Pub Date : 2023-09-08DOI: 10.1109/TBDATA.2023.3313031
Junfu Wang;Yuanfang Guo;Liang Yang;Yunhong Wang
Graph Neural Networks (GNNs) have been generalized to process the heterogeneous graphs by various approaches. Unfortunately, these approaches usually model the heterogeneity via various complicated modules. This article aims to propose a simple yet effective framework to assign adequate ability to the homogeneous GNNs to handle the heterogeneous graphs. Specifically, we propose Relation Embedding based Graph Neural Network (RE-GNN), which employs only one parameter per relation to embed the importance of distinct types of relations and node-type-specific self-loop connections. To optimize these relation embeddings and the model parameters simultaneously, a gradient scaling factor is proposed to constrain the embeddings to converge to suitable values. Besides, we interpret the proposed RE-GNN from two perspectives, and theoretically demonstrate that our RE-GCN possesses more expressive power than GTN (which is a typical heterogeneous GNN, and it can generate meta-paths adaptively). Extensive experiments demonstrate that our RE-GNN can effectively and efficiently handle the heterogeneous graphs and can be applied to various homogeneous GNNs.
{"title":"Enabling Homogeneous GNNs to Handle Heterogeneous Graphs via Relation Embedding","authors":"Junfu Wang;Yuanfang Guo;Liang Yang;Yunhong Wang","doi":"10.1109/TBDATA.2023.3313031","DOIUrl":"10.1109/TBDATA.2023.3313031","url":null,"abstract":"Graph Neural Networks (GNNs) have been generalized to process the heterogeneous graphs by various approaches. Unfortunately, these approaches usually model the heterogeneity via various complicated modules. This article aims to propose a simple yet effective framework to assign adequate ability to the homogeneous GNNs to handle the heterogeneous graphs. Specifically, we propose Relation Embedding based Graph Neural Network (RE-GNN), which employs only one parameter per relation to embed the importance of distinct types of relations and node-type-specific self-loop connections. To optimize these relation embeddings and the model parameters simultaneously, a gradient scaling factor is proposed to constrain the embeddings to converge to suitable values. Besides, we interpret the proposed RE-GNN from two perspectives, and theoretically demonstrate that our RE-GCN possesses more expressive power than GTN (which is a typical heterogeneous GNN, and it can generate meta-paths adaptively). Extensive experiments demonstrate that our RE-GNN can effectively and efficiently handle the heterogeneous graphs and can be applied to various homogeneous GNNs.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"9 6","pages":"1697-1710"},"PeriodicalIF":7.2,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44348282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Graph classification, aiming at learning the graph-level representations for effective class assignments, has received outstanding achievements, which heavily relies on high-quality datasets that have balanced class distribution. In fact, most real-world graph data naturally presents a long-tailed form, where the head classes occupy much more samples than the tail classes, it thus is essential to study the graph-level classification over long-tailed data while still remaining largely unexplored. However, most existing long-tailed learning methods in visions fail to jointly optimize the representation learning and classifier training, as well as neglect the mining of the hard-to-classify classes. Directly applying existing methods to graphs may lead to sub-optimal performance, since the model trained on graphs would be more sensitive to the long-tailed distribution due to the complex topological characteristics. Hence, in this paper, we propose a novel long-tailed graph-level classification framework via Co