Pub Date : 2024-03-03DOI: 10.1134/s0018151x23010078
V. V. Ryazanov
Abstract
Within the framework of the Gibbs statistical theory, the issue of the size distribution of particles forming a statistical system and the moments of this distribution are considered. The size distribution of particles and the moments of this distribution are determined from probabilistic considerations. The particle size depends on the interactions in the system, the compressibility factor, the number of interacting particles, and the volume of the system. The relations for the average particle size are substituted into expressions for the intrinsic volume of particles in the equations of state written using excluded volume theory for various expressions for the exclusion factor. The equations of state obtained in this way can be considered as a refinement of the equation of state for dense systems, that is, as a transition to a higher level of description.
{"title":"Equation of State and Size Distribution of Particles in the Gibbs System","authors":"V. V. Ryazanov","doi":"10.1134/s0018151x23010078","DOIUrl":"https://doi.org/10.1134/s0018151x23010078","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Within the framework of the Gibbs statistical theory, the issue of the size distribution of particles forming a statistical system and the moments of this distribution are considered. The size distribution of particles and the moments of this distribution are determined from probabilistic considerations. The particle size depends on the interactions in the system, the compressibility factor, the number of interacting particles, and the volume of the system. The relations for the average particle size are substituted into expressions for the intrinsic volume of particles in the equations of state written using excluded volume theory for various expressions for the exclusion factor. The equations of state obtained in this way can be considered as a refinement of the equation of state for dense systems, that is, as a transition to a higher level of description.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-03DOI: 10.1134/s0018151x23020049
T. I. Borodina, V. V. Glazkov, Yu. P. Ivochkin, K. G. Kubrikov, O. A. Sinkevich, I. O. Teplyakov, S. M. Yudin
Abstract
The results of experimental and computational studies of the processes accompanying the melting of metal samples heated in air using induced currents are presented. The materials used for the experimental models—spheres and cylinders with a characteristic size of 10 mm—were pure iron, nonferrous metals, and various grades of steel. An unusual physical effect observed in experiments with iron and steels and associated with the intense release of sparks from the samples was studied: small brightly glowing metal droplets. A possible thermomechanical mechanism for the emission of droplets is proposed, based on the occurrence of excess melt pressure during metal melting inside the volume of the sample, limited by the resulting solid shell consisting of iron oxides. Numerical calculations were carried out, the results of which generally confirm the hypothesis presented.
{"title":"Intensive Emission of Droplets during Melting of Metal Samples in a High-Frequency Inductor","authors":"T. I. Borodina, V. V. Glazkov, Yu. P. Ivochkin, K. G. Kubrikov, O. A. Sinkevich, I. O. Teplyakov, S. M. Yudin","doi":"10.1134/s0018151x23020049","DOIUrl":"https://doi.org/10.1134/s0018151x23020049","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The results of experimental and computational studies of the processes accompanying the melting of metal samples heated in air using induced currents are presented. The materials used for the experimental models—spheres and cylinders with a characteristic size of 10 mm—were pure iron, nonferrous metals, and various grades of steel. An unusual physical effect observed in experiments with iron and steels and associated with the intense release of sparks from the samples was studied: small brightly glowing metal droplets. A possible thermomechanical mechanism for the emission of droplets is proposed, based on the occurrence of excess melt pressure during metal melting inside the volume of the sample, limited by the resulting solid shell consisting of iron oxides. Numerical calculations were carried out, the results of which generally confirm the hypothesis presented.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-03DOI: 10.1134/s0018151x23020062
B. Ghozlani, S. Hadj-Salah, S. Bezi, B. Souayeh
Abstract
A numerical study has been carried out to investigate the forced convective flow around a trapezoidal cylinder exposed to a uniform stream of nanofluid. Water-based nanofluid containing various types of nanoparticles (Al2O3, Cu, and CuO) with the solid volume fraction φ varying from 0 to 8% were used to examine the fluid flow and potential heat transfer enhancement from the heated cylinder. Computations based on the finite volume method with SIMPLE algorithm have been carried out at the steady laminar flow regime with a Peclet number range of 25 ≤ Pe ≤ 150. Nanofluids flow and heat transfer characteristics are found to be highly dependent on solid volume fraction, Peclet number, and nanoparticles shapes. Enhanced wake lengths and surface vorticity, reduced drag and higher heat transfer rates are seen in nanofluids. Furthermore, the results reveal that one type of nanoparticle is a key factor for improving some engineering parameters. In particular, the height values of the average Nusselt number Nuav, the maximal surface vorticity ωs, max, and the dimensionless wake length Lr are obtained while using Cu nanoparticles. However, the values of the drag coefficient ({{C}_{D}}) are higher for Al2O3 nanoparticles. Eventually, reliable correlations for ({{omega }_{{smax }}}), ({{C}_{D}}), and Nuav in terms of φ and Pe have been developed throughout this study.
摘要 本文进行了一项数值研究,以探讨暴露在均匀纳米流体流中的梯形圆柱体周围的强制对流。水基纳米流体含有各种类型的纳米颗粒(Al2O3、Cu 和 CuO),固体体积分数 φ 从 0% 到 8% 不等,用于研究流体流动和受热圆柱体潜在的热传递增强。计算基于有限体积法和 SIMPLE 算法,在稳定层流状态下进行,佩克莱特数范围为 25 ≤ Pe ≤ 150。研究发现,纳米流体的流动和传热特性与固体体积分数、佩克莱特数和纳米颗粒形状密切相关。纳米流体的唤醒长度和表面涡度增加,阻力减小,传热率提高。此外,研究结果表明,一种类型的纳米粒子是改善某些工程参数的关键因素。特别是在使用铜纳米粒子时,平均努塞尔特数 Nuav、最大表面涡度 ωs, max 和无量纲唤醒长度 Lr 的高度值都得到了提高。然而,Al2O3 纳米粒子的阻力系数 ({{C}_{D}})值较高。最终,本研究建立了φ和Pe与({{omega }_{{smax }}), ({{C}_{D}}) 和Nuav的可靠相关性。
{"title":"Heat Transfer Enhancement and Flow Characteristics Past Trapezoidal Bluff Body Embedded in Unconfined Cavity Filled with Nanofluid","authors":"B. Ghozlani, S. Hadj-Salah, S. Bezi, B. Souayeh","doi":"10.1134/s0018151x23020062","DOIUrl":"https://doi.org/10.1134/s0018151x23020062","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A numerical study has been carried out to investigate the forced convective flow around a trapezoidal cylinder exposed to a uniform stream of nanofluid. Water-based nanofluid containing various types of nanoparticles (Al<sub>2</sub>O<sub>3</sub>, Cu, and CuO) with the solid volume fraction φ varying from 0 to 8% were used to examine the fluid flow and potential heat transfer enhancement from the heated cylinder. Computations based on the finite volume method with SIMPLE algorithm have been carried out at the steady laminar flow regime with a Peclet number range of 25 ≤ Pe ≤ 150. Nanofluids flow and heat transfer characteristics are found to be highly dependent on solid volume fraction, Peclet number, and nanoparticles shapes. Enhanced wake lengths and surface vorticity, reduced drag and higher heat transfer rates are seen in nanofluids. Furthermore, the results reveal that one type of nanoparticle is a key factor for improving some engineering parameters. In particular, the height values of the average Nusselt number Nu<sub>av</sub>, the maximal surface vorticity ω<sub><i>s</i></sub>, <sub>max</sub>, and the dimensionless wake length <i>L</i><sub><i>r</i></sub> are obtained while using Cu nanoparticles. However, the values of the drag coefficient <span>({{C}_{D}})</span> are higher for Al<sub>2</sub>O<sub>3</sub> nanoparticles. Eventually, reliable correlations for <span>({{omega }_{{smax }}})</span>, <span>({{C}_{D}})</span><sub>,</sub> and Nu<sub>av</sub> in terms of φ and Pe have been developed throughout this study.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-03DOI: 10.1134/s0018151x23020025
M. Yu. Belyakov
Abstract
The study examines the behavior of a binary mixture in the vicinity of the liquid–vapor critical point. It is shown that the pressure dependence on density along the critical isotherm, predicted within the framework of the existing theory of critical phenomena, does not match the shape of the dew-bubble curves. The problem is analyzed with the equation of state for a multicomponent near-critical mixture, adapted to describe thermophysical properties of a binary mixture. To eliminate the problem it is proposed to impose an additional condition on the equation of state coefficient. Possible consequences of imposing such a condition are considered.
{"title":"Critical Anomalies and Phase Diagrams of a Binary Mixture","authors":"M. Yu. Belyakov","doi":"10.1134/s0018151x23020025","DOIUrl":"https://doi.org/10.1134/s0018151x23020025","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The study examines the behavior of a binary mixture in the vicinity of the liquid–vapor critical point. It is shown that the pressure dependence on density along the critical isotherm, predicted within the framework of the existing theory of critical phenomena, does not match the shape of the dew-bubble curves. The problem is analyzed with the equation of state for a multicomponent near-critical mixture, adapted to describe thermophysical properties of a binary mixture. To eliminate the problem it is proposed to impose an additional condition on the equation of state coefficient. Possible consequences of imposing such a condition are considered.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-03DOI: 10.1134/s0018151x23020190
Yu. V. Vidin, V. S. Zlobin
Abstract
A method for investigating characteristic equations is proposed, and analytical formulas are obtained for determining the roots of the characteristic equation in the problem of nonstationary heat conduction of a spherical body. These formulas make it possible to determine any required number of roots with high accuracy, which is especially important when solving heat conduction problems at the initial moment of time. The proposed method can be used to study more complex characteristic equations arising in other heat transfer problems.
{"title":"Analytical Method for Calculating Eigenvalues in the Problem of Nonstationary Heat Conduction of a Spherical Body","authors":"Yu. V. Vidin, V. S. Zlobin","doi":"10.1134/s0018151x23020190","DOIUrl":"https://doi.org/10.1134/s0018151x23020190","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A method for investigating characteristic equations is proposed, and analytical formulas are obtained for determining the roots of the characteristic equation in the problem of nonstationary heat conduction of a spherical body. These formulas make it possible to determine any required number of roots with high accuracy, which is especially important when solving heat conduction problems at the initial moment of time. The proposed method can be used to study more complex characteristic equations arising in other heat transfer problems.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-03DOI: 10.1134/s0018151x23020074
M. Kabir, J. Downer, E. Preller, C. Tarau, B. Yang, J. Xu
Abstract
The effects of single-phase nanofluid flow in mini-/microchannels have been investigated both experimentally and numerically in the literature during the last decade. Almost all the studies show a similar trend by which the engagement of single-phase nanofluids to mini-/microchannels provides significant improvements in the thermal performance. However, there are only limited number of publications in the literature, which have experimentally focused on the heat transfer performance of nanofluids for two-phase flow boiling in mini-/microchannels. Moreover, there are some noticeably conflicting trends concluded by these experimental studies, particularly for the boiling heat transfer coefficient. In the present review, the key clue to figure out the contradictions reflected in the literature on the experimental measurements of boiling heat transfer coefficient is traced to the various deposition patterns of nanoparticles of different sizes on the boiling surface and subsequent changes in the morphology and boiling behavior as well. In addition, the crucial parameters of nanofluids in mini-/microchannels during flow boiling are identified and the effects of the parameters on the boiling heat transfer performance are comprehensively reviewed. The agreements and inconsistencies reported in the literature are also identified and discussed. Finally, a series of suggestions are provided for future experimental studies of nanofluids flow boiling to minimize the contradictory reports.
{"title":"Two-Phase Flow Boiling of Nanofluids in Mini- and Microchannels","authors":"M. Kabir, J. Downer, E. Preller, C. Tarau, B. Yang, J. Xu","doi":"10.1134/s0018151x23020074","DOIUrl":"https://doi.org/10.1134/s0018151x23020074","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The effects of single-phase nanofluid flow in mini-/microchannels have been investigated both experimentally and numerically in the literature during the last decade. Almost all the studies show a similar trend by which the engagement of single-phase nanofluids to mini-/microchannels provides significant improvements in the thermal performance. However, there are only limited number of publications in the literature, which have experimentally focused on the heat transfer performance of nanofluids for two-phase flow boiling in mini-/microchannels. Moreover, there are some noticeably conflicting trends concluded by these experimental studies, particularly for the boiling heat transfer coefficient. In the present review, the key clue to figure out the contradictions reflected in the literature on the experimental measurements of boiling heat transfer coefficient is traced to the various deposition patterns of nanoparticles of different sizes on the boiling surface and subsequent changes in the morphology and boiling behavior as well. In addition, the crucial parameters of nanofluids in mini-/microchannels during flow boiling are identified and the effects of the parameters on the boiling heat transfer performance are comprehensively reviewed. The agreements and inconsistencies reported in the literature are also identified and discussed. Finally, a series of suggestions are provided for future experimental studies of nanofluids flow boiling to minimize the contradictory reports.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-03DOI: 10.1134/s0018151x23020086
P. K. Kanin, V. V. Yagov, A. R. Zabirov, I. A. Molotova, M. M. Vinogradov, V. A. Ryazantsev
Abstract
We present new experimental data on the cooling of nickel and duralumin spheres in subcooled water and ethanol, along with a review of our comprehensive experimental investigations from 2015 to 2022. The hypothesis on the vapor film destabilization mechanism during unsteady cooling of high-temperature bodies is elucidated. Additionally, new correlations are proposed for estimating the temperature head at the cessation of film boiling in both saturated and subcooled liquids. The derived equations are validated against an extensive body of proprietary experimental data as well as data from other researchers, exhibiting strong qualitative and quantitative agreement with experimental outcomes.
{"title":"On the Vapor Film Destabilization Mechanism during Unsteady Film Boiling","authors":"P. K. Kanin, V. V. Yagov, A. R. Zabirov, I. A. Molotova, M. M. Vinogradov, V. A. Ryazantsev","doi":"10.1134/s0018151x23020086","DOIUrl":"https://doi.org/10.1134/s0018151x23020086","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We present new experimental data on the cooling of nickel and duralumin spheres in subcooled water and ethanol, along with a review of our comprehensive experimental investigations from 2015 to 2022. The hypothesis on the vapor film destabilization mechanism during unsteady cooling of high-temperature bodies is elucidated. Additionally, new correlations are proposed for estimating the temperature head at the cessation of film boiling in both saturated and subcooled liquids. The derived equations are validated against an extensive body of proprietary experimental data as well as data from other researchers, exhibiting strong qualitative and quantitative agreement with experimental outcomes.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-03DOI: 10.1134/s0018151x23020141
D. N. Nikolaev, I. V. Lomonosov
Abstract
The thermophysical properties of shock-compressed porous iron oxide at pressures up to 1 TPa were determined for the first time. The results agree well with earlier static and dynamic measurements in the pressure range up to 0.2 TPa. An equation of state for the high-pressure phase of iron oxide was constructed and compared with data at high pressures and temperatures.
{"title":"Equation of State of Iron Oxide at a Pressure ≤1 TPa","authors":"D. N. Nikolaev, I. V. Lomonosov","doi":"10.1134/s0018151x23020141","DOIUrl":"https://doi.org/10.1134/s0018151x23020141","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The thermophysical properties of shock-compressed porous iron oxide at pressures up to 1 TPa were determined for the first time. The results agree well with earlier static and dynamic measurements in the pressure range up to 0.2 TPa. An equation of state for the high-pressure phase of iron oxide was constructed and compared with data at high pressures and temperatures.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140025982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-29DOI: 10.1134/s0018151x23010212
I. N. Ganiev, A. G. Safarov, E. S. Dodkhoev, K. Boturov, U. Sh. Yakubov, F. Kholmurodov
Abstract
In cooling mode, the temperature dependence of the specific heat and changes in the thermodynamic functions of alloys of the Mg–La system in the temperature range of 300–700 K were studied. It has been shown that with increasing lanthanum concentration, the specific heat of magnesium, especially with the addition of lanthanum from 5 to 10%, noticeably decreases, and increases with increasing temperature. It has been established that with increasing temperature, the enthalpy and entropy of the alloys increase, and the values of the Gibbs energy decrease. The dependence of these functions on the lanthanum content in magnesium is inverse.
摘要 在冷却模式下,研究了 300-700 K 温度范围内 Mg-La 系合金比热的温度依赖性和热力学函数的变化。结果表明,随着镧浓度的增加,镁的比热,特别是镧的添加量从 5%到 10%时,明显降低,而随着温度的增加,比热增加。已确定的是,随着温度的升高,合金的焓和熵增加,而吉布斯能值降低。这些函数与镁中的镧含量成反比。
{"title":"Temperature Dependence of Thermophysical Properties and Changes in the Thermodynamic Functions of Mg–La System Alloys","authors":"I. N. Ganiev, A. G. Safarov, E. S. Dodkhoev, K. Boturov, U. Sh. Yakubov, F. Kholmurodov","doi":"10.1134/s0018151x23010212","DOIUrl":"https://doi.org/10.1134/s0018151x23010212","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In cooling mode, the temperature dependence of the specific heat and changes in the thermodynamic functions of alloys of the Mg–La system in the temperature range of 300–700 K were studied. It has been shown that with increasing lanthanum concentration, the specific heat of magnesium, especially with the addition of lanthanum from 5 to 10%, noticeably decreases, and increases with increasing temperature. It has been established that with increasing temperature, the enthalpy and entropy of the alloys increase, and the values of the Gibbs energy decrease. The dependence of these functions on the lanthanum content in magnesium is inverse.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140005106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to: Microlevel Modeling of Thermophysical and Hydrodynamic Processes of Selective Laser Melting","authors":"A. S. Boreisho, G. T. Dzhgamadze, V. V. Zybina, A. A. Moiseev, A. V. Savin, P. G. Smirnov, S. S. Smolentsev, V. A. Timofeev, P. S. Tret’yak","doi":"10.1134/s0018151x23010224","DOIUrl":"https://doi.org/10.1134/s0018151x23010224","url":null,"abstract":"<p>An Erratum to this paper has been published: https://doi.org/10.1134/S0018151X23010224</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140004993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}