Pub Date : 2024-06-01DOI: 10.21273/horttech05388-24
William Glenn, T. M. Waliczek, Merritt L. Drewery
In several regions of the United States, waste and “tag” wool are readily available, inexpensive, and considered low-quality because of weed seed contamination and stains from defecation. Because of an overabundance of waste and tag wool, some are landfilled. Previous research has indicated that wool or hair incorporated in potted plants can improve the water-holding capacity of the soil and act as a slow-release fertilizer. Furthermore, compost trials have demonstrated that wool produces a high-quality compost product. This study aimed to evaluate the market potential of wool-based compost to determine its commercial viability. To address this, we conducted in-depth interviews with lead user gardeners (n = 10) who used 1 yard of wool-based compost in their gardens over the course of 10 weeks and distributed a quantitative survey instrument to both lead users and general gardeners recruited from garden centers, nurseries, and horticulture classes (n = 256). Lead users responded positively to the wool-based compost and reported they would be willing to pay $6 to $7 per ft3. General gardeners who were less familiar with the product reported they were willing to pay at least a similar amount as that for typical market composts, but they suggested that they would pay more if characteristics such as “increases drought tolerance” were used in advertising. Our analysis indicated that the target audience for the wool-based compost is male gardeners older than 25 years who are concerned about the environment.
{"title":"Market Potential for Specialty Compost Produced from Wool Waste","authors":"William Glenn, T. M. Waliczek, Merritt L. Drewery","doi":"10.21273/horttech05388-24","DOIUrl":"https://doi.org/10.21273/horttech05388-24","url":null,"abstract":"In several regions of the United States, waste and “tag” wool are readily available, inexpensive, and considered low-quality because of weed seed contamination and stains from defecation. Because of an overabundance of waste and tag wool, some are landfilled. Previous research has indicated that wool or hair incorporated in potted plants can improve the water-holding capacity of the soil and act as a slow-release fertilizer. Furthermore, compost trials have demonstrated that wool produces a high-quality compost product. This study aimed to evaluate the market potential of wool-based compost to determine its commercial viability. To address this, we conducted in-depth interviews with lead user gardeners (n = 10) who used 1 yard of wool-based compost in their gardens over the course of 10 weeks and distributed a quantitative survey instrument to both lead users and general gardeners recruited from garden centers, nurseries, and horticulture classes (n = 256). Lead users responded positively to the wool-based compost and reported they would be willing to pay $6 to $7 per ft3. General gardeners who were less familiar with the product reported they were willing to pay at least a similar amount as that for typical market composts, but they suggested that they would pay more if characteristics such as “increases drought tolerance” were used in advertising. Our analysis indicated that the target audience for the wool-based compost is male gardeners older than 25 years who are concerned about the environment.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141234937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.21273/horttech05347-23
Kyoung-Hee Park, Sin-Ae Park
This study investigated the activity of upper- and lower-extremity muscles for 15 agricultural tasks of agro-healing. For the development of an agro-healing program using farm resource types, 15 selected agro-healing activities (namely, digging, raking, fertilizing, planting transplants, tying plants to stakes, watering, harvesting, washing, cutting, cooking, collecting natural objects, decorating natural objects, interacting with dogs, walking dogs, and feeding fish) were extracted and performed in a total of 21 adults (average age: 42.29 ± 14.76 years) at D Care Farm in Cheongju, Korea, from June to July 2022. Before these activities, informed consent was obtained from participants and muscle activity of the upper and lower extremities was measured. Muscle activation during activity performance was measured using electromyography (EMG), and the rating of perceived exertion for each activity was investigated. Bipolar surface EMG electrodes were attached at 16 locations on the left and right upper-extremity muscles (anterior deltoid, biceps brachialis, brachioradialis, and flexor carpi ulnaris) and lower-extremity muscles (vastus lateralis, vastus medialis, biceps femoris, and gastrocnemius). The results indicated that the activity of the lower-extremity muscles was higher than that of the upper-extremity muscles during 15 agricultural activities. During plant-mediated activity and animal-assisted activities, the rate of right muscle use was higher than that of left muscle use among the upper-extremity muscles, whereas the rate of right and left muscle use showed a similar tendency among the lower-extremity muscles. During plant-mediated activities, agricultural activities involving the use of heavy tools highly activated the right forearm muscle (flexor carpi ulnaris), whereas holding and interacting with animals highly activated the left forearm muscles (biceps brachialis, brachioradialis, and flexor carpi ulnaris). It is expected that the EMG data obtained in this study can be used as basic biomechanical data when designing an agro-healing program to improve physical function.
{"title":"Electromyographic Analysis of Upper- and Lower-extremity Muscles in Adults during Agro-healing Activities","authors":"Kyoung-Hee Park, Sin-Ae Park","doi":"10.21273/horttech05347-23","DOIUrl":"https://doi.org/10.21273/horttech05347-23","url":null,"abstract":"This study investigated the activity of upper- and lower-extremity muscles for 15 agricultural tasks of agro-healing. For the development of an agro-healing program using farm resource types, 15 selected agro-healing activities (namely, digging, raking, fertilizing, planting transplants, tying plants to stakes, watering, harvesting, washing, cutting, cooking, collecting natural objects, decorating natural objects, interacting with dogs, walking dogs, and feeding fish) were extracted and performed in a total of 21 adults (average age: 42.29 ± 14.76 years) at D Care Farm in Cheongju, Korea, from June to July 2022. Before these activities, informed consent was obtained from participants and muscle activity of the upper and lower extremities was measured. Muscle activation during activity performance was measured using electromyography (EMG), and the rating of perceived exertion for each activity was investigated. Bipolar surface EMG electrodes were attached at 16 locations on the left and right upper-extremity muscles (anterior deltoid, biceps brachialis, brachioradialis, and flexor carpi ulnaris) and lower-extremity muscles (vastus lateralis, vastus medialis, biceps femoris, and gastrocnemius). The results indicated that the activity of the lower-extremity muscles was higher than that of the upper-extremity muscles during 15 agricultural activities. During plant-mediated activity and animal-assisted activities, the rate of right muscle use was higher than that of left muscle use among the upper-extremity muscles, whereas the rate of right and left muscle use showed a similar tendency among the lower-extremity muscles. During plant-mediated activities, agricultural activities involving the use of heavy tools highly activated the right forearm muscle (flexor carpi ulnaris), whereas holding and interacting with animals highly activated the left forearm muscles (biceps brachialis, brachioradialis, and flexor carpi ulnaris). It is expected that the EMG data obtained in this study can be used as basic biomechanical data when designing an agro-healing program to improve physical function.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141235304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.21273/horttech05405-24
Lily Kile, Elsa Sánchez, Robert Berghage
The production of Beit Alpha cucumber (Cucumis sativus) in hydroponic systems has increased in popularity since the early 2000s, along with the use of high-wire trellising systems. Some farmers claim the high-wire trellising systems, also known as drop-and-lean trellising, result in a more consistent weekly yield than umbrella or modified-umbrella systems. This study compared the high-wire and modified-umbrella trellising systems both using a 7 ft top wire and 4 plants/m2 plant density. The fruit weight and number of fruit per plant were significantly greater using the modified-umbrella trellising system, with the number of fruit being about twice as high as the high-wire trellising system. Consistency of yields was also measured for both systems and found to peak at ∼5 to 7 weeks after the start of harvest using both trellising systems. However, peak yields using the modified-umbrella trellising system followed a quadratic curve, implying that the high-wire trellising system results in more consistent yields. Differences in yield and harvest consistency were likely related to light penetration of the plant canopy. Growers using low-profile greenhouses can expect lower yields and more consistent harvests using the high-wire trellising system. Yields may be improved using a higher plant density. Alternatively, succession planting on a 5- to 7-week interval can improve harvest consistency using a modified-umbrella trellising system.
{"title":"A Comparison Between Modified-umbrella and High-wire Trellising Systems in a Low-profile Greenhouse for Hydroponic Beit Alpha Cucumber","authors":"Lily Kile, Elsa Sánchez, Robert Berghage","doi":"10.21273/horttech05405-24","DOIUrl":"https://doi.org/10.21273/horttech05405-24","url":null,"abstract":"The production of Beit Alpha cucumber (Cucumis sativus) in hydroponic systems has increased in popularity since the early 2000s, along with the use of high-wire trellising systems. Some farmers claim the high-wire trellising systems, also known as drop-and-lean trellising, result in a more consistent weekly yield than umbrella or modified-umbrella systems. This study compared the high-wire and modified-umbrella trellising systems both using a 7 ft top wire and 4 plants/m2 plant density. The fruit weight and number of fruit per plant were significantly greater using the modified-umbrella trellising system, with the number of fruit being about twice as high as the high-wire trellising system. Consistency of yields was also measured for both systems and found to peak at ∼5 to 7 weeks after the start of harvest using both trellising systems. However, peak yields using the modified-umbrella trellising system followed a quadratic curve, implying that the high-wire trellising system results in more consistent yields. Differences in yield and harvest consistency were likely related to light penetration of the plant canopy. Growers using low-profile greenhouses can expect lower yields and more consistent harvests using the high-wire trellising system. Yields may be improved using a higher plant density. Alternatively, succession planting on a 5- to 7-week interval can improve harvest consistency using a modified-umbrella trellising system.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141230983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.21273/horttech05360-23
D. Barchenger
The American Society for Horticultural Science (ASHS) Vegetable Publication Award, established in 1985, recognizes the author(s) of the outstanding paper on vegetable crops each year published in ASHS journals by an ASHS member. The goal is to encourage better quality research and more effective communication through writing and publication. Manuscripts published in any of the three ASHS journals are eligible to receive the award. To date, of the 36 awarded papers, 86.5% of the awarded papers were published in the Journal of the American Society for Horticultural Science and 13.5% in HortScience, and no publications in HortTechnology have received the award. Authors from 25 states have received the Vegetable Publication Award, with Florida having the most recipients (eight), followed by California (four), Wisconsin (four), Michigan (three), and Illinois (three). In addition, the Vegetable Publication Award has been presented to papers with authors from Israel (two), Canada (two), and one each from Belgium, Brazil, China, Italy, Japan, and the Netherlands. There is some association between commodities that were the subject of the awarded papers and the highest value vegetable commodities in the United States. Eight of the awarded papers reported studies on tomato (ranked first for value in the United States), four on lettuce (ranked second), and three each on broccoli, (ranked fifth) and sweet corn (ranked seventh). Most of the awarded papers covered topics related to plant physiology and response to stress (18 papers), followed by breeding and genetic resources (eight papers); nutraceuticals, aroma, and volatiles (five papers); genetics and gene mapping (three papers); postharvest (two papers); and only one winning paper focused on production systems.
{"title":"Thirty-six Years of Award-winning Vegetable Publication Excellence in ASHS Journals","authors":"D. Barchenger","doi":"10.21273/horttech05360-23","DOIUrl":"https://doi.org/10.21273/horttech05360-23","url":null,"abstract":"The American Society for Horticultural Science (ASHS) Vegetable Publication Award, established in 1985, recognizes the author(s) of the outstanding paper on vegetable crops each year published in ASHS journals by an ASHS member. The goal is to encourage better quality research and more effective communication through writing and publication. Manuscripts published in any of the three ASHS journals are eligible to receive the award. To date, of the 36 awarded papers, 86.5% of the awarded papers were published in the Journal of the American Society for Horticultural Science and 13.5% in HortScience, and no publications in HortTechnology have received the award. Authors from 25 states have received the Vegetable Publication Award, with Florida having the most recipients (eight), followed by California (four), Wisconsin (four), Michigan (three), and Illinois (three). In addition, the Vegetable Publication Award has been presented to papers with authors from Israel (two), Canada (two), and one each from Belgium, Brazil, China, Italy, Japan, and the Netherlands. There is some association between commodities that were the subject of the awarded papers and the highest value vegetable commodities in the United States. Eight of the awarded papers reported studies on tomato (ranked first for value in the United States), four on lettuce (ranked second), and three each on broccoli, (ranked fifth) and sweet corn (ranked seventh). Most of the awarded papers covered topics related to plant physiology and response to stress (18 papers), followed by breeding and genetic resources (eight papers); nutraceuticals, aroma, and volatiles (five papers); genetics and gene mapping (three papers); postharvest (two papers); and only one winning paper focused on production systems.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141230314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.21273/horttech05362-23
Guo-qing Song
Established in 1903, the American Society for Horticultural Science (ASHS) is a leading professional organization that serves a diverse horticultural community. With influence spanning both national and global domains, ASHS makes substantial contributions to various branches of horticulture. In 1985, ASHS introduced the annual Fruit Publication Award to honor exceptional research articles related to fruit. Reflecting on these awarded articles, especially in light of ASHS’s 120-year history, not only serves as a congratulatory gesture to the recipients but also provides insight into the evolutionary progression of fruit science.
{"title":"Award-winning Fruit Publication in ASHS Journals across the Decades (1986–2023)","authors":"Guo-qing Song","doi":"10.21273/horttech05362-23","DOIUrl":"https://doi.org/10.21273/horttech05362-23","url":null,"abstract":"Established in 1903, the American Society for Horticultural Science (ASHS) is a leading professional organization that serves a diverse horticultural community. With influence spanning both national and global domains, ASHS makes substantial contributions to various branches of horticulture. In 1985, ASHS introduced the annual Fruit Publication Award to honor exceptional research articles related to fruit. Reflecting on these awarded articles, especially in light of ASHS’s 120-year history, not only serves as a congratulatory gesture to the recipients but also provides insight into the evolutionary progression of fruit science.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141233197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.21273/horttech05381-23
Jianyu Li, Akela Martin, Lauren Carver, Sarah Armstrong, Spencer R. Givens, Kellie Walters
Sowing density is a key management practice influencing productivity and quality of leafy greens and culinary herbs grown in controlled environments. However, research-based information on optimal density is limited for many culinary herbs. This greenhouse study aimed to quantify sowing density impacts on biomass output, individual plant growth, and morphological traits in hydroponically produced ‘Giant of Italy’ parsley (Petroselinum crispum), ‘Santo’ cilantro (Coriandrum sativum), and sage (Salvia officinalis). Seedlings were grown in phenolic foam cubes with 1, 5, 10, 15, or 20 seeds per cell, transplanted into an ebb-and-flow hydroponic system in a glass-glazed greenhouse with 23 °C target average daily temperature, 16-hour photoperiod, a target daily light integral of 13 mol·m−2·d−1, and harvested at 16 to 28 d after transplanting depending on species. ‘Giant of Italy’ parsley and ‘Santo’ cilantro fresh weight per cell increased quadratically by 274% (57.3 g) and 305% (19 g), respectively, as sowing density increased from 1 to 15 seeds per cell, then plateaued as density further increased. Sage fresh weight plateaued at 10 seeds per cell with an increase of 225% (29.2 g) compared with 1 seed per cell. Cilantro and sage dry weight per cell plateaued at 14 and 8 seeds per cell, respectively, and parsley dry weight quadratically increased as sowing density rose up to 20 seeds per cell. Although fresh and dry weight increased, individual plant height, stem diameter, and individual plant dry weight exhibited linear or quadratic declines as sowing density increased, indicating higher sowing densities restricted individual plant growth. In summary, as sowing density increased, fresh and dry weight per cell generally increased but individual plant quality decreased. For the greatest fresh and dry weight, 20, 18, and 10 seeds per cell should be sown for parsley, cilantro, and sage, respectively. However, to balance fresh weight and crop quality, our results suggest sowing density (seeds per cell) targets of 16 seeds for parsley, 18 seeds for cilantro, and 10 seeds for sage.
{"title":"Optimizing Sowing Density for Parsley, Cilantro, and Sage in Controlled Environment Production: Balancing Productivity and Plant Quality","authors":"Jianyu Li, Akela Martin, Lauren Carver, Sarah Armstrong, Spencer R. Givens, Kellie Walters","doi":"10.21273/horttech05381-23","DOIUrl":"https://doi.org/10.21273/horttech05381-23","url":null,"abstract":"Sowing density is a key management practice influencing productivity and quality of leafy greens and culinary herbs grown in controlled environments. However, research-based information on optimal density is limited for many culinary herbs. This greenhouse study aimed to quantify sowing density impacts on biomass output, individual plant growth, and morphological traits in hydroponically produced ‘Giant of Italy’ parsley (Petroselinum crispum), ‘Santo’ cilantro (Coriandrum sativum), and sage (Salvia officinalis). Seedlings were grown in phenolic foam cubes with 1, 5, 10, 15, or 20 seeds per cell, transplanted into an ebb-and-flow hydroponic system in a glass-glazed greenhouse with 23 °C target average daily temperature, 16-hour photoperiod, a target daily light integral of 13 mol·m−2·d−1, and harvested at 16 to 28 d after transplanting depending on species. ‘Giant of Italy’ parsley and ‘Santo’ cilantro fresh weight per cell increased quadratically by 274% (57.3 g) and 305% (19 g), respectively, as sowing density increased from 1 to 15 seeds per cell, then plateaued as density further increased. Sage fresh weight plateaued at 10 seeds per cell with an increase of 225% (29.2 g) compared with 1 seed per cell. Cilantro and sage dry weight per cell plateaued at 14 and 8 seeds per cell, respectively, and parsley dry weight quadratically increased as sowing density rose up to 20 seeds per cell. Although fresh and dry weight increased, individual plant height, stem diameter, and individual plant dry weight exhibited linear or quadratic declines as sowing density increased, indicating higher sowing densities restricted individual plant growth. In summary, as sowing density increased, fresh and dry weight per cell generally increased but individual plant quality decreased. For the greatest fresh and dry weight, 20, 18, and 10 seeds per cell should be sown for parsley, cilantro, and sage, respectively. However, to balance fresh weight and crop quality, our results suggest sowing density (seeds per cell) targets of 16 seeds for parsley, 18 seeds for cilantro, and 10 seeds for sage.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141235024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.21273/horttech05379-23
Kephas Mphande, Sharon Badilla-Arias, Nieyan Cheng, José F. González-Acuña, Ajay Nair, Wendong Zhang, Mark L. Gleason
Bacterial wilt of cucurbits, caused by Erwinia tracheiphila, is spread by spotted (Diabrotica undeimpunctata howardi) and striped (Acalymma vittatum) cucumber beetles and results in major losses for US cucurbit (Cucurbitaceae spp.) growers. Organic growers of muskmelon (Cucumis melo) lack reliable control measures against bacterial wilt. During previous field trials in Iowa, USA, a system called mesotunnels, which are 3.5-ft-tall barriers covered with a nylon mesh insect netting, resulted in a higher marketable yield of organic ‘Athena’ muskmelon than low tunnels or noncovered plots. However, satisfactory pollination and weed control are challenging in mesotunnels because the netting covers the crop for most or all of the growing season, and economic feasibility of these systems has not been determined. Consequently, two field trials conducted in Iowa from 2020 to 2022 evaluated strategies to ensure pollination under mesotunnels in commercial-scale plots, assess effectiveness of teff (Eragrostis tef) as a living mulch for weed control in mesotunnel systems, and compare the profitability of the treatment options for organic ‘Athena’ muskmelon. The treatments used during the pollination trial were as follows: full season, in which mesotunnels remained sealed all season and bumble bees (Bombus impatiens) were added at the start of bloom for pollination; open ends, wherein both ends of the tunnels were opened at the start of bloom then reclosed 2 weeks later; and on-off-on, in which nets were removed at the start of bloom and then reinstalled 2 weeks later. The full-season treatment had significantly higher marketable yield than the other treatments in two of three trial years. Plants with the full season and open ends treatments had a bacterial wilt incidence <2.5% across all three years and similar numbers of cucumber beetles, whereas plants with the on-off-on treatment had an average bacterial wilt incidence of 11.0% and significantly more cucumber beetles. The open ends treatment had fewer bee visits to ‘Athena’ muskmelon flowers than the other treatments. In the 2-year (2021–22) weed management trial, treatments applied to the furrow between plastic-mulched rows were as follows: landscape fabric; teff seeded at 4 lb/acre and mowed 3 weeks after seeding; teff seeded at 4 lb/acre and not mowed; a control with bare ground where weeds were mowed 3 weeks after transplanting; and a bare ground control with no mowing. The landscape fabric and mowed teff treatments had statistically similar marketable yield, and mowing appeared to minimize yield losses compared with nonmowed treatments. The landscape fabric had no weeds, followed by mowed teff, mowed bare ground, and nonmowed teff. Nonmowed bare ground had the highest weed biomass. The partial budget and cost-efficiency ratio analysis indicated that the full-season treatment was the most cost-efficient pollination option for mesotunnel systems. An economic analysis of the weed management strategies show
{"title":"Evaluating Pollination and Weed Control Strategies under Mesotunnel Systems for Organic Muskmelon Production in Iowa","authors":"Kephas Mphande, Sharon Badilla-Arias, Nieyan Cheng, José F. González-Acuña, Ajay Nair, Wendong Zhang, Mark L. Gleason","doi":"10.21273/horttech05379-23","DOIUrl":"https://doi.org/10.21273/horttech05379-23","url":null,"abstract":"Bacterial wilt of cucurbits, caused by Erwinia tracheiphila, is spread by spotted (Diabrotica undeimpunctata howardi) and striped (Acalymma vittatum) cucumber beetles and results in major losses for US cucurbit (Cucurbitaceae spp.) growers. Organic growers of muskmelon (Cucumis melo) lack reliable control measures against bacterial wilt. During previous field trials in Iowa, USA, a system called mesotunnels, which are 3.5-ft-tall barriers covered with a nylon mesh insect netting, resulted in a higher marketable yield of organic ‘Athena’ muskmelon than low tunnels or noncovered plots. However, satisfactory pollination and weed control are challenging in mesotunnels because the netting covers the crop for most or all of the growing season, and economic feasibility of these systems has not been determined. Consequently, two field trials conducted in Iowa from 2020 to 2022 evaluated strategies to ensure pollination under mesotunnels in commercial-scale plots, assess effectiveness of teff (Eragrostis tef) as a living mulch for weed control in mesotunnel systems, and compare the profitability of the treatment options for organic ‘Athena’ muskmelon. The treatments used during the pollination trial were as follows: full season, in which mesotunnels remained sealed all season and bumble bees (Bombus impatiens) were added at the start of bloom for pollination; open ends, wherein both ends of the tunnels were opened at the start of bloom then reclosed 2 weeks later; and on-off-on, in which nets were removed at the start of bloom and then reinstalled 2 weeks later. The full-season treatment had significantly higher marketable yield than the other treatments in two of three trial years. Plants with the full season and open ends treatments had a bacterial wilt incidence <2.5% across all three years and similar numbers of cucumber beetles, whereas plants with the on-off-on treatment had an average bacterial wilt incidence of 11.0% and significantly more cucumber beetles. The open ends treatment had fewer bee visits to ‘Athena’ muskmelon flowers than the other treatments. In the 2-year (2021–22) weed management trial, treatments applied to the furrow between plastic-mulched rows were as follows: landscape fabric; teff seeded at 4 lb/acre and mowed 3 weeks after seeding; teff seeded at 4 lb/acre and not mowed; a control with bare ground where weeds were mowed 3 weeks after transplanting; and a bare ground control with no mowing. The landscape fabric and mowed teff treatments had statistically similar marketable yield, and mowing appeared to minimize yield losses compared with nonmowed treatments. The landscape fabric had no weeds, followed by mowed teff, mowed bare ground, and nonmowed teff. Nonmowed bare ground had the highest weed biomass. The partial budget and cost-efficiency ratio analysis indicated that the full-season treatment was the most cost-efficient pollination option for mesotunnel systems. An economic analysis of the weed management strategies show","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141230244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.21273/horttech05407-24
A. Dag, I. Zipori, Zipora Tietel
Traditional olive (Olea europaea) orchards have been grown for thousands of years and still occupy most of the world’s cultivated olive areas. To compete with olive oil produced in the higher-yielding intensive orchards, the oil from traditional orchards must be of high quality. We evaluated oil quality—potential and actual (under commercial conditions)—and tested the stages in the production chain that are likely to reduce oil quality in the traditional sector in the Middle East region. Our findings show a clear negative impact of growers’ traditional practices on both the chemical and sensory characteristics of olive oil. The oil originating from the commercial process had higher free fatty acid and lower polyphenol and carotenoid contents, lower stability, lower pungency, lower fruitiness, lower bitterness, and a higher prevalence of organoleptic defects than oil that originated from fruit picked from the same trees during the experimental procedure. The current common harvesting technique of pole beating significantly increased fruit injury and fruit with mold, leading to a reduction in oil polyphenols and an increase in free fatty acid levels compared with those resulting from manual picking. In addition, after harvest, storing the fruit for more than 48 hours in plastic bags dramatically reduced the oil quality. The traditional olive orchard could be a source of high-quality extra virgin olive oil. However, fruit handling—from the trees until the end of the oil extraction process—is performed incorrectly, thus adversely affecting the oil quality.
{"title":"Factors that Affect the Quality of Olive Oil Produced Using Olives from Traditional Orchards in the Middle East","authors":"A. Dag, I. Zipori, Zipora Tietel","doi":"10.21273/horttech05407-24","DOIUrl":"https://doi.org/10.21273/horttech05407-24","url":null,"abstract":"Traditional olive (Olea europaea) orchards have been grown for thousands of years and still occupy most of the world’s cultivated olive areas. To compete with olive oil produced in the higher-yielding intensive orchards, the oil from traditional orchards must be of high quality. We evaluated oil quality—potential and actual (under commercial conditions)—and tested the stages in the production chain that are likely to reduce oil quality in the traditional sector in the Middle East region. Our findings show a clear negative impact of growers’ traditional practices on both the chemical and sensory characteristics of olive oil. The oil originating from the commercial process had higher free fatty acid and lower polyphenol and carotenoid contents, lower stability, lower pungency, lower fruitiness, lower bitterness, and a higher prevalence of organoleptic defects than oil that originated from fruit picked from the same trees during the experimental procedure. The current common harvesting technique of pole beating significantly increased fruit injury and fruit with mold, leading to a reduction in oil polyphenols and an increase in free fatty acid levels compared with those resulting from manual picking. In addition, after harvest, storing the fruit for more than 48 hours in plastic bags dramatically reduced the oil quality. The traditional olive orchard could be a source of high-quality extra virgin olive oil. However, fruit handling—from the trees until the end of the oil extraction process—is performed incorrectly, thus adversely affecting the oil quality.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141234547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.21273/horttech05412-24
Matthew Davis, Alexandra Stone, Lane Selman, Patrick Merscher, Amy Garrett
Vegetable grafting can mitigate the negative effects of drought on crop production. Dry farming, which is the production of crops without irrigation during a dry growing season, can result in lower yields, smaller fruit, and a higher incidence of blossom-end rot (BER), which is a physiological disorder associated with drought stress. To determine the effects of grafting on yield and fruit quality of dry-farmed tomato (Solanum lycopersicum), three years of trials were conducted using different scion–rootstock combinations and ungrafted controls. In 2020, grafting onto rootstocks ‘DRO141TX’ and ‘Fortamino’ resulted in greater total yield and average fruit weight and a lower BER incidence for dry-farmed tomato than grafting onto the rootstock ‘Shincheonggang’ or using ungrafted plants. In 2021, grafting onto the rootstock ‘DRO141TX’ again increased yields and average fruit weight and decreased BER incidence when compared with ungrafted plants (‘Fortamino’ was not tested). Interactions were detected between different scion–rootstock combinations in terms of the degree of reduction of necrotic BER (BER resulting in a large, sunken, grey or black spot, making the fruit unmarketable) when grafted onto ‘DRO141TX’, with the scion ‘Azoychka’ having a 69% reduction in necrotic BER and the scion ‘Astrakhanskie’ having a 93% reduction in necrotic BER. In 2022, an interaction was detected between the rootstocks and scions in terms of their effect on large fruit (>0.33 lb) yield, with ‘BHN 871’ grafted onto ‘Fortamino’ producing the highest yields of large fruit and ‘Big Beef’ grafted onto ‘Fortamino’ producing the lowest yields. Overall, grafting onto the rootstocks ‘DRO141TX’ or ‘Fortamino’ improved diverse dry-farmed tomato outcomes in the Willamette Valley of Oregon, USA.
{"title":"Grafting onto Tomato Rootstocks Improves Outcomes for Dry-farmed Tomato","authors":"Matthew Davis, Alexandra Stone, Lane Selman, Patrick Merscher, Amy Garrett","doi":"10.21273/horttech05412-24","DOIUrl":"https://doi.org/10.21273/horttech05412-24","url":null,"abstract":"Vegetable grafting can mitigate the negative effects of drought on crop production. Dry farming, which is the production of crops without irrigation during a dry growing season, can result in lower yields, smaller fruit, and a higher incidence of blossom-end rot (BER), which is a physiological disorder associated with drought stress. To determine the effects of grafting on yield and fruit quality of dry-farmed tomato (Solanum lycopersicum), three years of trials were conducted using different scion–rootstock combinations and ungrafted controls. In 2020, grafting onto rootstocks ‘DRO141TX’ and ‘Fortamino’ resulted in greater total yield and average fruit weight and a lower BER incidence for dry-farmed tomato than grafting onto the rootstock ‘Shincheonggang’ or using ungrafted plants. In 2021, grafting onto the rootstock ‘DRO141TX’ again increased yields and average fruit weight and decreased BER incidence when compared with ungrafted plants (‘Fortamino’ was not tested). Interactions were detected between different scion–rootstock combinations in terms of the degree of reduction of necrotic BER (BER resulting in a large, sunken, grey or black spot, making the fruit unmarketable) when grafted onto ‘DRO141TX’, with the scion ‘Azoychka’ having a 69% reduction in necrotic BER and the scion ‘Astrakhanskie’ having a 93% reduction in necrotic BER. In 2022, an interaction was detected between the rootstocks and scions in terms of their effect on large fruit (>0.33 lb) yield, with ‘BHN 871’ grafted onto ‘Fortamino’ producing the highest yields of large fruit and ‘Big Beef’ grafted onto ‘Fortamino’ producing the lowest yields. Overall, grafting onto the rootstocks ‘DRO141TX’ or ‘Fortamino’ improved diverse dry-farmed tomato outcomes in the Willamette Valley of Oregon, USA.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141235584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}