowth trees, the inner heartwood of the latter contained significantly greater extractives levels. Laboratory decay tests showed that all heartwood zones of plantation and native forest regrowth Gympie messmate were resistant to decay by the white rot <jats:italic>Pycnoporus coccineus</jats:italic>. The inner heartwood of the plantation timber was, however, susceptible to decay by the brown rot <jats:italic>Fomitopsis ostreiformis</jats:italic>. The results illustrate the potential variations in wood quality parameters to be considered when moving from native forest to plantation resources that are harvested at a younger age and managed for more rapid wood production.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":"74 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138530951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surong Meng, Yingying Su, Anmin Huang, Bailing Sun
Abstract This study investigated the characteristics of radial cracks in Castanopsis hystrix wood and evaluated its dimensional stability after impregnation with low-molecular-weight polyacrylate (PA), melamine-urea-glyoxal (MUG), and melamine-urea-formaldehyde (MUF) resins. The physical properties were examined by dimensional stability measurements, dynamic vapor sorption (DVS) analysis, and scanning electron microscopy (SEM). The results showed that radial cracks were easily produced in the transverse section of untreated wood during drying. The surfaces of the radial cracks exhibited an even and clean structure without fluffs on the pair of surfaces, and cracks spanned 4–5 annual rings. The resin-impregnated wood showed no radial cracks on its transverse surface. C. hystrix wood modified with MUG and MUF exhibited a higher weight percentage gain (WPG) than wood modified with the same concentration of PA resin. The resin-impregnated C. hystrix wood also showed reduced anisotropy and improved dimensional stability. The SEM images of the modified wood showed that the wood pits and cells were filled with resin, while the cell wall surfaces were covered with a layer of resin.
{"title":"Radial cracks in <i>Castanopsis hystrix</i> wood and its dimensional stability improvement by resin-impregnated modification","authors":"Surong Meng, Yingying Su, Anmin Huang, Bailing Sun","doi":"10.1515/hf-2023-0073","DOIUrl":"https://doi.org/10.1515/hf-2023-0073","url":null,"abstract":"Abstract This study investigated the characteristics of radial cracks in Castanopsis hystrix wood and evaluated its dimensional stability after impregnation with low-molecular-weight polyacrylate (PA), melamine-urea-glyoxal (MUG), and melamine-urea-formaldehyde (MUF) resins. The physical properties were examined by dimensional stability measurements, dynamic vapor sorption (DVS) analysis, and scanning electron microscopy (SEM). The results showed that radial cracks were easily produced in the transverse section of untreated wood during drying. The surfaces of the radial cracks exhibited an even and clean structure without fluffs on the pair of surfaces, and cracks spanned 4–5 annual rings. The resin-impregnated wood showed no radial cracks on its transverse surface. C. hystrix wood modified with MUG and MUF exhibited a higher weight percentage gain (WPG) than wood modified with the same concentration of PA resin. The resin-impregnated C. hystrix wood also showed reduced anisotropy and improved dimensional stability. The SEM images of the modified wood showed that the wood pits and cells were filled with resin, while the cell wall surfaces were covered with a layer of resin.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":"87 18","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134901118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The article offers a perspective on how thermal-modification affects the impact bending strength of five different wood species, an aspect that has not received as much attention as the well-studied static load behavior of thermally-modified timber (TMT). Since the TMTs are mainly employed as outdoor materials, where they may encounter impact forces, a comparative investigation into the flexibility and strength of these materials under impact is useful. This article evaluates different aspects of the TMT, such as deflection, strain in the impact region, the maximum force needed to initiate cracks, and the energy required for rupture. Wood planks from ash, beech, larch, oak, and spruce were thermally modified at 180 and 220 °C. They were cut into test specimens, while a separate set of unmodified specimens from each wood species served as the reference group. The specimens were subjected to an impact 3-point bending test, and an ultra-high-speed camera meticulously recorded the results. The images were processed by the digital image correlation (DIC) method to determine the deflection and strain distribution of the beams during the impact test. The deflection, maximum force, maximum longitudinal strain, and required work for rupture of each group were determined. The results showed that thermal-modification decreases the wood deflection and maximum longitudinal strain by approximately 50 %. In addition, the impact bending strength decreased by nearly 60 %. However, the impact bending strength did not exhibit a statistically significant decrease at 180 °C; in some cases, it even increased.
{"title":"Impact bending strength of thermally-modified timber","authors":"Mojtaba Hassan Vand, Jan Tippner","doi":"10.1515/hf-2023-0046","DOIUrl":"https://doi.org/10.1515/hf-2023-0046","url":null,"abstract":"Abstract The article offers a perspective on how thermal-modification affects the impact bending strength of five different wood species, an aspect that has not received as much attention as the well-studied static load behavior of thermally-modified timber (TMT). Since the TMTs are mainly employed as outdoor materials, where they may encounter impact forces, a comparative investigation into the flexibility and strength of these materials under impact is useful. This article evaluates different aspects of the TMT, such as deflection, strain in the impact region, the maximum force needed to initiate cracks, and the energy required for rupture. Wood planks from ash, beech, larch, oak, and spruce were thermally modified at 180 and 220 °C. They were cut into test specimens, while a separate set of unmodified specimens from each wood species served as the reference group. The specimens were subjected to an impact 3-point bending test, and an ultra-high-speed camera meticulously recorded the results. The images were processed by the digital image correlation (DIC) method to determine the deflection and strain distribution of the beams during the impact test. The deflection, maximum force, maximum longitudinal strain, and required work for rupture of each group were determined. The results showed that thermal-modification decreases the wood deflection and maximum longitudinal strain by approximately 50 %. In addition, the impact bending strength decreased by nearly 60 %. However, the impact bending strength did not exhibit a statistically significant decrease at 180 °C; in some cases, it even increased.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":"97 37","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135091724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Accurate and rapid wood species identification is vital for wood utilization and trade. This goal is achievable with the fast development of deep learning (DL). Several studies have been published related to this topic; however, they were limited by their generalization performance in practical applications. Therefore, this study proposed a DL multimodal fusion framework to bridge this gap. The study utilized a state-of-the-art convolutional neural network (CNN) to simultaneously extract both short-wavelength near-infrared (NIR) spectra and RGB image feature, fully leveraging the advantages of both data types. Using portable devices for collecting spectra and image data enhances the feasibility of onsite rapid identification. In particular, a two-branch CNN framework was developed to extract spectra and image features. For NIR spectra feature extraction, 1 dimensional NIR (1D NIR) spectra were innovatively encoded as 2 dimensional (2D) images using the Gramian angular difference field (GADF) method. This representation enhances better data alignment with CNN operations, facilitating more robust discriminative feature extraction. Moreover, wood’s spectral and image features were fused at the full connection layer for species identification. In the experimental phase conducted on 16 difficult-to-distinguish wood samples from the Lauraceae family, all achieved identification metrics results exceed 99 %. The findings illustrate that the proposed multimodal fusion framework effectively extracts and fully integrates the wood’s features, thereby, improving wood species identification.
{"title":"A deep learning multimodal fusion framework for wood species identification using near-infrared spectroscopy GADF and RGB image","authors":"Xi Pan, Zhiming Yu, Zhong Yang","doi":"10.1515/hf-2023-0062","DOIUrl":"https://doi.org/10.1515/hf-2023-0062","url":null,"abstract":"Abstract Accurate and rapid wood species identification is vital for wood utilization and trade. This goal is achievable with the fast development of deep learning (DL). Several studies have been published related to this topic; however, they were limited by their generalization performance in practical applications. Therefore, this study proposed a DL multimodal fusion framework to bridge this gap. The study utilized a state-of-the-art convolutional neural network (CNN) to simultaneously extract both short-wavelength near-infrared (NIR) spectra and RGB image feature, fully leveraging the advantages of both data types. Using portable devices for collecting spectra and image data enhances the feasibility of onsite rapid identification. In particular, a two-branch CNN framework was developed to extract spectra and image features. For NIR spectra feature extraction, 1 dimensional NIR (1D NIR) spectra were innovatively encoded as 2 dimensional (2D) images using the Gramian angular difference field (GADF) method. This representation enhances better data alignment with CNN operations, facilitating more robust discriminative feature extraction. Moreover, wood’s spectral and image features were fused at the full connection layer for species identification. In the experimental phase conducted on 16 difficult-to-distinguish wood samples from the Lauraceae family, all achieved identification metrics results exceed 99 %. The findings illustrate that the proposed multimodal fusion framework effectively extracts and fully integrates the wood’s features, thereby, improving wood species identification.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":" 38","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135192131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Microscopic lab-based X-ray computed tomography (XµCT) aided finite element (FE) modelling is a popular method with increasing nature within material science to predict local material properties of heterogeneous materials, e.g. elastic, hygroexpansion and diffusion. This method is relatively new to wood and lacks a clear methodology. Research intended to optimise the XµCT aided FE process often focuses on specific aspects within this process such as the XµCT scanning, segmentation or meshing, but not the entirety of the process. The compatibility and data transfer between aspects have not been investigated to the same extent, which creates errors that propagate and negatively impact the end results. In the current study, a methodology for the XµCT aided FE process of wood is suggested and its bottlenecks are identified based on a thorough literature review. Although the complexity of wood as a material makes it difficult to automate the XµCT aided FE process, the proposed methodology can assist in a more considered design and execution of this process. The main challenges that were identified include an automatic procedure to reconstruct the fibre orientation and to perform segmentation and meshing. A combined deep-learning segmentation method with geometry-based meshing can be suggested.
{"title":"An overview of lab-based micro computed tomography aided finite element modelling of wood and its current bottlenecks","authors":"Sara Florisson, Erik Kristofer Gamstedt","doi":"10.1515/hf-2023-0061","DOIUrl":"https://doi.org/10.1515/hf-2023-0061","url":null,"abstract":"Abstract Microscopic lab-based X-ray computed tomography (XµCT) aided finite element (FE) modelling is a popular method with increasing nature within material science to predict local material properties of heterogeneous materials, e.g. elastic, hygroexpansion and diffusion. This method is relatively new to wood and lacks a clear methodology. Research intended to optimise the XµCT aided FE process often focuses on specific aspects within this process such as the XµCT scanning, segmentation or meshing, but not the entirety of the process. The compatibility and data transfer between aspects have not been investigated to the same extent, which creates errors that propagate and negatively impact the end results. In the current study, a methodology for the XµCT aided FE process of wood is suggested and its bottlenecks are identified based on a thorough literature review. Although the complexity of wood as a material makes it difficult to automate the XµCT aided FE process, the proposed methodology can assist in a more considered design and execution of this process. The main challenges that were identified include an automatic procedure to reconstruct the fibre orientation and to perform segmentation and meshing. A combined deep-learning segmentation method with geometry-based meshing can be suggested.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":" 39","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135192130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Max L. Flaig, Jens Berger, Philip Wenig, Andrea Olbrich, Bodo Saake
Abstract The European Deforestation Regulation 2023/1115 (EUDR) prohibits trading of wood and wood products obtained from illegal logging on the EU market. While the identification of solid wood via anatomy, chemistry and genetics has already been established, there is a lack of identification methods for pulp and paper that complement anatomy. This publication presents a newly developed chemotaxonomic method for identifying mixed tropical hardwood (MTH) species in pulp and paper products based on their extractives analyzed with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). The measured data was processed and compared to identify marker substances and was then merged into a fingerprint database for identifying MTH species in paper of unknown composition. As database references, fully bleached kraft pulps were produced from 38 anatomically identified wood samples and then cryo-ball milled and extracted successively with n -hexane and acetone. The results show that the remaining wood extractives generated from bleached pulps are specific enough to find chemical relevant marker substances to detect MTH species. As chemical composition and anatomy are independent characteristics of wood, this paper makes a completely independent method available, which potentially improves the screening for Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) protected species.
{"title":"Identification of tropical wood species in paper: a new chemotaxonomic method based on extractives","authors":"Max L. Flaig, Jens Berger, Philip Wenig, Andrea Olbrich, Bodo Saake","doi":"10.1515/hf-2023-0048","DOIUrl":"https://doi.org/10.1515/hf-2023-0048","url":null,"abstract":"Abstract The European Deforestation Regulation 2023/1115 (EUDR) prohibits trading of wood and wood products obtained from illegal logging on the EU market. While the identification of solid wood via anatomy, chemistry and genetics has already been established, there is a lack of identification methods for pulp and paper that complement anatomy. This publication presents a newly developed chemotaxonomic method for identifying mixed tropical hardwood (MTH) species in pulp and paper products based on their extractives analyzed with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). The measured data was processed and compared to identify marker substances and was then merged into a fingerprint database for identifying MTH species in paper of unknown composition. As database references, fully bleached kraft pulps were produced from 38 anatomically identified wood samples and then cryo-ball milled and extracted successively with n -hexane and acetone. The results show that the remaining wood extractives generated from bleached pulps are specific enough to find chemical relevant marker substances to detect MTH species. As chemical composition and anatomy are independent characteristics of wood, this paper makes a completely independent method available, which potentially improves the screening for Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) protected species.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":"4 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135431235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}