Pub Date : 2024-05-01DOI: 10.21273/hortsci17454-23
Prakriti Nepal, Zirui Wang, McKenna Carnahan, Wes Maughan, Julie Hershkowitz, Youping Sun, A. Paudel, Kyle Forsyth, Nick Volesky, A. R. Devkota, Ji Jhong Chen
Penstemon, with more than 250 species native to North America, holds significant aesthetic and ecological value in Utah, supporting diverse pollinators. Despite their significance, the survival of penstemon is threatened by challenges such as habitat loss, climate change, and Utah’s naturally high soil salinity. To address these challenges and understand their adaptability, this study evaluated the salt tolerance of two penstemon species [Penstemon davidsonii (Davidson’s penstemon) and Penstemon heterophyllus (foothill penstemon)] under controlled greenhouse conditions. The aim was to develop baseline information for nursery production and landscape use that utilize reclaimed water for irrigation. Plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.0 dS·m−1 as control or a saline solution at an EC of 2.5, 5.0, 7.5, or 10.0 dS·m−1 for 8 weeks. Half of the plants were harvested after four irrigation events, and the remaining plants were harvested after eight irrigation events. At harvest, visual rating (0 = dead and 5 = excellent without foliage salt damage), plant width, number of shoots, leaf area, shoot dry weight, leaf greenness [Soil Plant Analysis Development (SPAD)], stomatal conductance, and canopy temperature were collected to assess the impact of salinity stress. In both species, salt damage was dependent on the salinity levels and length of exposure. After four irrigation events, both species exhibited foliage damage that increased in severity with rising EC. The most severe damage was observed in plants receiving saline solution at an EC of 10.0 dS·m−1. After eight irrigation events, P. davidsonii exposed to a saline solution with an EC of 10.0 dS·m−1 received a visual rating of 0, whereas P. heterophyllus had a visual rating of 0.4. Both species exhibited salinity-induced effects, with variations observed in the specific parameters and the degree of response. Penstemon davidsonii exhibited significant salinity stress, as indicated by reduced leaf area, shoot dry weight, SPAD reading, and stomatal conductance with increasing EC of the saline solution. In addition, in both species, at both harvests, canopy temperatures increased either linearly or quadratically by 8% to 36% as the EC levels of the saline solution increased. These results indicate that P. davidsonii was more sensitive to salinity stress than P. heterophyllus.
{"title":"Morphological and Physiological Responses of Two Penstemon Species to Saline Water Irrigation","authors":"Prakriti Nepal, Zirui Wang, McKenna Carnahan, Wes Maughan, Julie Hershkowitz, Youping Sun, A. Paudel, Kyle Forsyth, Nick Volesky, A. R. Devkota, Ji Jhong Chen","doi":"10.21273/hortsci17454-23","DOIUrl":"https://doi.org/10.21273/hortsci17454-23","url":null,"abstract":"Penstemon, with more than 250 species native to North America, holds significant aesthetic and ecological value in Utah, supporting diverse pollinators. Despite their significance, the survival of penstemon is threatened by challenges such as habitat loss, climate change, and Utah’s naturally high soil salinity. To address these challenges and understand their adaptability, this study evaluated the salt tolerance of two penstemon species [Penstemon davidsonii (Davidson’s penstemon) and Penstemon heterophyllus (foothill penstemon)] under controlled greenhouse conditions. The aim was to develop baseline information for nursery production and landscape use that utilize reclaimed water for irrigation. Plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.0 dS·m−1 as control or a saline solution at an EC of 2.5, 5.0, 7.5, or 10.0 dS·m−1 for 8 weeks. Half of the plants were harvested after four irrigation events, and the remaining plants were harvested after eight irrigation events. At harvest, visual rating (0 = dead and 5 = excellent without foliage salt damage), plant width, number of shoots, leaf area, shoot dry weight, leaf greenness [Soil Plant Analysis Development (SPAD)], stomatal conductance, and canopy temperature were collected to assess the impact of salinity stress. In both species, salt damage was dependent on the salinity levels and length of exposure. After four irrigation events, both species exhibited foliage damage that increased in severity with rising EC. The most severe damage was observed in plants receiving saline solution at an EC of 10.0 dS·m−1. After eight irrigation events, P. davidsonii exposed to a saline solution with an EC of 10.0 dS·m−1 received a visual rating of 0, whereas P. heterophyllus had a visual rating of 0.4. Both species exhibited salinity-induced effects, with variations observed in the specific parameters and the degree of response. Penstemon davidsonii exhibited significant salinity stress, as indicated by reduced leaf area, shoot dry weight, SPAD reading, and stomatal conductance with increasing EC of the saline solution. In addition, in both species, at both harvests, canopy temperatures increased either linearly or quadratically by 8% to 36% as the EC levels of the saline solution increased. These results indicate that P. davidsonii was more sensitive to salinity stress than P. heterophyllus.","PeriodicalId":13140,"journal":{"name":"Hortscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141058512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.21273/hortsci17692-24
Qunlu Liu, Jun Qin, Shuai Qiu, Kai Gao, Yonghong Hu, Xianquan Zhang, Kang Ye, Jun Yang
{"title":"‘Luo Xue’: A New Hydrangea Cultivar","authors":"Qunlu Liu, Jun Qin, Shuai Qiu, Kai Gao, Yonghong Hu, Xianquan Zhang, Kang Ye, Jun Yang","doi":"10.21273/hortsci17692-24","DOIUrl":"https://doi.org/10.21273/hortsci17692-24","url":null,"abstract":"","PeriodicalId":13140,"journal":{"name":"Hortscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141031629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.21273/hortsci17694-24
Qianwen Zhang, Yun Kong, J. Masabni, Genhua Niu
The onion processing industry produces hundreds of thousands of tons of onion waste annually. Normally, onion peel waste is dumped in landfills, which creates additional sources of greenhouse gases. Research has validated that onion peel is a concentrated source of bioactive compounds; therefore, it can be turned into useful agricultural products such as soil amendments and possibly biostimulants. This study conducted three experiments to investigate the plant growth-promoting potential of an onion juice concentrate (OJC). The first experiment explored whether the application of OJC could increase plant growth of Bermuda grass, lettuce, and bok choy. The second experiment evaluated the effects of foliar and subsurface drench applications of OJC on bok choy and lettuce growth. The third experiment investigated the interaction between OJC application methods and fertilizer type on bok choy and radish growth. The results indicated that foliar applications of OJC of 1% to 2% concentrations increased the yield of bok choy and its overall growth. Subirrigation with OJC, however, enhanced the root growth of bok choy, lettuce, and radish. Notably, the combined approach of foliar and subirrigation applications further promoted the growth of both bok choy and radish. Comparing across experiments, longer OJC application periods emerged as a promising strategy for amplifying its growth-promoting benefits. Overall, our findings suggest that OJC holds promise for promoting sustainable agriculture. This potential comes from its ability to enhance both the growth and yield of vegetable crops like bok choy, lettuce, and radish while simultaneously reducing waste.
{"title":"Onion Peel Waste Has the Potential to Be Converted into a Useful Agricultural Product to Improve Vegetable Crop Growth","authors":"Qianwen Zhang, Yun Kong, J. Masabni, Genhua Niu","doi":"10.21273/hortsci17694-24","DOIUrl":"https://doi.org/10.21273/hortsci17694-24","url":null,"abstract":"The onion processing industry produces hundreds of thousands of tons of onion waste annually. Normally, onion peel waste is dumped in landfills, which creates additional sources of greenhouse gases. Research has validated that onion peel is a concentrated source of bioactive compounds; therefore, it can be turned into useful agricultural products such as soil amendments and possibly biostimulants. This study conducted three experiments to investigate the plant growth-promoting potential of an onion juice concentrate (OJC). The first experiment explored whether the application of OJC could increase plant growth of Bermuda grass, lettuce, and bok choy. The second experiment evaluated the effects of foliar and subsurface drench applications of OJC on bok choy and lettuce growth. The third experiment investigated the interaction between OJC application methods and fertilizer type on bok choy and radish growth. The results indicated that foliar applications of OJC of 1% to 2% concentrations increased the yield of bok choy and its overall growth. Subirrigation with OJC, however, enhanced the root growth of bok choy, lettuce, and radish. Notably, the combined approach of foliar and subirrigation applications further promoted the growth of both bok choy and radish. Comparing across experiments, longer OJC application periods emerged as a promising strategy for amplifying its growth-promoting benefits. Overall, our findings suggest that OJC holds promise for promoting sustainable agriculture. This potential comes from its ability to enhance both the growth and yield of vegetable crops like bok choy, lettuce, and radish while simultaneously reducing waste.","PeriodicalId":13140,"journal":{"name":"Hortscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141057488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.21273/hortsci17608-23
Stanley Bayo, Veronica F. Massawe, P. Ndakidemi, Pavithravani B. Venkataramana, A. Mlaki, H. Mduma, K. Jomanga, Rony Swennen, Allan F. Brown
East African diploid cooking bananas, commonly called Mchare, are a staple crop for millions of subsistence farmers in Tanzania, particularly in the Pangani region in northern Tanzania. Several pathogens constrain Mchare production significantly and threaten food security. Sources of resistance to these pathogens have been identified; however, partial male and female sterility impedes successful resistance introgression, complicating the breeding process. Mchare cultivars are also the only known surviving representatives of a diploid banana subgroup that contributed unreduced gametes to many of the most widely grown and successful triploid dessert bananas (‘Cavendish’, ‘Gros-Michel’, ‘Silk’, and ‘Prata’). As such, they represent an essential intermediate step in the conventional improvement of bananas worldwide. We assess the amount and viability of pollen among Mchare and wild genotypes to identify the most fertile Mchare cultivars that can be used in conventional banana improvement. Pollen was collected from 14 banana genotypes for quantification and viability testing over 7 months, and the optimal time for pollen collection was determined to be 0800 HR. Significant variation among banana genotypes in terms of both overall pollen production and percentage of pollen viability was observed. The wild-type bananas ‘Calcutta 4’ (Indian Trade Classification (ITC) 0249] and ‘Borneo’ (ITC0253) had the greatest overall pollen production (> 31,000 pollen grains/anther) and viability (∼74%), whereas ‘Ijihu Inkundu’ (ITC1460; Mchare genotype) was the least productive (almost completely sterile), with an average pollen production of a few hundred grains per anther and a viability of 7%. There were significant differences among months in terms of pollen viability, with the greatest average viability observed in May, April, and February (> 51%), and the lowest average pollen viability in July (41%). Significant differences were observed among the Mchare genotypes, with ‘Huti-White’, ‘Huti green bell’ (ITC1559), and ‘Mchare Laini’ consistently producing more substantial amounts of total pollen and an overall more significant proportion of viable pollen. This information is vital to improve Mchare bananas and the global breeding of dessert bananas. The choice of Mchare banana used in improvement programs could affect fertility and the likelihood of breeding success.
{"title":"Pollen Amount and Viability in Mchare and Selected Wild (AA) Banana (Musa acuminata) Genotypes: Prospects for Breeding","authors":"Stanley Bayo, Veronica F. Massawe, P. Ndakidemi, Pavithravani B. Venkataramana, A. Mlaki, H. Mduma, K. Jomanga, Rony Swennen, Allan F. Brown","doi":"10.21273/hortsci17608-23","DOIUrl":"https://doi.org/10.21273/hortsci17608-23","url":null,"abstract":"East African diploid cooking bananas, commonly called Mchare, are a staple crop for millions of subsistence farmers in Tanzania, particularly in the Pangani region in northern Tanzania. Several pathogens constrain Mchare production significantly and threaten food security. Sources of resistance to these pathogens have been identified; however, partial male and female sterility impedes successful resistance introgression, complicating the breeding process. Mchare cultivars are also the only known surviving representatives of a diploid banana subgroup that contributed unreduced gametes to many of the most widely grown and successful triploid dessert bananas (‘Cavendish’, ‘Gros-Michel’, ‘Silk’, and ‘Prata’). As such, they represent an essential intermediate step in the conventional improvement of bananas worldwide. We assess the amount and viability of pollen among Mchare and wild genotypes to identify the most fertile Mchare cultivars that can be used in conventional banana improvement. Pollen was collected from 14 banana genotypes for quantification and viability testing over 7 months, and the optimal time for pollen collection was determined to be 0800 HR. Significant variation among banana genotypes in terms of both overall pollen production and percentage of pollen viability was observed. The wild-type bananas ‘Calcutta 4’ (Indian Trade Classification (ITC) 0249] and ‘Borneo’ (ITC0253) had the greatest overall pollen production (> 31,000 pollen grains/anther) and viability (∼74%), whereas ‘Ijihu Inkundu’ (ITC1460; Mchare genotype) was the least productive (almost completely sterile), with an average pollen production of a few hundred grains per anther and a viability of 7%. There were significant differences among months in terms of pollen viability, with the greatest average viability observed in May, April, and February (> 51%), and the lowest average pollen viability in July (41%). Significant differences were observed among the Mchare genotypes, with ‘Huti-White’, ‘Huti green bell’ (ITC1559), and ‘Mchare Laini’ consistently producing more substantial amounts of total pollen and an overall more significant proportion of viable pollen. This information is vital to improve Mchare bananas and the global breeding of dessert bananas. The choice of Mchare banana used in improvement programs could affect fertility and the likelihood of breeding success.","PeriodicalId":13140,"journal":{"name":"Hortscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141038432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.21273/hortsci17727-24
Nicklas McClintic, Zhihao Chen, Yujin Park
Because hydroponic operations in the United States can be certified as organic, and because the price of chemical fertilizers has increased, there is an increasing interest in using organic fertilizers and beneficial microorganisms for controlled-environment agriculture. However, there is a scarcity of information regarding their effectiveness and application methodologies. We investigated the effects of inoculating Azospirillum brasilense and Rhizophagus intraradices and using organic fertilizers on growing lettuce (Lactuca sativa ‘Cherokee’) and tomato (Solanum lycopersicum ‘Red Robin’) young plants in an indoor vertical farm. Seeds were sown in rockwool substrate, with A. brasilense (1.05 × 108 colony-forming units⋅L−1) or R. intraradices (580 propagules⋅L−1) applied weekly via subirrigation. Seedlings received chemical fertilizer, organic fertilizer derived from corn steep liquor and fermented fish by-products, and food waste-derived organic fertilizer at 100 ppm total nitrogen every 2 or 3 days. They were grown indoors at 23 °C under light-emitting diode lighting at a photosynthetic photon flux density of 200 μmol⋅m−2⋅s−1 with an 18-hour photoperiod. Lettuce under organic fertilizers had 75% lower shoot fresh mass and 64% less shoot dry mass compared with lettuce under chemical fertilizer. Similarly, tomato seedlings with organic fertilizers had fewer leaves, 75% less shoot fresh mass, and 67% less shoot dry mass. In both lettuce and tomato, the macronutrient and micronutrient concentrations in plant tissues were generally similar regardless of fertilizer treatments, but nitrogen use efficiency and nitrogen uptake efficiency were lower under organic fertilizers compared with those under chemical fertilizer. The inoculation of A. brasilense or R. intraradices showed limited effects on plant nutrient uptake, nutrient concentrations, and seedling growth in both lettuce and tomato. Further research is necessary to optimize application methods for organic fertilizers and beneficial microorganisms to fully harness the benefits of sustainable alternative fertilizers in soilless and hydroponic crop production.
{"title":"Evaluating Organic Fertilizers and Microbial Inoculation for Soilless and Hydroponic Crop Production","authors":"Nicklas McClintic, Zhihao Chen, Yujin Park","doi":"10.21273/hortsci17727-24","DOIUrl":"https://doi.org/10.21273/hortsci17727-24","url":null,"abstract":"Because hydroponic operations in the United States can be certified as organic, and because the price of chemical fertilizers has increased, there is an increasing interest in using organic fertilizers and beneficial microorganisms for controlled-environment agriculture. However, there is a scarcity of information regarding their effectiveness and application methodologies. We investigated the effects of inoculating Azospirillum brasilense and Rhizophagus intraradices and using organic fertilizers on growing lettuce (Lactuca sativa ‘Cherokee’) and tomato (Solanum lycopersicum ‘Red Robin’) young plants in an indoor vertical farm. Seeds were sown in rockwool substrate, with A. brasilense (1.05 × 108 colony-forming units⋅L−1) or R. intraradices (580 propagules⋅L−1) applied weekly via subirrigation. Seedlings received chemical fertilizer, organic fertilizer derived from corn steep liquor and fermented fish by-products, and food waste-derived organic fertilizer at 100 ppm total nitrogen every 2 or 3 days. They were grown indoors at 23 °C under light-emitting diode lighting at a photosynthetic photon flux density of 200 μmol⋅m−2⋅s−1 with an 18-hour photoperiod. Lettuce under organic fertilizers had 75% lower shoot fresh mass and 64% less shoot dry mass compared with lettuce under chemical fertilizer. Similarly, tomato seedlings with organic fertilizers had fewer leaves, 75% less shoot fresh mass, and 67% less shoot dry mass. In both lettuce and tomato, the macronutrient and micronutrient concentrations in plant tissues were generally similar regardless of fertilizer treatments, but nitrogen use efficiency and nitrogen uptake efficiency were lower under organic fertilizers compared with those under chemical fertilizer. The inoculation of A. brasilense or R. intraradices showed limited effects on plant nutrient uptake, nutrient concentrations, and seedling growth in both lettuce and tomato. Further research is necessary to optimize application methods for organic fertilizers and beneficial microorganisms to fully harness the benefits of sustainable alternative fertilizers in soilless and hydroponic crop production.","PeriodicalId":13140,"journal":{"name":"Hortscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140353786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.21273/hortsci17679-23
Laura Jalpa, R. Mylavarapu, G. Hochmuth, Yuncong Li, B. Rathinasabapathi, E. van Santen
This research study evaluated the suitability of controlled-release urea (CRU) as an alternate nitrogen (N) fertilizer source to conventional soluble urea (U) for tomato production under a humid, warm climate in coastal plain soils. Tomatoes are typically produced on raised plastic-mulched beds, where U is fertigated through multiple applications. On the other hand, CRU is applied once at planting, incorporated into soil before the raised beds are covered with plastic mulch. N source and management will likely impact tomato yield, N use efficiency (NUE), and apparent recovery of N fertilizer (APR). A 2-year field study was conducted on fall and spring tomato crops in north Florida to determine the crop N requirement and NUE in tomatoes (var. HM 1823) grown in sandy soils under a plastic-mulched bed system. In addition to a no N fertilizer treatment, three urea N sources [one soluble source and two polymer-coated CRU sources with different N release durations of 60 (CRU-60) and 75 (CRU-75) days] were applied at three N rates (140, 168, and 224 kg⋅ha−1). Across all N sources and N rates, fall yields were at least 20% higher than spring seasons. At the 140 kg⋅ha−1 N rate, APR and NUE were improved, especially when U was applied in fall tomato, whereas preplant CRUs improved N efficiency in spring tomato. Based on the lower APR values found in spring production seasons (0% to 16%) when compared with fall (57.1% to 72.6%), it can be concluded that residual soil N was an important source for tomatoes. In addition, the mean whole-plant N accumulation of tomato was 102.5 kg⋅ha−1, further indicating that reducing the N rate closer to crop N demand would greatly improve conventional vegetable production systems on sandy soils in north Florida. In conclusion, polymer-coated CRU and fertigation U applications were able to supply the N requirement of spring and fall tomato at a 38% reduction of the recommended N rate for tomato in Florida (224 kg⋅ha−1). Preliminary results show that adoption of CRU fertilizers can be considered a low-risk alternative N source for tomato production and the ease of applying CRU once during the bed preparation period for tomato may be an additional incentive.
{"title":"Nitrogen Use Efficiency and Yield Levels Using Soluble and Controlled-release Urea Formulations in Tomato Production","authors":"Laura Jalpa, R. Mylavarapu, G. Hochmuth, Yuncong Li, B. Rathinasabapathi, E. van Santen","doi":"10.21273/hortsci17679-23","DOIUrl":"https://doi.org/10.21273/hortsci17679-23","url":null,"abstract":"This research study evaluated the suitability of controlled-release urea (CRU) as an alternate nitrogen (N) fertilizer source to conventional soluble urea (U) for tomato production under a humid, warm climate in coastal plain soils. Tomatoes are typically produced on raised plastic-mulched beds, where U is fertigated through multiple applications. On the other hand, CRU is applied once at planting, incorporated into soil before the raised beds are covered with plastic mulch. N source and management will likely impact tomato yield, N use efficiency (NUE), and apparent recovery of N fertilizer (APR). A 2-year field study was conducted on fall and spring tomato crops in north Florida to determine the crop N requirement and NUE in tomatoes (var. HM 1823) grown in sandy soils under a plastic-mulched bed system. In addition to a no N fertilizer treatment, three urea N sources [one soluble source and two polymer-coated CRU sources with different N release durations of 60 (CRU-60) and 75 (CRU-75) days] were applied at three N rates (140, 168, and 224 kg⋅ha−1). Across all N sources and N rates, fall yields were at least 20% higher than spring seasons. At the 140 kg⋅ha−1 N rate, APR and NUE were improved, especially when U was applied in fall tomato, whereas preplant CRUs improved N efficiency in spring tomato. Based on the lower APR values found in spring production seasons (0% to 16%) when compared with fall (57.1% to 72.6%), it can be concluded that residual soil N was an important source for tomatoes. In addition, the mean whole-plant N accumulation of tomato was 102.5 kg⋅ha−1, further indicating that reducing the N rate closer to crop N demand would greatly improve conventional vegetable production systems on sandy soils in north Florida. In conclusion, polymer-coated CRU and fertigation U applications were able to supply the N requirement of spring and fall tomato at a 38% reduction of the recommended N rate for tomato in Florida (224 kg⋅ha−1). Preliminary results show that adoption of CRU fertilizers can be considered a low-risk alternative N source for tomato production and the ease of applying CRU once during the bed preparation period for tomato may be an additional incentive.","PeriodicalId":13140,"journal":{"name":"Hortscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140354607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.21273/hortsci17525-23
D. Serba, Tilin Fang, Yanqi Wu
Bermudagrass (Cynodon spp.) is a drought-resistant warm-season turfgrass adapted to the southern and transitional zones in the United States. Multiple hybrid cultivars have been developed and released for use as turfgrass, and others are still undergoing development. Increasing genetic diversity of commercial cultivars is vital to stress tolerance. A DNA profiling study of 21 experimental selections from the Oklahoma State University turfgrass breeding program and 11 cultivars was conducted using 51 simple sequence repeat primer pairs across the bermudagrass genome. A pairwise genetic relationship analysis of the genotypes using 352 polymorphic bands showed genetic similarity coefficients ranging from 0.59 to 0.89. The average pairwise population differentiation values were 0.012 for the 11 cultivars and 0.169 for the 21 selections. A cluster analysis using the unweighted paired group with the arithmetic average method grouped the entries into six clusters. A correlation analysis identified different levels of pairwise genetic relationships among the entries that largely reflected parental relationship. Directional breeding and selection for cold hardiness or drought resistance created progeny that had distinct genetic diversity in the tested bermudagrasses. It is evident that an increase in genetic diversity of the existing cultivar pool with the release of one or more experimental selections for commercial use will strengthen and improve bermudagrass systems.
{"title":"Directional Breeding Generates Distinct Genetic Diversity in Hybrid Turf Bermudagrass as Probed with Simple Sequence Repeat Markers","authors":"D. Serba, Tilin Fang, Yanqi Wu","doi":"10.21273/hortsci17525-23","DOIUrl":"https://doi.org/10.21273/hortsci17525-23","url":null,"abstract":"Bermudagrass (Cynodon spp.) is a drought-resistant warm-season turfgrass adapted to the southern and transitional zones in the United States. Multiple hybrid cultivars have been developed and released for use as turfgrass, and others are still undergoing development. Increasing genetic diversity of commercial cultivars is vital to stress tolerance. A DNA profiling study of 21 experimental selections from the Oklahoma State University turfgrass breeding program and 11 cultivars was conducted using 51 simple sequence repeat primer pairs across the bermudagrass genome. A pairwise genetic relationship analysis of the genotypes using 352 polymorphic bands showed genetic similarity coefficients ranging from 0.59 to 0.89. The average pairwise population differentiation values were 0.012 for the 11 cultivars and 0.169 for the 21 selections. A cluster analysis using the unweighted paired group with the arithmetic average method grouped the entries into six clusters. A correlation analysis identified different levels of pairwise genetic relationships among the entries that largely reflected parental relationship. Directional breeding and selection for cold hardiness or drought resistance created progeny that had distinct genetic diversity in the tested bermudagrasses. It is evident that an increase in genetic diversity of the existing cultivar pool with the release of one or more experimental selections for commercial use will strengthen and improve bermudagrass systems.","PeriodicalId":13140,"journal":{"name":"Hortscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140358009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.21273/hortsci17456-23
Swayangsiddha Nayak, Julie H. Campbell
Boxwood blight is a significant threat to nurseries, garden centers, landscaping businesses, and homeowners, causing both financial and ecological damage. This fungal disease is primarily caused by two species, with Calonectria pseudonaviculata being the only reported casual species in the United States. The pathogen is spread by wind-driven rain, water splash, and contaminated plants, emphasizing the need for exclusion, sanitation protocols, cultural practices, and fungicides to manage its spread. Recently, efforts have shifted from containment to disease management, focusing on fungicide efficacy, diagnostic assays, and boxwood production analysis. Agricultural extension programs promote best practices to prevent disease introduction into nursery and landscape environments. Understanding consumer awareness and perceived risk regarding infestations is crucial as control measures evolve. In our Jul 2020 survey, which had 2795 completed responses from across the United States, we assessed consumer knowledge and opinions regarding boxwood shrubs and Boxwood light. The findings revealed demographic variations in awareness and opinions. Suburban residents were more aware of boxwood blight, whereas urban residents had a higher opinion of boxwood shrubs. From the tobit model, men were more likely to purchase boxwood compared with women despite knowing about blight, and Caucasians compared with non-Caucasians exhibited decreased liking for boxwood after seeing pictures of blight-infected plants. These insights can inform targeted communication strategies and assist consumers, vendors, and related industries in addressing the challenges posed by Boxwood blight. Further research into alternative plant preferences among consumers is also warranted for better development of boxwood blight management strategies.
{"title":"US Consumers’ Awareness and Opinion of Boxwood Shrubs and Boxwood Blight","authors":"Swayangsiddha Nayak, Julie H. Campbell","doi":"10.21273/hortsci17456-23","DOIUrl":"https://doi.org/10.21273/hortsci17456-23","url":null,"abstract":"Boxwood blight is a significant threat to nurseries, garden centers, landscaping businesses, and homeowners, causing both financial and ecological damage. This fungal disease is primarily caused by two species, with Calonectria pseudonaviculata being the only reported casual species in the United States. The pathogen is spread by wind-driven rain, water splash, and contaminated plants, emphasizing the need for exclusion, sanitation protocols, cultural practices, and fungicides to manage its spread. Recently, efforts have shifted from containment to disease management, focusing on fungicide efficacy, diagnostic assays, and boxwood production analysis. Agricultural extension programs promote best practices to prevent disease introduction into nursery and landscape environments. Understanding consumer awareness and perceived risk regarding infestations is crucial as control measures evolve. In our Jul 2020 survey, which had 2795 completed responses from across the United States, we assessed consumer knowledge and opinions regarding boxwood shrubs and Boxwood light. The findings revealed demographic variations in awareness and opinions. Suburban residents were more aware of boxwood blight, whereas urban residents had a higher opinion of boxwood shrubs. From the tobit model, men were more likely to purchase boxwood compared with women despite knowing about blight, and Caucasians compared with non-Caucasians exhibited decreased liking for boxwood after seeing pictures of blight-infected plants. These insights can inform targeted communication strategies and assist consumers, vendors, and related industries in addressing the challenges posed by Boxwood blight. Further research into alternative plant preferences among consumers is also warranted for better development of boxwood blight management strategies.","PeriodicalId":13140,"journal":{"name":"Hortscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140352704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.21273/hortsci17671-23
Charlie L. Rohwer
Nonpoint-source phosphorus (P) from agricultural fields is a contaminant of surface waters, and high soil P fertility exacerbates this problem. Many vegetable growers and gardeners have a history of applying more P than is necessary for optimum plant growth. Avoiding unnecessary P applications is an important part of the long-term solution to reducing P loading in water. When soil P levels are very high, management practices that result in more intense P removal are recommended to reduce these levels and the potential for aquatic ecosystem contamination with P. Growers may apply soluble starter fertilizer containing P to encourage rapid transplant establishment; however, the effectiveness of this practice is unknown for soil P levels considered high or very high. Grafting tomatoes (Solanum lycopersicum L.) onto vigorous rootstocks may help the plant remove more P from the soil than nongrafted plants. This study investigated the effects of organic starter P fertilizers applied to three hybrids of nongrafted tomato and the same hybrids grafted onto ‘Estamino’ rootstock in field-grown conditions during three site-years with high preplant P fertility. The yield, fruit P concentration, and amount of P removed from the field were measured to elucidate starter P and grafting impacts on P removal. Starter P was not impactful on all responses. Grafting increased the total yield by 11.6%, fruit P concentration in a genotype-dependent manner (average of 12.6%), and net P removal from the field by 28.4% (6.0 kg P/ha). Net P removal was positively correlated with the total yield (r = 0.821) and fruit P concentration (r = 0.502), suggesting that practices to increase the yield or P concentration independently increase net P removal.
来自农田的非点源磷 (P) 是地表水的污染物,而土壤中的高磷肥又加剧了这一问题。许多蔬菜种植者和园艺师都有施用过量磷的历史,超过了植物最佳生长所需的量。避免不必要的钾施用量是减少水中钾负荷的长期解决方案的重要组成部分。当土壤中的钾含量很高时,建议采用能更有效地去除钾的管理方法,以降低钾含量,减少水生生态系统受到钾污染的可能性。种植者可以施用含钾的可溶性起始肥料,以促进快速移栽;但对于钾含量较高或很高的土壤,这种方法的效果尚不清楚。将番茄(Solanum lycopersicum L.)嫁接到生命力旺盛的砧木上,可能有助于植物从土壤中清除比非嫁接植物更多的 P。本研究调查了在种植前钾肥力较高的三个地点年,对三个非嫁接番茄杂交种和嫁接到 "Estamino "砧木上的相同杂交种在田间种植条件下施用有机起始钾肥的影响。对产量、果实中 P 的浓度以及从田间去除的 P 的数量进行了测量,以阐明起始 P 和嫁接对 P 去除的影响。起始磷对所有反应都没有影响。嫁接使总产量增加了 11.6%,果实 P 浓度因基因型而异(平均 12.6%),从田间去除的 P 净量增加了 28.4%(6.0 千克 P/公顷)。净脱磷量与总产量(r = 0.821)和果实含磷量(r = 0.502)呈正相关,表明提高产量或含磷量的方法可独立增加净脱磷量。
{"title":"Grafted Tomatoes Removed More Soil Phosphorus than Nongrafted Tomatoes under High-phosphorus Conditions","authors":"Charlie L. Rohwer","doi":"10.21273/hortsci17671-23","DOIUrl":"https://doi.org/10.21273/hortsci17671-23","url":null,"abstract":"Nonpoint-source phosphorus (P) from agricultural fields is a contaminant of surface waters, and high soil P fertility exacerbates this problem. Many vegetable growers and gardeners have a history of applying more P than is necessary for optimum plant growth. Avoiding unnecessary P applications is an important part of the long-term solution to reducing P loading in water. When soil P levels are very high, management practices that result in more intense P removal are recommended to reduce these levels and the potential for aquatic ecosystem contamination with P. Growers may apply soluble starter fertilizer containing P to encourage rapid transplant establishment; however, the effectiveness of this practice is unknown for soil P levels considered high or very high. Grafting tomatoes (Solanum lycopersicum L.) onto vigorous rootstocks may help the plant remove more P from the soil than nongrafted plants. This study investigated the effects of organic starter P fertilizers applied to three hybrids of nongrafted tomato and the same hybrids grafted onto ‘Estamino’ rootstock in field-grown conditions during three site-years with high preplant P fertility. The yield, fruit P concentration, and amount of P removed from the field were measured to elucidate starter P and grafting impacts on P removal. Starter P was not impactful on all responses. Grafting increased the total yield by 11.6%, fruit P concentration in a genotype-dependent manner (average of 12.6%), and net P removal from the field by 28.4% (6.0 kg P/ha). Net P removal was positively correlated with the total yield (r = 0.821) and fruit P concentration (r = 0.502), suggesting that practices to increase the yield or P concentration independently increase net P removal.","PeriodicalId":13140,"journal":{"name":"Hortscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140354159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.21273/hortsci17616-23
A. Villordon, Jack Baricuatro
The primary objective of this work was to generate species-specific information about root architectural adaptations to simulated natural levels of arsenic (As) during the establishment phase and onset of storage root formation in sweetpotato. Cultivars Bayou Belle and Beauregard were grown on sand substrate and provided with 0.5X Hoagland’s nutrient solution with varying levels of As (0, 5, 10, or 15 mg⋅L−1). During the first experiment, entire root systems were sampled at 5, 10, and 15 days, corresponding to key adventitious root developmental stages. Compared with the untreated controls at 15 days, ‘Bayou Belle’ and ‘Beauregard’ provided with 15 mg⋅L−1 As showed respective increases in the following root architectural attributes: 168% and 130% in main root length; 168% and 98% in lateral root length; and 140% and 50% in lateral root density. A second experiment was performed to produce storage root samples at 50 days. Storage root length, width, and length/width ratio did not vary with As levels. The accumulation of As in storage roots increased with increasing As levels. The results support the hypothesis that natural As levels stimulate adventitious root development in sweetpotato in a cultivar-dependent manner. The observations are consistent with findings of other species that show similar growth stimulation at low As levels. This is the first report of sweetpotato root system architecture responses to experimental levels of As that are known to be present in agricultural soils. Standardization of experimental procedures and understanding of root system adaptations to natural levels of As could lead to a more systematic exploitation of genome-wide techniques and characterization of the molecular basis of reduced As uptake in plants.
这项工作的主要目的是在甘薯根系建立阶段和贮藏根形成初期,获得根系结构对模拟自然砷(As)水平的适应性的特定物种信息。栽培品种 Bayou Belle 和 Beauregard 生长在沙质基质上,并提供含有不同砷含量(0、5、10 或 15 mg-L-1)的 0.5 倍 Hoagland 营养液。在第一次实验中,在 5 天、10 天和 15 天,即不定根的关键发育阶段,对整个根系进行取样。与 15 天时未经处理的对照组相比,施用 15 mg⋅L-1 As 的'Bayou Belle'和'Beauregard'在以下根系结构属性方面分别有所提高:主根长度分别增加 168% 和 130%;侧根长度分别增加 168% 和 98%;侧根密度分别增加 140% 和 50%。第二项实验是在 50 天时制作贮藏根样品。贮藏根的长度、宽度和长宽比并不随砷含量的变化而变化。随着 As 含量的增加,贮藏根中 As 的积累量也在增加。这些结果支持了自然砷水平以依赖于栽培品种的方式刺激甘薯不定根发育的假设。这些观察结果与其他物种的研究结果一致,其他物种在低砷水平下也表现出类似的生长刺激作用。这是首次报道甘薯根系结构对已知存在于农业土壤中的砷的实验水平的反应。实验程序的标准化以及根系对自然砷水平适应性的了解,将有助于更系统地利用全基因组技术,并确定植物砷吸收减少的分子基础。
{"title":"Variation in Root System Architecture Response to Arsenic during Establishment and Onset of Storage Root Formation in Two Sweetpotato (Ipomoea batatas L.) Cultivars","authors":"A. Villordon, Jack Baricuatro","doi":"10.21273/hortsci17616-23","DOIUrl":"https://doi.org/10.21273/hortsci17616-23","url":null,"abstract":"The primary objective of this work was to generate species-specific information about root architectural adaptations to simulated natural levels of arsenic (As) during the establishment phase and onset of storage root formation in sweetpotato. Cultivars Bayou Belle and Beauregard were grown on sand substrate and provided with 0.5X Hoagland’s nutrient solution with varying levels of As (0, 5, 10, or 15 mg⋅L−1). During the first experiment, entire root systems were sampled at 5, 10, and 15 days, corresponding to key adventitious root developmental stages. Compared with the untreated controls at 15 days, ‘Bayou Belle’ and ‘Beauregard’ provided with 15 mg⋅L−1 As showed respective increases in the following root architectural attributes: 168% and 130% in main root length; 168% and 98% in lateral root length; and 140% and 50% in lateral root density. A second experiment was performed to produce storage root samples at 50 days. Storage root length, width, and length/width ratio did not vary with As levels. The accumulation of As in storage roots increased with increasing As levels. The results support the hypothesis that natural As levels stimulate adventitious root development in sweetpotato in a cultivar-dependent manner. The observations are consistent with findings of other species that show similar growth stimulation at low As levels. This is the first report of sweetpotato root system architecture responses to experimental levels of As that are known to be present in agricultural soils. Standardization of experimental procedures and understanding of root system adaptations to natural levels of As could lead to a more systematic exploitation of genome-wide techniques and characterization of the molecular basis of reduced As uptake in plants.","PeriodicalId":13140,"journal":{"name":"Hortscience","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140354727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}