Pub Date : 2023-08-01DOI: 10.1109/TBDATA.2023.3300547
Chenxu Wang;Fuli Feng;Yang Zhang;Qifan Wang;Xunhan Hu;Xiangnan He
Historical interactions are the default choice for recommender model training, which typically exhibit high sparsity, i.e., most user-item pairs are unobserved missing data. A standard choice is treating the missing data as negative training samples and estimating interaction likelihood between user-item pairs along with the observed interactions. In this way, some potential interactions are inevitably mislabeled during training, which will hurt the model fidelity, hindering the model to recall the mislabeled items, especially the long-tail ones. In this work, we investigate the mislabeling issue from a new perspective of aleatoric uncertainty