Peach is one of the most economically valuable fruit trees. Haploid peach trees occur spontaneously at very low frequencies and they are usually highly sterile. Therefore, the haploid with partial fertility is extremely rare germplasm, which is highly valuable to genetic research and breeding programmes. In this study, we investigated the cytological mechanism underlying the fertility of a peach haploid mutant ‘9-D’ derived from a spontaneous mutation. Cytologic evaluation and flow cytometry analysis demonstrated that ‘9-D’ is a pure haploid. Scanning electron microscope analysis revealed a considerable proportion of abnormal pollen grains in ‘9-D’. Pollen viability assay by Alexander staining showed that 50.4% of pollen grains from ‘9-D’ were viable. However, the pollen germination assay showed that only 7.6% of the pollen grains could germinate normally. Investigation of the chromosomal behavior of pollen mother cells at different stages of meiosis showed that pollen mother cells of ‘9-D’ lacked the process between anaphase I and prophase II of meiosis. Various types of sporophyte morphology were observed in haploid pollen mother cells at the tetrad stage. Measurement of the diameter of pollen grains indicated the presence of pollen with 2x ploidy in ‘9-D’. The offspring of ‘9-D’ were predominantly triploid or triploid aneuploid. The triploid offspring were more likely derived from the 2x male gametophyte combined with the haploid female gametophyte, which may explain the reason why ‘9-D’ has fertility. This study not only expands our understanding of haploid fertility mechanisms, but is also useful for ploid breeding programs in peach.
桃子是最具经济价值的果树之一。单倍体桃树自发出现的频率很低,而且通常高度不育。因此,具有部分生育力的单倍体是极其稀有的种质资源,对遗传研究和育种计划具有极高的价值。在本研究中,我们研究了自发突变产生的桃单倍体突变体'9-D'生育力的细胞学机制。细胞学评估和流式细胞仪分析表明,"9-D "是一个纯合子。扫描电子显微镜分析表明,'9-D'中有相当比例的异常花粉粒。通过亚历山大染色法进行的花粉活力测定显示,'9-D'中有 50.4% 的花粉粒具有活力。然而,花粉发芽测定显示,只有 7.6% 的花粉粒能正常发芽。对花粉母细胞在减数分裂不同阶段染色体行为的研究表明,'9-D'的花粉母细胞缺乏减数分裂无丝分裂期 I 和减数分裂原期 II 之间的过程。在四分体阶段的单倍体花粉母细胞中观察到了各种孢子体形态。花粉粒直径的测量结果表明,'9-D'的花粉具有 2 倍体。9-D'的后代主要是三倍体或三倍体非整倍体。三倍体后代更有可能来自 2 倍体雄性配子体与单倍体雌性配子体的结合,这或许可以解释'9-D'具有繁殖力的原因。这项研究不仅拓展了我们对单倍体育性机制的认识,而且对桃的多倍体育种计划也很有帮助。
{"title":"The Cytological Mechanism of the Peach Haploid Producing Triploid Offspring","authors":"Xin Liu, Dandan Li, Yu Zhang, Xin Zhou, Shangde Wang, Jianbo Zhao, Jiying Guo, Quan Jiang, Fei Ren","doi":"10.1093/hr/uhae316","DOIUrl":"https://doi.org/10.1093/hr/uhae316","url":null,"abstract":"Peach is one of the most economically valuable fruit trees. Haploid peach trees occur spontaneously at very low frequencies and they are usually highly sterile. Therefore, the haploid with partial fertility is extremely rare germplasm, which is highly valuable to genetic research and breeding programmes. In this study, we investigated the cytological mechanism underlying the fertility of a peach haploid mutant ‘9-D’ derived from a spontaneous mutation. Cytologic evaluation and flow cytometry analysis demonstrated that ‘9-D’ is a pure haploid. Scanning electron microscope analysis revealed a considerable proportion of abnormal pollen grains in ‘9-D’. Pollen viability assay by Alexander staining showed that 50.4% of pollen grains from ‘9-D’ were viable. However, the pollen germination assay showed that only 7.6% of the pollen grains could germinate normally. Investigation of the chromosomal behavior of pollen mother cells at different stages of meiosis showed that pollen mother cells of ‘9-D’ lacked the process between anaphase I and prophase II of meiosis. Various types of sporophyte morphology were observed in haploid pollen mother cells at the tetrad stage. Measurement of the diameter of pollen grains indicated the presence of pollen with 2x ploidy in ‘9-D’. The offspring of ‘9-D’ were predominantly triploid or triploid aneuploid. The triploid offspring were more likely derived from the 2x male gametophyte combined with the haploid female gametophyte, which may explain the reason why ‘9-D’ has fertility. This study not only expands our understanding of haploid fertility mechanisms, but is also useful for ploid breeding programs in peach.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"174 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meng Li, Changjiang Nie, Shanshan He, Zhirui Xue, Jiajun Li, Zhiqian Li, Chang He, Xianbo Zheng, Bin Tan, Jun Cheng, Wei Wang, Jidong Li, Xia Ye, Jiancan Feng
The fruit softening directly impacts its storage life, transportability, and customer acceptance. Auxin plays a key role during fruit ripening, but the underlying mechanisms of how auxin regulates fruit softening remain unclear. In this study, we investigated the regulatory roles of auxin on berry cell wall degradation during grape (Vitis vinifera L.) softening. During grape berry development, berry firmness and auxin content are both firstly increasing and then decreasing, and peaks occur at 4-6 WAFB (weeks after full blooming). Exogenous NAA (α-naphthalene acetic acid, a synthetic auxin) treatment inhibits berry softening by delaying propectin, cellulose and hemicellulose degradation, which maintains cell wall integrity in the grape flesh. Weighted gene co-expression network analysis (WGCNA) shows that VvLBD13 correlated with VvARF19 could be a key gene in this delaying of berry softening, which involved in auxin signal transduction and cell wall degradation metabolism. Over-expression and transient over-expression of VvLBD13 in tomato or in grape berry indicate that VvLBD13 accelerates hemicellulose degradation by binding the promoters of VvXTH10 (the xyloglucan endotransglucosylase/hydrolase 10) and VvEXPLA1 (expansion-like A1), which results in rapid softening after veraison. Collectively, this research furnishes an exhaustive understanding of the auxin- driven regulatory mechanisms of grape berry softening.
{"title":"VvARF19 represses VvLBD13-mediated cell wall degradation to delay softening of grape berries","authors":"Meng Li, Changjiang Nie, Shanshan He, Zhirui Xue, Jiajun Li, Zhiqian Li, Chang He, Xianbo Zheng, Bin Tan, Jun Cheng, Wei Wang, Jidong Li, Xia Ye, Jiancan Feng","doi":"10.1093/hr/uhae322","DOIUrl":"https://doi.org/10.1093/hr/uhae322","url":null,"abstract":"The fruit softening directly impacts its storage life, transportability, and customer acceptance. Auxin plays a key role during fruit ripening, but the underlying mechanisms of how auxin regulates fruit softening remain unclear. In this study, we investigated the regulatory roles of auxin on berry cell wall degradation during grape (Vitis vinifera L.) softening. During grape berry development, berry firmness and auxin content are both firstly increasing and then decreasing, and peaks occur at 4-6 WAFB (weeks after full blooming). Exogenous NAA (α-naphthalene acetic acid, a synthetic auxin) treatment inhibits berry softening by delaying propectin, cellulose and hemicellulose degradation, which maintains cell wall integrity in the grape flesh. Weighted gene co-expression network analysis (WGCNA) shows that VvLBD13 correlated with VvARF19 could be a key gene in this delaying of berry softening, which involved in auxin signal transduction and cell wall degradation metabolism. Over-expression and transient over-expression of VvLBD13 in tomato or in grape berry indicate that VvLBD13 accelerates hemicellulose degradation by binding the promoters of VvXTH10 (the xyloglucan endotransglucosylase/hydrolase 10) and VvEXPLA1 (expansion-like A1), which results in rapid softening after veraison. Collectively, this research furnishes an exhaustive understanding of the auxin- driven regulatory mechanisms of grape berry softening.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"40 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leaf trichome formation is a very important agronomic trait as it confers resistance to biotic and abiotic stresses, but the causal genes involved in this process in B. juncea remain largely unexplored. In this study, we first characterized the haplotypes of BjB02.GL1 among different inbred lines with leaf trichomes or glabrous leaves. A comparative analysis of the number and density of leaf trichomes between the two mustard inbred lines was then performed. BSA analysis of leaves with trichomes and glabrous pools from the F2 segregating population mapped the candidate genes on Chr.A06 and Chr.B02. Two candidate genes, BjA06.GL1 and BjB02.GL1, were subsequently cloned. After sequence alignment of the BjGL1 genes, both SNPs and indel were identified in the BjA06.GL1 and BjB02.GL1 genes. And qRT–PCR analysis further confirmed that both the BjA06.GL1 and BjB02.GL1 genes were more highly expressed in leaves with trichomes than in glabrous leaves. As the leaf size increased, the leaf trichome density decreased. Gene editing of both BjA06.GL1 and BjB02.GL1 changed the leaf trichome to a glabrous leaf phenotype in mustard. In addition, plants with leaf trichomes presented greater resistance to aphids. Taken together, our results revealed that both BjA06.GL1 and BjB02.GL1 positively regulate leaf trichome formation and help increase aphid resistance in mustard. This study provides valuable resources and helps to elucidate the molecular mechanism of leaf trichome formation in B. juncea.
{"title":"Two novel alleles of the MYB transcription factor BjA06.GL1 and BjB02.GL1 control leaf trichomes and enhance resistance to aphids in Brassica juncea","authors":"Shuangping Heng, Xiaolin Li, Man Li, Lulu Jiang, Meng Li, Wei Zeng, Guangzhi Mao, Feng Xing, Zhengjie Wan, Jing Wen, Jinxiong Shen, Tingdong Fu","doi":"10.1093/hr/uhae314","DOIUrl":"https://doi.org/10.1093/hr/uhae314","url":null,"abstract":"Leaf trichome formation is a very important agronomic trait as it confers resistance to biotic and abiotic stresses, but the causal genes involved in this process in B. juncea remain largely unexplored. In this study, we first characterized the haplotypes of BjB02.GL1 among different inbred lines with leaf trichomes or glabrous leaves. A comparative analysis of the number and density of leaf trichomes between the two mustard inbred lines was then performed. BSA analysis of leaves with trichomes and glabrous pools from the F2 segregating population mapped the candidate genes on Chr.A06 and Chr.B02. Two candidate genes, BjA06.GL1 and BjB02.GL1, were subsequently cloned. After sequence alignment of the BjGL1 genes, both SNPs and indel were identified in the BjA06.GL1 and BjB02.GL1 genes. And qRT–PCR analysis further confirmed that both the BjA06.GL1 and BjB02.GL1 genes were more highly expressed in leaves with trichomes than in glabrous leaves. As the leaf size increased, the leaf trichome density decreased. Gene editing of both BjA06.GL1 and BjB02.GL1 changed the leaf trichome to a glabrous leaf phenotype in mustard. In addition, plants with leaf trichomes presented greater resistance to aphids. Taken together, our results revealed that both BjA06.GL1 and BjB02.GL1 positively regulate leaf trichome formation and help increase aphid resistance in mustard. This study provides valuable resources and helps to elucidate the molecular mechanism of leaf trichome formation in B. juncea.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"72 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Freya Maria Rosemarie Ziegler, Vivien Rosenthal, Jose G Vallarino, Franziska Genzel, Sarah Spettmann, Łukasz Seliga, Sylwia Keller-Przybyłkowicz, Lucas Munnes, Anita Sønsteby, Sonia Osorio, Björn Usadel
Blackcurrant (Ribes nigrum L., family Grossulariaceae) is a perennial shrub that is widely cultivated for its edible berries. These are rich in antioxidants, vitamin C and anthocyanins, making them a valuable ingredient in the food and beverage industry. However, prolonged periods of drought during the fruiting season lead to drought stress, which has serious ecological and agricultural implications, inhibiting blackcurrant growth and reducing yields. To facilitate the analysis of underlying molecular processes, we present the first high-quality chromosome-scale and partially haplotype-resolved assembly of the blackcurrant genome (cv. Rosenthals Langtraubige), also the first in the family Grossulariaceae. We used this genomic reference to analyze the transcriptomic response of blackcurrant leaves and roots to drought stress, revealing differentially expressed genes with diverse functions, including those encoding the transcription factors bZIP, bHLH, MYB and WRKY, and tyrosine kinase-like kinases such as PERK and DUF26. Gene expression was correlated with the abundance of primary metabolites, revealing 14 with significant differences between stressed leaves and controls indicating a metabolic response to drought stress. Amino acids such as proline were more abundant under stress conditions, whereas organic acids were depleted. The genomic and transcriptomic data from this study can be used to develop more robust blackcurrant cultivars that thrive under drought stress conditions.
{"title":"A full genome assembly reveals drought stress effects on gene expression and metabolite profiles in blackcurrant (Ribes nigrum L.)","authors":"Freya Maria Rosemarie Ziegler, Vivien Rosenthal, Jose G Vallarino, Franziska Genzel, Sarah Spettmann, Łukasz Seliga, Sylwia Keller-Przybyłkowicz, Lucas Munnes, Anita Sønsteby, Sonia Osorio, Björn Usadel","doi":"10.1093/hr/uhae313","DOIUrl":"https://doi.org/10.1093/hr/uhae313","url":null,"abstract":"Blackcurrant (Ribes nigrum L., family Grossulariaceae) is a perennial shrub that is widely cultivated for its edible berries. These are rich in antioxidants, vitamin C and anthocyanins, making them a valuable ingredient in the food and beverage industry. However, prolonged periods of drought during the fruiting season lead to drought stress, which has serious ecological and agricultural implications, inhibiting blackcurrant growth and reducing yields. To facilitate the analysis of underlying molecular processes, we present the first high-quality chromosome-scale and partially haplotype-resolved assembly of the blackcurrant genome (cv. Rosenthals Langtraubige), also the first in the family Grossulariaceae. We used this genomic reference to analyze the transcriptomic response of blackcurrant leaves and roots to drought stress, revealing differentially expressed genes with diverse functions, including those encoding the transcription factors bZIP, bHLH, MYB and WRKY, and tyrosine kinase-like kinases such as PERK and DUF26. Gene expression was correlated with the abundance of primary metabolites, revealing 14 with significant differences between stressed leaves and controls indicating a metabolic response to drought stress. Amino acids such as proline were more abundant under stress conditions, whereas organic acids were depleted. The genomic and transcriptomic data from this study can be used to develop more robust blackcurrant cultivars that thrive under drought stress conditions.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"158 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S Rio, L Toniutti, F Salmon, C Hervouet, C Cardi, P Mournet, C Guiougou, F Marius, C Mina, J M Delos, F Lambert, C Madec, J C Efile, C Cruaud, J M Aury, A D’Hont, J Y Hoarau, G Martin
Banana breeding is hampered by the very low fertility of domesticated bananas and the lack of knowledge about the genetic determinism of agronomic traits. We analysed a breeding population of 2 723 triploid hybrids resulting from crosses between diploid and tetraploid M. acuminata parents, which was evaluated over three successive crop-cycles for 24 traits relating to yield components and plant, bunch and fruit architectures. A subset of 1 129 individuals was genotyped-by-sequencing revealing 205 612 single nucleotide polymorphisms. Most parents were heterozygous for one or several large reciprocal chromosomal translocations, which are known to impact recombination and chromosomal segregation. We applied two linear mixed models to detect associations between markers and traits: (i) a standard model with a kinship calculated using all SNPs and (ii) a model with chromosome-specific kinships that aims at recovering statistical power at alleles carried by long non-recombined haplotypic segments. For 23 of the 24 traits, we identified one to five significant quantitative trait loci (QTLs) for which the origin of favourable alleles could often be determined among the main ancestral contributors to banana cultivars. Several QTLs, located in the rearranged regions, were only detected using the second model. The resulting QTL landscape represents an important resource to support breeding programs. The proposed strategy for recovering power at SNPs carried by long non-recombined rearranged haplotypic segments is an important methodological advance for future association studies in banana and other species affected by chromosomal rearrangements.
{"title":"Genome-wide association for agro-morphological traits in a triploid banana population with large chromosome rearrangements","authors":"S Rio, L Toniutti, F Salmon, C Hervouet, C Cardi, P Mournet, C Guiougou, F Marius, C Mina, J M Delos, F Lambert, C Madec, J C Efile, C Cruaud, J M Aury, A D’Hont, J Y Hoarau, G Martin","doi":"10.1093/hr/uhae307","DOIUrl":"https://doi.org/10.1093/hr/uhae307","url":null,"abstract":"Banana breeding is hampered by the very low fertility of domesticated bananas and the lack of knowledge about the genetic determinism of agronomic traits. We analysed a breeding population of 2 723 triploid hybrids resulting from crosses between diploid and tetraploid M. acuminata parents, which was evaluated over three successive crop-cycles for 24 traits relating to yield components and plant, bunch and fruit architectures. A subset of 1 129 individuals was genotyped-by-sequencing revealing 205 612 single nucleotide polymorphisms. Most parents were heterozygous for one or several large reciprocal chromosomal translocations, which are known to impact recombination and chromosomal segregation. We applied two linear mixed models to detect associations between markers and traits: (i) a standard model with a kinship calculated using all SNPs and (ii) a model with chromosome-specific kinships that aims at recovering statistical power at alleles carried by long non-recombined haplotypic segments. For 23 of the 24 traits, we identified one to five significant quantitative trait loci (QTLs) for which the origin of favourable alleles could often be determined among the main ancestral contributors to banana cultivars. Several QTLs, located in the rearranged regions, were only detected using the second model. The resulting QTL landscape represents an important resource to support breeding programs. The proposed strategy for recovering power at SNPs carried by long non-recombined rearranged haplotypic segments is an important methodological advance for future association studies in banana and other species affected by chromosomal rearrangements.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"5 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cultivated strawberry (Fragaria x ananassa) is a globally important fruit crop which shows promise as a candidate for various methods of controlled environment production. However, a better understanding of the mechanisms of the regulation of flowering is needed, as more frequent or consistent flowering would be advantageous in controlled production. It is well understood that flowering in F. x ananassa responds to both photoperiod and temperature, however, the mechanism behind this response is not fully understood, particularly in perpetually flowering cultivars. While some genes of interest have been identified, a more complete model has not been established. This is largely due to the complexity of the octoploid genome and a lack of current knowledge on the mechanism of temperature response in both seasonal- and perpetual-flowering F. x ananassa. A starting point for developing a better model of flowering response in cultivated strawberries lies in the simpler Fragaria vesca, which indicates a FvCO-FvFT1-FvSOC1-FvTFL1 module for control of seasonal flowering and a lack of functional FvTFL1 responsible for perpetual flowering. However, there are some key differences when discussing F. x ananassa's perpetual flowering characteristics. Recent studies have helped to elucidate some of these differences, allowing for a putative model of seasonal flowering in F. x ananassa, as well as indicating where further questions need to be asked regarding perpetually flowering cultivars.
栽培草莓(Fragaria x ananassa)是一种全球重要的水果作物,有望成为各种可控环境生产方法的候选品种。然而,需要更好地了解开花的调控机制,因为在受控生产中,更频繁或更稳定的开花是有利的。众所周知,F. x ananassa 的开花对光周期和温度都有反应,但这种反应背后的机理还不完全清楚,特别是在永久开花的栽培品种中。虽然已经确定了一些相关基因,但尚未建立一个更完整的模型。这主要是由于八倍体基因组的复杂性,以及目前对季节性开花和永久性开花的 F. x ananassa 的温度反应机制缺乏了解。开发更好的栽培草莓开花响应模型的起点在于更简单的Fragaria vesca,它表明FvCO-FvFT1-FvSOC1-FvTFL1模块控制季节性开花,而缺乏功能性的FvTFL1负责永久性开花。然而,在讨论 F. x ananassa 的永久开花特性时,也存在一些关键的差异。最近的研究有助于阐明其中的一些差异,从而为 F. x ananassa 建立一个季节性开花的假定模型,并指出在永久开花栽培品种方面需要进一步提出的问题。
{"title":"Environmental and Molecular Regulation of Flowering in Cultivated Strawberry (Fragaria x ananassa)","authors":"Ethan Darby, Tabibul Islam","doi":"10.1093/hr/uhae309","DOIUrl":"https://doi.org/10.1093/hr/uhae309","url":null,"abstract":"Cultivated strawberry (Fragaria x ananassa) is a globally important fruit crop which shows promise as a candidate for various methods of controlled environment production. However, a better understanding of the mechanisms of the regulation of flowering is needed, as more frequent or consistent flowering would be advantageous in controlled production. It is well understood that flowering in F. x ananassa responds to both photoperiod and temperature, however, the mechanism behind this response is not fully understood, particularly in perpetually flowering cultivars. While some genes of interest have been identified, a more complete model has not been established. This is largely due to the complexity of the octoploid genome and a lack of current knowledge on the mechanism of temperature response in both seasonal- and perpetual-flowering F. x ananassa. A starting point for developing a better model of flowering response in cultivated strawberries lies in the simpler Fragaria vesca, which indicates a FvCO-FvFT1-FvSOC1-FvTFL1 module for control of seasonal flowering and a lack of functional FvTFL1 responsible for perpetual flowering. However, there are some key differences when discussing F. x ananassa's perpetual flowering characteristics. Recent studies have helped to elucidate some of these differences, allowing for a putative model of seasonal flowering in F. x ananassa, as well as indicating where further questions need to be asked regarding perpetually flowering cultivars.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"37 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grape is an important fruit crop, and its production faces significant threat from diseases, resulting in substantial economic loss. Wild grape relatives are valuable resources for the restoration of disease-resistance loci. However, available resistance loci in wild grape genomes remain largely unexplored. In this study, we assembled two phased genomes, including a high resistant Chinese wild grape, Vitis davidii Föex, and a susceptible cultivar, V. vinifera L. cv. “Manicure Finger”. We detected a total of 36,688 structural variations (SVs), with the genes associated with heterozygous SVs showing an enrichment in allele-specific expression (ASE). Furthermore, we identified eight subgroups of R genes and found that 74.2% of R genes overlap with transposable elements (TEs). Among R genes, NBS-type genes exhibit higher expression profiles in the wild grape genome compared with those in the grape cultivar. Additionally, five specific NBS-type R gene clusters were identified in the wild grape genome that are absent in the cultivar. Through genetic mapping, we identified four quantitative trait loci (QTLs) associated with grape white rot resistance based on the Vitis davidii genome, within which six NBS-type R genes exhibit differential expression between wild and cultivated grapes. Overall, our study revealed the landscape of resistance genes in grape genomes, providing valuable genetic resources for further breeding programs.
葡萄是一种重要的水果作物,其生产面临着病害的严重威胁,造成了巨大的经济损失。野生葡萄近缘种是恢复抗病基因座的宝贵资源。然而,野生葡萄基因组中可用的抗病基因位点在很大程度上仍未被开发。在这项研究中,我们组装了两个分期基因组,包括一个高抗性的中国野生葡萄 Vitis davidii Föex 和一个易感栽培品种 V. vinifera L. cv. "Manicure Finger"。我们共检测到 36,688 个结构变异(SVs),与杂合 SVs 相关的基因在等位基因特异性表达(ASE)方面表现出丰富性。此外,我们还发现了八个R基因亚群,并发现74.2%的R基因与转座元件(TE)重叠。在 R 基因中,与栽培品种相比,野生葡萄基因组中的 NBS 型基因表现出更高的表达谱。此外,我们还在野生葡萄基因组中发现了五个特定的 NBS 型 R 基因簇,这些基因在栽培品种中是不存在的。通过基因图谱绘制,我们在大维葡萄树基因组的基础上确定了四个与葡萄白腐病抗性相关的数量性状位点(QTL),其中六个 NBS 型 R 基因在野生葡萄和栽培葡萄之间表现出不同的表达。总之,我们的研究揭示了葡萄基因组中抗性基因的结构,为进一步的育种计划提供了宝贵的遗传资源。
{"title":"Phased T2T genome assemblies facilitate the mining of disease-resistance genes in Vitis davidii","authors":"Yuanyuan Luo, Zhenya Liu, Zhongxin Jin, Peng Li, Xibei Tan, Shuo Cao, Xu Wang, Zhongqi Liu, Xiaoya Shi, Siyang Huang, Liyuan Gu, Xiucai Fan, Jianfu Jiang, Lei Sun, Yongfeng Zhou, Chonghuai Liu, Xiaodong Xu, Zhiyao Ma, Ying Zhang","doi":"10.1093/hr/uhae306","DOIUrl":"https://doi.org/10.1093/hr/uhae306","url":null,"abstract":"Grape is an important fruit crop, and its production faces significant threat from diseases, resulting in substantial economic loss. Wild grape relatives are valuable resources for the restoration of disease-resistance loci. However, available resistance loci in wild grape genomes remain largely unexplored. In this study, we assembled two phased genomes, including a high resistant Chinese wild grape, Vitis davidii Föex, and a susceptible cultivar, V. vinifera L. cv. “Manicure Finger”. We detected a total of 36,688 structural variations (SVs), with the genes associated with heterozygous SVs showing an enrichment in allele-specific expression (ASE). Furthermore, we identified eight subgroups of R genes and found that 74.2% of R genes overlap with transposable elements (TEs). Among R genes, NBS-type genes exhibit higher expression profiles in the wild grape genome compared with those in the grape cultivar. Additionally, five specific NBS-type R gene clusters were identified in the wild grape genome that are absent in the cultivar. Through genetic mapping, we identified four quantitative trait loci (QTLs) associated with grape white rot resistance based on the Vitis davidii genome, within which six NBS-type R genes exhibit differential expression between wild and cultivated grapes. Overall, our study revealed the landscape of resistance genes in grape genomes, providing valuable genetic resources for further breeding programs.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"145 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Golden Camellia refers to a group of species in the genus Camellia that display yellow petals. The secondary metabolites in these petals hold ornamental significance and potential health benefits. However, the biosynthetic mechanisms governing the synthesis of these metabolites in golden petals remain elusive, and the exploitation of their bioactive components is not fully realized. This research involved the collection and analysis of 23 species of golden Camellia, leading to the discovery that flavonols, particularly quercetin 3-O-glucoside and quercetin 7-O-glucoside, are the primary contributors to the golden flower pigmentation. Integrative transcriptomics and co-expression network analyses pinpointed CnFLS1 as a crucial gene in the biosynthetic pathway, which, in conjunction with CnCHS, CnF3'H, and CnUFGT, orchestrates the specific pathway for flower color development. The enzyme assays revealed a high affinity and catalytic efficiency of CnFLS1 for DHQ, and transient expression of CnFLS1 in tobacco was shown to enhance the biosynthesis of quercetin flavonols, highlighting the pathway specificity in golden Camellia. Moreover, strategic transformations of cultivated tomatoes with various biosynthetic genes yielded transgenic lines exhibiting yellow fruit and quercetin-enriched flesh. These modified lines not only contained distinct flavonol components characteristic of golden Camellia but also demonstrated markedly improved antioxidant capabilities and enhanced resistance. The outcomes of this study not only elucidate the metabolic processes underlying the pigmentation of golden Camellia flowers but also provide a foundation for the development of novel tomato breeds through synthetic biology.
{"title":"Elucidation of the key pathway for flavonol biosynthesis in golden Camellia and its application in genetic modification of tomato fruit metabolism","authors":"Lina Jiang, Leiqin Han, Wenxuan Zhang, Yifei Gao, Xiaoyan Xu, Jia Chen, Shan Feng, Zhengqi Fan, Jiyuan Li, Xinlei Li, Hengfu Yin, Pengxiang Fan","doi":"10.1093/hr/uhae308","DOIUrl":"https://doi.org/10.1093/hr/uhae308","url":null,"abstract":"Golden Camellia refers to a group of species in the genus Camellia that display yellow petals. The secondary metabolites in these petals hold ornamental significance and potential health benefits. However, the biosynthetic mechanisms governing the synthesis of these metabolites in golden petals remain elusive, and the exploitation of their bioactive components is not fully realized. This research involved the collection and analysis of 23 species of golden Camellia, leading to the discovery that flavonols, particularly quercetin 3-O-glucoside and quercetin 7-O-glucoside, are the primary contributors to the golden flower pigmentation. Integrative transcriptomics and co-expression network analyses pinpointed CnFLS1 as a crucial gene in the biosynthetic pathway, which, in conjunction with CnCHS, CnF3'H, and CnUFGT, orchestrates the specific pathway for flower color development. The enzyme assays revealed a high affinity and catalytic efficiency of CnFLS1 for DHQ, and transient expression of CnFLS1 in tobacco was shown to enhance the biosynthesis of quercetin flavonols, highlighting the pathway specificity in golden Camellia. Moreover, strategic transformations of cultivated tomatoes with various biosynthetic genes yielded transgenic lines exhibiting yellow fruit and quercetin-enriched flesh. These modified lines not only contained distinct flavonol components characteristic of golden Camellia but also demonstrated markedly improved antioxidant capabilities and enhanced resistance. The outcomes of this study not only elucidate the metabolic processes underlying the pigmentation of golden Camellia flowers but also provide a foundation for the development of novel tomato breeds through synthetic biology.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"18 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The vector-borne disease Huanglongbing (HLB) causes severe economic losses to citrus production worldwide with no available cure. Herein, we applied virus-induced gene silencing technology to engineer citrus that preferentially attracted and specifically killed Diaphorina citri, the vector associated with HLB. We engineered the infectious citrus tristeza virus (CTV-T36) clone to carry three truncated genes. The triple construct (CTV-tAwd-tWnt-tPDS) produces small interfering RNAs (siRNAs) against phytoene desaturase, PDS, to yield a phenotype with visual, olfactory, and gustatory cues that preferentially attracted D. citri. In addition, siRNAs targeted two genes related to flight in D. citri, abnormal wing disc (DcAwd) and wingless (DcWnt), that caused wing malformations and decreased survival in psyllids that fed on plants inoculated with the engineered virus. During two successive generations, D. citri reared on CTV-tAwd-tWnt-tPDS-inoculated plants exhibited higher mortality across life stages as well as reduced fecundity and fertility as compared with those reared on non-infected plants or CTV-wt-inoculated plants. Furthermore, CTV-tAwd-tWnt-tPDS-inoculated plants shortened the lifespan of D. citri by more than 20 days. Morphological abnormalities were noted in those adults that did successfully emerge on plants inoculated with CTV-tAwd-tWnt-tPDS, including cocked wings with a bowl-shaped depression and/or a convex shape. Phloem sap from CTV-tAwd-tWnt-tPDS-inoculated plants decreased the survival of D. citri adults, confirming that siRNAs were present in the sap of these plants. Collectively, we provide proof of concept for a novel variant of the attract-and-kill method where the cultivated crop is potentially transformed into a hyper-attractive population and transmission sink for a phytopathogen vector.
{"title":"Virus-Induced Gene Silencing Simultaneously Exploits ‘Attract and Kill’ Traits in Plants and Insects to Manage Huanglongbing","authors":"Nabil Killiny, Yasser Nehela, Subhas Hajeri, Siddarame Gowda, Lukasz L Stelinski","doi":"10.1093/hr/uhae311","DOIUrl":"https://doi.org/10.1093/hr/uhae311","url":null,"abstract":"The vector-borne disease Huanglongbing (HLB) causes severe economic losses to citrus production worldwide with no available cure. Herein, we applied virus-induced gene silencing technology to engineer citrus that preferentially attracted and specifically killed Diaphorina citri, the vector associated with HLB. We engineered the infectious citrus tristeza virus (CTV-T36) clone to carry three truncated genes. The triple construct (CTV-tAwd-tWnt-tPDS) produces small interfering RNAs (siRNAs) against phytoene desaturase, PDS, to yield a phenotype with visual, olfactory, and gustatory cues that preferentially attracted D. citri. In addition, siRNAs targeted two genes related to flight in D. citri, abnormal wing disc (DcAwd) and wingless (DcWnt), that caused wing malformations and decreased survival in psyllids that fed on plants inoculated with the engineered virus. During two successive generations, D. citri reared on CTV-tAwd-tWnt-tPDS-inoculated plants exhibited higher mortality across life stages as well as reduced fecundity and fertility as compared with those reared on non-infected plants or CTV-wt-inoculated plants. Furthermore, CTV-tAwd-tWnt-tPDS-inoculated plants shortened the lifespan of D. citri by more than 20 days. Morphological abnormalities were noted in those adults that did successfully emerge on plants inoculated with CTV-tAwd-tWnt-tPDS, including cocked wings with a bowl-shaped depression and/or a convex shape. Phloem sap from CTV-tAwd-tWnt-tPDS-inoculated plants decreased the survival of D. citri adults, confirming that siRNAs were present in the sap of these plants. Collectively, we provide proof of concept for a novel variant of the attract-and-kill method where the cultivated crop is potentially transformed into a hyper-attractive population and transmission sink for a phytopathogen vector.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"35 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sweet cherry is very appreciated by consumers because of its attractive appearance and taste, which is determined by the balanced sweet-sour flavor. In this work, the genetics of soluble solid content (SSC), titratable acidity (TA), sugars and organic acids was investigated in sweet cherry to facilitate breeding improvement for fruit quality. The fruits of five sweet cherry populations (N = 372), three F1 and two F2, were sampled over two years to evaluate SSC, TA, and the content of individual sugars (glucose, fructose, sorbitol, and sucrose) and organic acids (malic, quinic, oxalic, citric and shikimic) by ultra-performance liquid chromatography (UPLC). Glucose, followed by fructose, was the most abundant sugar, while malic acid was the predominant acid. Sorbitol and malic acid were the most stable compounds between years, and had the highest heritability, being also the best correlated to SSC and TA respectively, revealing their relevance for breeding. Significantly positive correlations were observed among sugars and SSC, and acids and TA, but high interannual variability between years was observed for all traits. QTL mapping for SSC, sugars, TA, and organic acids was performed using a multi-family approach with FlexQTL™. Twenty QTLs were detected consistently during the two phenotyped years, and several relevant regions with overlapping QTLs for sugars and acids were also identified. The results confirmed major stable SSC and TA QTLs on the linkage groups 4 and 6, respectively. Within the main LG4 SSC QTL region, where maturity and fruit development time QTLs have been previously detected, three stable sugar (glucose, sorbitol, and sucrose) and two acid (quinic, shikimic) QTLs were also identified, suggesting a pleiotropic effect of ripening date on the content of these compounds. The major malic acid QTL overlapped with TA QTL on LG6, thus TA QTL mapping in LG6 may correspond to malic acid QTLs. Haplotype analyses of major SSC and sugars QTL in LG4, and TA and malic acid in LG6 revealed haplotypes of breeding interest. Several candidate genes previously identified in other Prunus fruit species, like peach, were found to collocate with the QTLs detected herein. This work reports QTLs regions and haplotypes of sugar and acid content in a Prunus non-climacteric stone fruit for the first time.
甜樱桃因其诱人的外观和酸甜均衡的口感深受消费者喜爱。在这项工作中,研究了甜樱桃可溶性固形物含量(SSC)、可滴定酸度(TA)、糖和有机酸的遗传学,以促进果实品质的育种改良。对五个甜樱桃种群(N = 372)(三个 F1 和两个 F2)的果实进行了为期两年的采样,通过超高效液相色谱法(UPLC)评估了 SSC、TA 以及各种糖类(葡萄糖、果糖、山梨醇和蔗糖)和有机酸(苹果酸、奎宁酸、草酸、柠檬酸和莽草酸)的含量。葡萄糖是含量最高的糖类,其次是果糖,而苹果酸是最主要的酸类。山梨醇和苹果酸是不同年份之间最稳定的化合物,而且遗传率最高,分别与 SSC 和 TA 的相关性最好,这表明它们对育种具有重要意义。糖类与 SSC、酸类与 TA 之间存在显著的正相关,但所有性状的年际变异性都很高。使用 FlexQTL™ 的多家族方法对 SSC、糖、TA 和有机酸进行了 QTL 绘图。在两个表型年中持续检测到 20 个 QTL,还发现了几个与糖和酸的 QTL 重叠的相关区域。结果证实,主要稳定的 SSC 和 TA QTL 分别位于第 4 和第 6 连接组。在主要的 LG4 SSC QTL 区域内(之前已在该区域检测到成熟度和果实发育时间 QTL),还发现了三个稳定的糖(葡萄糖、山梨醇和蔗糖)和两个酸(奎宁酸、莽草酸)QTL,这表明成熟期对这些化合物的含量具有多效应。主要的苹果酸 QTL 与 LG6 上的 TA QTL 重叠,因此 LG6 上的 TA QTL 映射可能对应于苹果酸 QTL。对 LG4 上的主要 SSC 和糖 QTL 以及 LG6 上的 TA 和苹果酸 QTL 进行单倍型分析,发现了具有育种意义的单倍型。之前在桃等其他李属水果物种中发现的几个候选基因与本文检测到的 QTLs 位于同一位置。这项研究首次报道了梅属非climacteric核果中糖和酸含量的 QTLs 区域和单倍型。
{"title":"Genetic and QTL analysis of sugars and acids content in sweet cherry (Prunus avium L.)","authors":"C Gracia, A Calle, K Gasic, E Arias, A Wünsch","doi":"10.1093/hr/uhae310","DOIUrl":"https://doi.org/10.1093/hr/uhae310","url":null,"abstract":"Sweet cherry is very appreciated by consumers because of its attractive appearance and taste, which is determined by the balanced sweet-sour flavor. In this work, the genetics of soluble solid content (SSC), titratable acidity (TA), sugars and organic acids was investigated in sweet cherry to facilitate breeding improvement for fruit quality. The fruits of five sweet cherry populations (N = 372), three F1 and two F2, were sampled over two years to evaluate SSC, TA, and the content of individual sugars (glucose, fructose, sorbitol, and sucrose) and organic acids (malic, quinic, oxalic, citric and shikimic) by ultra-performance liquid chromatography (UPLC). Glucose, followed by fructose, was the most abundant sugar, while malic acid was the predominant acid. Sorbitol and malic acid were the most stable compounds between years, and had the highest heritability, being also the best correlated to SSC and TA respectively, revealing their relevance for breeding. Significantly positive correlations were observed among sugars and SSC, and acids and TA, but high interannual variability between years was observed for all traits. QTL mapping for SSC, sugars, TA, and organic acids was performed using a multi-family approach with FlexQTL™. Twenty QTLs were detected consistently during the two phenotyped years, and several relevant regions with overlapping QTLs for sugars and acids were also identified. The results confirmed major stable SSC and TA QTLs on the linkage groups 4 and 6, respectively. Within the main LG4 SSC QTL region, where maturity and fruit development time QTLs have been previously detected, three stable sugar (glucose, sorbitol, and sucrose) and two acid (quinic, shikimic) QTLs were also identified, suggesting a pleiotropic effect of ripening date on the content of these compounds. The major malic acid QTL overlapped with TA QTL on LG6, thus TA QTL mapping in LG6 may correspond to malic acid QTLs. Haplotype analyses of major SSC and sugars QTL in LG4, and TA and malic acid in LG6 revealed haplotypes of breeding interest. Several candidate genes previously identified in other Prunus fruit species, like peach, were found to collocate with the QTLs detected herein. This work reports QTLs regions and haplotypes of sugar and acid content in a Prunus non-climacteric stone fruit for the first time.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"3 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}