首页 > 最新文献

Horticulture Research最新文献

英文 中文
Inflorescence development in female cannabis plants is mediated by photoperiod and gibberellin 雌性大麻植物的花序发育受光周期和赤霉素的影响
IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-09-03 DOI: 10.1093/hr/uhae245
Hanan Alter, Yael Sade, Archit Sood, Mira Carmeli-Weissberg, Felix Shaya, Rina Kamenetsky-Goldstein, Nirit Bernstein, Ben Spitzer-Rimon
In cannabis seedlings, the initiation of solitary flowers is photoperiod-independent. However, when cannabis reaches the adult stage, short-day photoperiod (SD) triggers branching of the shoot apex and a reduction in internode length, leading to development of a condensed inflorescence. We demonstrate that SD affects cannabis plants in two distinct phases: the first includes rapid elongation of the internodes and main stem, and occurring from day 5 to day 10 of plant cultivation under SD; in the second phase, elongation of newly developed internodes ceases, and a condensed inflorescence is formed. Exposure of plants to alternating photoperiods revealed that inflorescence onset requires at least three consecutive days of SD, and SD is consistently required throughout inflorescence maturation to support its typical condensed architecture. This photoperiod-dependent morphogenesis was associated with a decrease in gibberellin (GA4) and auxin levels in the shoot apex. Reverting the plants to a long-day photoperiod (LD) increased GA4 and auxin levels, leading to inflorescence disassembly, internode elongation and subsequent resumption of LD growth patterns. Similar developmental patterns were observed under SD following the application of exogenous GA (and not auxin), which also impeded inflorescence development. Nevertheless, additional studies will help to further evaluate auxin’s role in these developmental changes. We propose a crucial role for GA in sexual reproduction and inflorescence development in female cannabis by mediating photoperiod signaling in the inflorescence tissues.
在大麻幼苗中,单生花的形成与光周期无关。然而,当大麻长到成株期时,短日照光周期(SD)会引发嫩枝先端分枝和节间长度缩短,从而导致花序收缩。我们证明,短日照对大麻植物的影响分为两个不同的阶段:第一阶段包括节间和主茎的快速伸长,发生在短日照下栽培植物的第 5 天到第 10 天;在第二阶段,新长出的节间停止伸长,并形成一个紧凑的花序。将植株暴露于交替光周期下发现,花序萌发至少需要连续三天的自毁,而且在整个花序成熟过程中都需要自毁来支持其典型的缩合结构。这种依赖光周期的形态发生与嫩枝先端赤霉素(GA4)和辅助素水平的降低有关。将植物恢复到长日照光周期(LD)后,GA4 和辅助素水平增加,导致花序解体、节间伸长以及随后恢复 LD 生长模式。在施用外源 GA(而非辅助素)后的 SD 条件下也观察到了类似的发育模式,这也阻碍了花序的发育。然而,更多的研究将有助于进一步评估辅助素在这些发育变化中的作用。我们认为 GA 在雌性天麻的有性生殖和花序发育过程中起着至关重要的作用,它在花序组织中介导光周期信号。
{"title":"Inflorescence development in female cannabis plants is mediated by photoperiod and gibberellin","authors":"Hanan Alter, Yael Sade, Archit Sood, Mira Carmeli-Weissberg, Felix Shaya, Rina Kamenetsky-Goldstein, Nirit Bernstein, Ben Spitzer-Rimon","doi":"10.1093/hr/uhae245","DOIUrl":"https://doi.org/10.1093/hr/uhae245","url":null,"abstract":"In cannabis seedlings, the initiation of solitary flowers is photoperiod-independent. However, when cannabis reaches the adult stage, short-day photoperiod (SD) triggers branching of the shoot apex and a reduction in internode length, leading to development of a condensed inflorescence. We demonstrate that SD affects cannabis plants in two distinct phases: the first includes rapid elongation of the internodes and main stem, and occurring from day 5 to day 10 of plant cultivation under SD; in the second phase, elongation of newly developed internodes ceases, and a condensed inflorescence is formed. Exposure of plants to alternating photoperiods revealed that inflorescence onset requires at least three consecutive days of SD, and SD is consistently required throughout inflorescence maturation to support its typical condensed architecture. This photoperiod-dependent morphogenesis was associated with a decrease in gibberellin (GA4) and auxin levels in the shoot apex. Reverting the plants to a long-day photoperiod (LD) increased GA4 and auxin levels, leading to inflorescence disassembly, internode elongation and subsequent resumption of LD growth patterns. Similar developmental patterns were observed under SD following the application of exogenous GA (and not auxin), which also impeded inflorescence development. Nevertheless, additional studies will help to further evaluate auxin’s role in these developmental changes. We propose a crucial role for GA in sexual reproduction and inflorescence development in female cannabis by mediating photoperiod signaling in the inflorescence tissues.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"51 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A telomere-to-telomere gap-free reference genome of Chionanthus retusus provides insights into the molecular mechanism underlying petal shape changes 无端粒间隙的 Chionanthus retus 参考基因组有助于深入了解花瓣形状变化的分子机制
IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-08-31 DOI: 10.1093/hr/uhae249
Jinnan Wang, Dong Xu, Yalin Sang, Maotong Sun, Cuishuang Liu, Muge Niu, Ying Li, Laishuo Liu, Xiaojiao Han, Jihong Li
Chionanthus retusus, an arbor tree of the Oleaceae family, is an ecologically and economically valuable ornamental plant for its remarkable adaptability in landscaping. During C. retusus breeding, we observed diverse floral shapes; however, no available genome for C. retusus has hindered the widespread identification of genes related to flower morphology. Thus, a de novo telomere-to-telomere (T2T) gap-free genome was generated. The assembly, incorporating high-coverage and long-read sequencing data, successfully yielded two complete haplotypes (687 and 683 Mb). The genome encompasses 42 864 predicted protein-coding genes, with all 46 telomeres and 23 centromeres in one haplotype. Whole genome duplication analysis revealed that C. retusus underwent one fewer event of whole-genome duplication after differentiation compared to other species in the Oleaceae family. Furthermore, flower vein diversity was the main reason for the differences in floral shapes. Auxin-related genes were responsible for petal shape formation on genome-based transcriptome analysis. Specifically, the removal and retention of the first intron in CrAUX/IAA20 resulted in the production of two transcripts, and the differences in the expression levels of CrAUX/IAA20 resulted in the variations of flower veins. Compared to transcripts lacking the first intron, transcripts with intron retention caused more severe decreases in the number and length of flower veins in transgenic Arabidopsis thaliana. Our findings will deepen our understanding of flower morphology development and provide important theoretical support for the cultivation of Oleaceae.
油桐(Chionanthus retus)是一种油桐科乔木,是一种具有生态和经济价值的观赏植物,因为它在景观美化方面具有显著的适应性。在网纹木的育种过程中,我们观察到了多种多样的花朵形状;然而,由于网纹木没有可用的基因组,阻碍了与花朵形态相关的基因的广泛鉴定。因此,我们生成了一个全新的端粒到端粒(T2T)无间隙基因组。结合高覆盖率和长线程测序数据,成功组装出了两个完整的单倍型(687 和 683 Mb)。该基因组包含 42 864 个预测的蛋白质编码基因,其中一个单倍型包含全部 46 个端粒和 23 个中心粒。全基因组复制分析表明,与油茶科其他物种相比,C. retusus 在分化后经历的全基因组复制事件较少。此外,花脉多样性是造成花形差异的主要原因。基于基因组的转录组分析显示,与叶黄素相关的基因是花瓣形状形成的原因。具体来说,CrAUX/IAA20第一个内含子的去除和保留导致产生了两个转录本,而CrAUX/IAA20表达水平的差异导致了花脉的变化。与缺少第一个内含子的转录本相比,保留内含子的转录本导致转基因拟南芥花脉数量和长度的减少更为严重。我们的发现将加深我们对花形态发育的理解,并为油橄榄科植物的栽培提供重要的理论支持。
{"title":"A telomere-to-telomere gap-free reference genome of Chionanthus retusus provides insights into the molecular mechanism underlying petal shape changes","authors":"Jinnan Wang, Dong Xu, Yalin Sang, Maotong Sun, Cuishuang Liu, Muge Niu, Ying Li, Laishuo Liu, Xiaojiao Han, Jihong Li","doi":"10.1093/hr/uhae249","DOIUrl":"https://doi.org/10.1093/hr/uhae249","url":null,"abstract":"Chionanthus retusus, an arbor tree of the Oleaceae family, is an ecologically and economically valuable ornamental plant for its remarkable adaptability in landscaping. During C. retusus breeding, we observed diverse floral shapes; however, no available genome for C. retusus has hindered the widespread identification of genes related to flower morphology. Thus, a de novo telomere-to-telomere (T2T) gap-free genome was generated. The assembly, incorporating high-coverage and long-read sequencing data, successfully yielded two complete haplotypes (687 and 683 Mb). The genome encompasses 42 864 predicted protein-coding genes, with all 46 telomeres and 23 centromeres in one haplotype. Whole genome duplication analysis revealed that C. retusus underwent one fewer event of whole-genome duplication after differentiation compared to other species in the Oleaceae family. Furthermore, flower vein diversity was the main reason for the differences in floral shapes. Auxin-related genes were responsible for petal shape formation on genome-based transcriptome analysis. Specifically, the removal and retention of the first intron in CrAUX/IAA20 resulted in the production of two transcripts, and the differences in the expression levels of CrAUX/IAA20 resulted in the variations of flower veins. Compared to transcripts lacking the first intron, transcripts with intron retention caused more severe decreases in the number and length of flower veins in transgenic Arabidopsis thaliana. Our findings will deepen our understanding of flower morphology development and provide important theoretical support for the cultivation of Oleaceae.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"101 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CsSPX3-CsPHL7-CsGS1/CsTS1 module mediated pi-regulated negatively theanine biosynthesis in tea (Camellia sinensis) CsSPX3-CsPHL7-CsGS1/CsTS1 模块介导的茶叶中负茶氨酸的生物合成
IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-08-30 DOI: 10.1093/hr/uhae242
Zhouzhuoer Chen, Zhixun Yu, TingTing Liu, Xinzhuan Yao, Shiyu Zhang, Yilan Hu, Mingyuan Luo, Yue Wan, Litang Lu
Phosphorus (P) is the macronutrients essential for the development and growth of plants, but how external inorganic phosphate (Pi) level and signaling affect tea plant growth and characteristic secondary metabolite biosynthesis are not understood. Theanine is major secondary metabolites, and its contents largely determine tea favor and nutrition qualities. Here, we found theanine contents in tea leaves and roots declined as Pi concentration increased in tea plants after Pi feeding. The transcriptome analysis of global gene expression in tea leaves under Pi feeding suggested a wide range of genes involved in Pi/N transport and responses were altered. Among them, CsSPX3 and CsPHL7 transcript levels in response to Pi feeding to tea plants, their expression patterns were generally opposite to these of major theanine biosynthesis genes, indicating possible regulatory correlations. Biochemical analyses showed that CsSPX3 interacted with CsPHL7, and CsPHL7 negatively regulated theanine biosynthesis genes CsGS1 and CsTS1. Meanwhile, VIGS and transient overexpression systems in tea plants verified the functions of CsSPX3 and CsPHL7 in mediating Pi-feeding-repressed theanine biosynthesis. This study offers fresh insights into the regulatory mechanism underlying Pi repression of theanine biosynthesis, and the CsSPX3-CsPHL7-CsGS1/CsTS1 module plays a role in high Pi-inhibition of theanine production in tea leaves. It has an instructional significance for guiding the high-quality tea production in tea garden fertilization.
磷(P)是植物生长发育所必需的宏量营养元素,但外界无机磷酸盐(Pi)水平和信号如何影响茶树生长和特征次生代谢物的生物合成尚不清楚。茶氨酸是主要的次生代谢产物,其含量在很大程度上决定了茶叶的品质和营养。在此,我们发现茶叶叶片和根中的茶氨酸含量随着茶树摄入 Pi 后 Pi 浓度的增加而下降。通过对茶叶全基因组表达的转录组分析,我们发现参与 Pi/N 转运和响应的多种基因发生了改变。其中,CsSPX3 和 CsPHL7 的转录水平在茶树摄入 Pi 后的响应中,其表达模式与主要茶氨酸生物合成基因的表达模式基本相反,表明可能存在调控相关性。生化分析表明,CsSPX3 与 CsPHL7 相互作用,CsPHL7 负调控茶氨酸生物合成基因 CsGS1 和 CsTS1。同时,在茶树中的 VIGS 和瞬时过表达系统验证了 CsSPX3 和 CsPHL7 在介导 Pi-饲料抑制的茶氨酸生物合成中的功能。该研究为Pi抑制茶氨酸生物合成的调控机制提供了新的见解,CsSPX3-CsPHL7-CsGS1/CsTS1模块在高Pi抑制茶叶茶氨酸生产中发挥了作用。这对指导茶园施肥生产优质茶叶具有指导意义。
{"title":"CsSPX3-CsPHL7-CsGS1/CsTS1 module mediated pi-regulated negatively theanine biosynthesis in tea (Camellia sinensis)","authors":"Zhouzhuoer Chen, Zhixun Yu, TingTing Liu, Xinzhuan Yao, Shiyu Zhang, Yilan Hu, Mingyuan Luo, Yue Wan, Litang Lu","doi":"10.1093/hr/uhae242","DOIUrl":"https://doi.org/10.1093/hr/uhae242","url":null,"abstract":"Phosphorus (P) is the macronutrients essential for the development and growth of plants, but how external inorganic phosphate (Pi) level and signaling affect tea plant growth and characteristic secondary metabolite biosynthesis are not understood. Theanine is major secondary metabolites, and its contents largely determine tea favor and nutrition qualities. Here, we found theanine contents in tea leaves and roots declined as Pi concentration increased in tea plants after Pi feeding. The transcriptome analysis of global gene expression in tea leaves under Pi feeding suggested a wide range of genes involved in Pi/N transport and responses were altered. Among them, CsSPX3 and CsPHL7 transcript levels in response to Pi feeding to tea plants, their expression patterns were generally opposite to these of major theanine biosynthesis genes, indicating possible regulatory correlations. Biochemical analyses showed that CsSPX3 interacted with CsPHL7, and CsPHL7 negatively regulated theanine biosynthesis genes CsGS1 and CsTS1. Meanwhile, VIGS and transient overexpression systems in tea plants verified the functions of CsSPX3 and CsPHL7 in mediating Pi-feeding-repressed theanine biosynthesis. This study offers fresh insights into the regulatory mechanism underlying Pi repression of theanine biosynthesis, and the CsSPX3-CsPHL7-CsGS1/CsTS1 module plays a role in high Pi-inhibition of theanine production in tea leaves. It has an instructional significance for guiding the high-quality tea production in tea garden fertilization.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"52 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Saline-alkali stress affects the accumulation of proanthocyanidins and sesquiterpenoids via the MYB5-ANR/TPS31 cascades in the rose petals 盐碱胁迫通过 MYB5-ANR/TPS31 级联影响玫瑰花瓣中原花青素和倍半萜类化合物的积累
IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-08-30 DOI: 10.1093/hr/uhae243
Qiao Wang, Baoquan Du, Yujing Bai, Yan Chen, Feng Li, Jinzhe Du, Xiuwen Wu, Liping Yan, Yue Bai, Guohua Chai
Rose (Rosa rugosa) petals are rich in diverse secondary metabolites, which have important physiological functions as well as great economic values. Currently, it remains unclear how saline and/or alkaline stress(es) influence the accumulation of secondary metabolites in rose. In this study, we analyzed the transcriptome and metabolite profiles of rose petals under aline-alkali stress and uncovered the induction mechanism underlying major metabolites. Dramatic changes were observed in the expression of 1363 genes and the abundances of 196 metabolites in petals in response to saline-alkali stress. These differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) are mainly associated with flavonoid and terpenoid metabolism and the reconstruction of cell walls. Of them, TERPENE SYNTHASE 31 (TPS31) overexpression in tobacco leaves driven by its own promoter resulted in significant alterations in the levels of various terpenoids, which were differentially influenced by saline-alkali stress. An integrated analysis of metabolomic and transcriptomic data revealed a high correlation between the abundances of flavonoids/terpenoids and the expression of the transcription factor MYB5. MYB5 may orchestrate the biosynthesis of sesquiterpenoids and proanthocyanidins through direct regulation of TPS31 and ANR expression under aline-alkali stress. Our finding facilitates improving the bioactive substance accumulation of rose petals by metabolic engineering.
玫瑰(Rosa rugosa)花瓣富含多种次生代谢物,具有重要的生理功能和巨大的经济价值。目前,人们还不清楚盐胁迫和/或碱胁迫如何影响玫瑰次生代谢物的积累。本研究分析了碱-碱胁迫下玫瑰花瓣的转录组和代谢物谱,揭示了主要代谢物的诱导机制。在盐碱胁迫下,花瓣中 1363 个基因的表达和 196 种代谢物的丰度发生了巨大变化。这些差异表达基因(DEGs)和差异积累代谢物(DAMs)主要与黄酮类和萜类化合物的代谢以及细胞壁的重建有关。其中,TERPENE SYNTHASE 31(TPS31)在其自身启动子的驱动下在烟草叶片中的过表达导致了各种萜类化合物水平的显著变化,这些变化受盐碱胁迫的不同影响。对代谢组和转录组数据的综合分析表明,类黄酮/萜类化合物的丰度与转录因子 MYB5 的表达高度相关。在碱-碱胁迫下,MYB5可能通过直接调控TPS31和ANR的表达来协调倍半萜和原花青素的生物合成。我们的发现有助于通过代谢工程改善玫瑰花瓣生物活性物质的积累。
{"title":"Saline-alkali stress affects the accumulation of proanthocyanidins and sesquiterpenoids via the MYB5-ANR/TPS31 cascades in the rose petals","authors":"Qiao Wang, Baoquan Du, Yujing Bai, Yan Chen, Feng Li, Jinzhe Du, Xiuwen Wu, Liping Yan, Yue Bai, Guohua Chai","doi":"10.1093/hr/uhae243","DOIUrl":"https://doi.org/10.1093/hr/uhae243","url":null,"abstract":"Rose (Rosa rugosa) petals are rich in diverse secondary metabolites, which have important physiological functions as well as great economic values. Currently, it remains unclear how saline and/or alkaline stress(es) influence the accumulation of secondary metabolites in rose. In this study, we analyzed the transcriptome and metabolite profiles of rose petals under aline-alkali stress and uncovered the induction mechanism underlying major metabolites. Dramatic changes were observed in the expression of 1363 genes and the abundances of 196 metabolites in petals in response to saline-alkali stress. These differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) are mainly associated with flavonoid and terpenoid metabolism and the reconstruction of cell walls. Of them, TERPENE SYNTHASE 31 (TPS31) overexpression in tobacco leaves driven by its own promoter resulted in significant alterations in the levels of various terpenoids, which were differentially influenced by saline-alkali stress. An integrated analysis of metabolomic and transcriptomic data revealed a high correlation between the abundances of flavonoids/terpenoids and the expression of the transcription factor MYB5. MYB5 may orchestrate the biosynthesis of sesquiterpenoids and proanthocyanidins through direct regulation of TPS31 and ANR expression under aline-alkali stress. Our finding facilitates improving the bioactive substance accumulation of rose petals by metabolic engineering.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"09 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Malus sieversii: a historical, genetic, and conservational perspective of the primary progenitor species of domesticated apples Malus sieversii:从历史、遗传和保护角度看驯化苹果的主要祖先物种
IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-08-30 DOI: 10.1093/hr/uhae244
Richard Tegtmeier, Anže Švara, Dilyara Gritsenko, Awais Khan
Apples are one of the most valued tree fruit crops around the world. Currently, a few highly popular and economically successful apple cultivars dominate the commercial production and serve as main genetic contributors to the development of new apple cultivars. This limited level of genetic diversity, grown as a clonally propagated monoculture renders the apple industry vulnerable to the wide range of weather events, pests, and pathogens. Wild apple species are an excellent source of beneficial alleles for the wide range of biotic and abiotic stressors challenging apple production. However, the biological barriers of breeding with small-fruited wild apples greatly limit their use. Using a closely related wild species of apple such as Malus sieversii can improve the efficiency of breeding efforts and broaden the base of available genetics. M. sieversii is the main progenitor of the domesticated apple, native to Central Asia. The similarity of fruit morphology to domesticated apples and resistances to abiotic and biotic stresses makes it appealing for apple breeding programs. However, this important species is under threat of extinction in its native range. Preserving the wild apple forests in Central Asia is vital for ensuring the sustainable protection of this important genetic resource. The insufficient awareness about the complete range of challenges and opportunities associated with M. sieversii hinders the maximization of its potential benefits. This review aims to provide comprehensive information on the cultural and historical context of M. sieversii, current genetic knowledge for breeding, and the conservation challenges of wild apple forests.
苹果是全世界最有价值的木本水果作物之一。目前,在商业生产中,少数几个非常受欢迎且在经济上非常成功的苹果栽培品种占主导地位,它们也是开发新苹果栽培品种的主要遗传贡献者。这种以克隆繁殖的单一栽培方式种植的遗传多样性水平有限,使得苹果产业很容易受到各种天气事件、虫害和病原体的影响。对于苹果生产所面临的各种生物和非生物压力,野生苹果物种是有益等位基因的极佳来源。然而,利用小果型野生苹果进行育种的生物障碍极大地限制了它们的使用。利用苹果的近缘野生种(如 Malus sieversii)可以提高育种工作的效率,扩大可用遗传基础。M. sieversii 是原产于中亚的驯化苹果的主要祖先。其果实形态与驯化苹果相似,并能抵抗非生物和生物胁迫,因此对苹果育种计划很有吸引力。然而,这一重要物种在其原产地正面临灭绝的威胁。保护中亚的野生苹果林对于确保这一重要遗传资源的可持续保护至关重要。由于对与 M. sieversii 相关的一系列挑战和机遇认识不足,阻碍了其潜在效益的最大化。本综述旨在提供有关 M. sieversii 的文化和历史背景、当前用于育种的遗传知识以及野生苹果林保护挑战的全面信息。
{"title":"Malus sieversii: a historical, genetic, and conservational perspective of the primary progenitor species of domesticated apples","authors":"Richard Tegtmeier, Anže Švara, Dilyara Gritsenko, Awais Khan","doi":"10.1093/hr/uhae244","DOIUrl":"https://doi.org/10.1093/hr/uhae244","url":null,"abstract":"Apples are one of the most valued tree fruit crops around the world. Currently, a few highly popular and economically successful apple cultivars dominate the commercial production and serve as main genetic contributors to the development of new apple cultivars. This limited level of genetic diversity, grown as a clonally propagated monoculture renders the apple industry vulnerable to the wide range of weather events, pests, and pathogens. Wild apple species are an excellent source of beneficial alleles for the wide range of biotic and abiotic stressors challenging apple production. However, the biological barriers of breeding with small-fruited wild apples greatly limit their use. Using a closely related wild species of apple such as Malus sieversii can improve the efficiency of breeding efforts and broaden the base of available genetics. M. sieversii is the main progenitor of the domesticated apple, native to Central Asia. The similarity of fruit morphology to domesticated apples and resistances to abiotic and biotic stresses makes it appealing for apple breeding programs. However, this important species is under threat of extinction in its native range. Preserving the wild apple forests in Central Asia is vital for ensuring the sustainable protection of this important genetic resource. The insufficient awareness about the complete range of challenges and opportunities associated with M. sieversii hinders the maximization of its potential benefits. This review aims to provide comprehensive information on the cultural and historical context of M. sieversii, current genetic knowledge for breeding, and the conservation challenges of wild apple forests.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"5 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accumulation of dually-targeted StGPT1 in chloroplasts mediated by StRFP1, an E3 ubiquitin ligase, enhances plant immunity 由 E3 泛素连接酶 StRFP1 介导的叶绿体中双靶标 StGPT1 的积累可增强植物免疫力
IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-08-28 DOI: 10.1093/hr/uhae241
Xintong Wu, Xiaoshuang Zhou, Tianyu Lin, Zhe Zhang, Xinya Wu, Yonglin Zhang, Yanli Liu, Zhendong Tian
Chloroplasts play a crucial role in essential processes such as photosynthesis and the synthesis of primary and diverse secondary metabolites. Recent studies have also highlighted their significance linked to phytohormone production in plant immunity, especially SA and JA. Ubiquitination, a key post-translational modification, usually leads to target protein degradation, which acts as a signal for remodeling the proteome via the induction of protein endocytosis or targeting to other membrane associated systems. Previously, the potato E3 ligase StRFP1 was shown to enhance resistance against Phytophthora infestans, but its mechanism remained unclear. Here, we demonstrate that StRFP1 interacted with the dually localized plastid glucose 6-phosphate transporter StGPT1 on the endoplasmic reticulum (ER). Transient expressed StGPT1-GFP located on the chloroplast and ER in plant cells. Overexpression of StGPT1 enhances late blight resistance in potato and Nicotiana benthamiana, activates immune responses including ROS bursts and up-regulation of PTI marker genes. The resistance function of StGPT1 seems to be related to its dual localization. Remarkably, StRFP1 ubiquitinates StGPT1 at the ER, possibly due to its merely transient function in peroxisomes, leading to apparent accumulation in chloroplasts. Our findings point to a novel mechanism by which a plant E3 ligase contributes to immunity via interacting with dually-targeted GPT1 at the ER of plant cells.
叶绿体在光合作用、初级和多种次级代谢产物的合成等基本过程中发挥着至关重要的作用。最近的研究还强调了叶绿体在植物免疫中与植物激素(尤其是 SA 和 JA)的产生有关的重要性。泛素化是一种关键的翻译后修饰,通常会导致目标蛋白质降解,并通过诱导蛋白质内吞或靶向其他膜相关系统,作为重塑蛋白质组的信号。在此之前,马铃薯 E3 连接酶 StRFP1 被证明能增强对 Phytophthora infestans 的抗性,但其机制仍不清楚。在这里,我们证明 StRFP1 与内质网(ER)上双定位的质粒葡萄糖 6-磷酸转运体 StGPT1 相互作用。瞬时表达的 StGPT1-GFP 位于植物细胞的叶绿体和 ER 上。过表达 StGPT1 可增强马铃薯和烟草的晚疫病抗性,激活免疫反应,包括 ROS 爆发和 PTI 标记基因的上调。StGPT1 的抗性功能似乎与其双重定位有关。值得注意的是,StRFP1 可在 ER 中泛素化 StGPT1,这可能是由于它在过氧物酶体中仅具有短暂的功能,导致其在叶绿体中明显积累。我们的研究结果指出了一种新的机制,即植物 E3 连接酶通过与植物细胞ER中双重定位的 GPT1 相互作用来促进免疫。
{"title":"Accumulation of dually-targeted StGPT1 in chloroplasts mediated by StRFP1, an E3 ubiquitin ligase, enhances plant immunity","authors":"Xintong Wu, Xiaoshuang Zhou, Tianyu Lin, Zhe Zhang, Xinya Wu, Yonglin Zhang, Yanli Liu, Zhendong Tian","doi":"10.1093/hr/uhae241","DOIUrl":"https://doi.org/10.1093/hr/uhae241","url":null,"abstract":"Chloroplasts play a crucial role in essential processes such as photosynthesis and the synthesis of primary and diverse secondary metabolites. Recent studies have also highlighted their significance linked to phytohormone production in plant immunity, especially SA and JA. Ubiquitination, a key post-translational modification, usually leads to target protein degradation, which acts as a signal for remodeling the proteome via the induction of protein endocytosis or targeting to other membrane associated systems. Previously, the potato E3 ligase StRFP1 was shown to enhance resistance against Phytophthora infestans, but its mechanism remained unclear. Here, we demonstrate that StRFP1 interacted with the dually localized plastid glucose 6-phosphate transporter StGPT1 on the endoplasmic reticulum (ER). Transient expressed StGPT1-GFP located on the chloroplast and ER in plant cells. Overexpression of StGPT1 enhances late blight resistance in potato and Nicotiana benthamiana, activates immune responses including ROS bursts and up-regulation of PTI marker genes. The resistance function of StGPT1 seems to be related to its dual localization. Remarkably, StRFP1 ubiquitinates StGPT1 at the ER, possibly due to its merely transient function in peroxisomes, leading to apparent accumulation in chloroplasts. Our findings point to a novel mechanism by which a plant E3 ligase contributes to immunity via interacting with dually-targeted GPT1 at the ER of plant cells.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"52 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CGD: a multi-omics database for chrysanthemum genomic and biological research CGD:用于菊花基因组和生物学研究的多组学数据库
IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-08-22 DOI: 10.1093/hr/uhae238
Jingxuan Ye, Chun Wang, Ye Liu, Shaocong Chen, Jinyu Jin, Lingling Zhang, Peixue Liu, Jing Tang, Jing Zhang, Zhenxing Wang, Jiafu Jiang, Su-Mei Chen, Fadi Chen, Aiping Song
Asteraceae is the largest family of dicotyledons and includes Chrysanthemum and Helianthus, two important genera of ornamental plants. The genus Chrysanthemum consists of more than 30 species and contains many economically important ornamental, medicinal and industrial plants. To more effectively promote Chrysanthemum research, we constructed the CGD, a Chrysanthemum genome database containing a large amount of data and useful tools. The CGD hosts well-assembled reference genome data for 6 Chrysanthemum species. These genomic data were fully annotated by comparison with various protein and domain data. Transcriptome data for nine different tissues, five flower developmental stages, and five treatments were subsequently added to the CGD. A fully functional “RNA data” module was designed to provide complete and visual expression profile data. In addition, the CGD also provides many of the latest bioinformatics analysis tools, such as the efficient sgRNA search tool for Chrysanthemum. In conclusion, the CGD provides the latest, richest, and most complete multi-omics resources and powerful tools for Chrysanthemum. Collectively, the CGD will become the central gateway for Chrysanthemum genomics and genetic breeding research and will aid in the study of polyploid evolution.
菊科是最大的双子叶植物科,包括菊属和太阳花属这两个重要的观赏植物属。菊属有 30 多个品种,其中包括许多具有重要经济价值的观赏植物、药用植物和工业植物。为了更有效地促进菊花研究,我们建立了菊花基因组数据库(CGD),其中包含大量数据和有用的工具。CGD 收录了 6 个菊花物种的精心组合的参考基因组数据。通过与各种蛋白质和域数据进行比较,这些基因组数据得到了完整的注释。随后,九种不同组织、五个花发育阶段和五个处理的转录组数据被添加到 CGD 中。设计了一个功能齐全的 "RNA 数据 "模块,以提供完整、直观的表达谱数据。此外,CGD 还提供了许多最新的生物信息学分析工具,如高效的菊花 sgRNA 搜索工具。总之,CGD 为菊花提供了最新、最丰富、最完整的多组学资源和强大的工具。总之,CGD 将成为菊花基因组学和遗传育种研究的中心门户,并将有助于多倍体进化研究。
{"title":"CGD: a multi-omics database for chrysanthemum genomic and biological research","authors":"Jingxuan Ye, Chun Wang, Ye Liu, Shaocong Chen, Jinyu Jin, Lingling Zhang, Peixue Liu, Jing Tang, Jing Zhang, Zhenxing Wang, Jiafu Jiang, Su-Mei Chen, Fadi Chen, Aiping Song","doi":"10.1093/hr/uhae238","DOIUrl":"https://doi.org/10.1093/hr/uhae238","url":null,"abstract":"Asteraceae is the largest family of dicotyledons and includes Chrysanthemum and Helianthus, two important genera of ornamental plants. The genus Chrysanthemum consists of more than 30 species and contains many economically important ornamental, medicinal and industrial plants. To more effectively promote Chrysanthemum research, we constructed the CGD, a Chrysanthemum genome database containing a large amount of data and useful tools. The CGD hosts well-assembled reference genome data for 6 Chrysanthemum species. These genomic data were fully annotated by comparison with various protein and domain data. Transcriptome data for nine different tissues, five flower developmental stages, and five treatments were subsequently added to the CGD. A fully functional “RNA data” module was designed to provide complete and visual expression profile data. In addition, the CGD also provides many of the latest bioinformatics analysis tools, such as the efficient sgRNA search tool for Chrysanthemum. In conclusion, the CGD provides the latest, richest, and most complete multi-omics resources and powerful tools for Chrysanthemum. Collectively, the CGD will become the central gateway for Chrysanthemum genomics and genetic breeding research and will aid in the study of polyploid evolution.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"3 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling pepper Immunity’s robustness to temperature shifts: insights for empowering future crops 揭示辣椒免疫对温度变化的适应能力:增强未来作物能力的启示
IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-08-22 DOI: 10.1093/hr/uhae239
William Billaud, Judith Hirsch, Valentin Ribaut, Lucie Tamisier, Anne Massire, Marion Szadkowski, Félicie Lopez-Lauri, Benoît Moury, Véronique Lefebvre
Boosting plant immunity is an effective alternative to pesticides. However, environmental variations, accentuated by climate change, can compromise immunity. The robustness of a trait corresponds to the absence (or low level) of variation in that trait in the face of an environmental change. Here, we examined two types of robustness, robustness of immunity mean and robustness of immunity variation, and proposed nine quantitative robustness estimators. We characterized the immunity of a set of accessions representative of the natural diversity of pepper (Capsicum annuum L.), to two major pathogens: the oomycete Phytophthora capsici Leon. and potato virus Y. For each pathogen, we measured the immunity of accessions in two contrasting environments in terms of temperature. For each type of robustness and each pathogen, the impact of temperature change on immunity varied between accessions. The robustness estimators proved to be complementary and differed in terms of heritability and ability to discriminate between accessions. A positive and significant correlation was observed between immunity and robustness. There was no significant relationship between the robustness of immunity to the two pathogens, but some accessions showed high immunity and robustness against both pathogens. These results justify the need to consider both immunity and robustness to environmental variations in order to select varieties adapted to current and future climate conditions. Phenotypic robustness should also be considered when assessing the “value of sustainable cultivation and use” (VSCU) of future plant varieties, particularly during the application process for protection rights granted from the European Community Plant Variety Office (CPVO).
提高植物免疫力是替代杀虫剂的有效方法。然而,环境变化(气候变化加剧了这种变化)会损害免疫力。性状的稳健性是指该性状在面对环境变化时没有变异(或变异程度较低)。在此,我们研究了两类稳健性,即免疫平均稳健性和免疫变异稳健性,并提出了九种定量稳健性估计方法。我们描述了一组代表辣椒(Capsicum annuum L.)自然多样性的品种对两种主要病原体的免疫力:卵菌 Phytophthora capsici Leon.和马铃薯病毒 Y。对于每种病原体,我们都测量了在两种温度对比强烈的环境中各品种的免疫力。对于每种稳健性类型和每种病原体,温度变化对免疫力的影响因品种而异。事实证明,稳健性估计值是互补的,在遗传率和区分不同品种的能力方面存在差异。免疫力和稳健性之间存在明显的正相关。对两种病原体的免疫力和稳健性之间没有明显关系,但有些品种对两种病原体都表现出很高的免疫力和稳健性。这些结果证明,有必要同时考虑免疫力和对环境变化的稳健性,以选择适应当前和未来气候条件的品种。在评估未来植物品种的 "可持续栽培和使用价值"(VSCU)时,特别是在申请欧洲共同体植物品种办公室(CPVO)授予的保护权过程中,也应考虑表型稳健性。
{"title":"Unveiling pepper Immunity’s robustness to temperature shifts: insights for empowering future crops","authors":"William Billaud, Judith Hirsch, Valentin Ribaut, Lucie Tamisier, Anne Massire, Marion Szadkowski, Félicie Lopez-Lauri, Benoît Moury, Véronique Lefebvre","doi":"10.1093/hr/uhae239","DOIUrl":"https://doi.org/10.1093/hr/uhae239","url":null,"abstract":"Boosting plant immunity is an effective alternative to pesticides. However, environmental variations, accentuated by climate change, can compromise immunity. The robustness of a trait corresponds to the absence (or low level) of variation in that trait in the face of an environmental change. Here, we examined two types of robustness, robustness of immunity mean and robustness of immunity variation, and proposed nine quantitative robustness estimators. We characterized the immunity of a set of accessions representative of the natural diversity of pepper (Capsicum annuum L.), to two major pathogens: the oomycete Phytophthora capsici Leon. and potato virus Y. For each pathogen, we measured the immunity of accessions in two contrasting environments in terms of temperature. For each type of robustness and each pathogen, the impact of temperature change on immunity varied between accessions. The robustness estimators proved to be complementary and differed in terms of heritability and ability to discriminate between accessions. A positive and significant correlation was observed between immunity and robustness. There was no significant relationship between the robustness of immunity to the two pathogens, but some accessions showed high immunity and robustness against both pathogens. These results justify the need to consider both immunity and robustness to environmental variations in order to select varieties adapted to current and future climate conditions. Phenotypic robustness should also be considered when assessing the “value of sustainable cultivation and use” (VSCU) of future plant varieties, particularly during the application process for protection rights granted from the European Community Plant Variety Office (CPVO).","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"49 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inference of the genetic basis of fruit texture in highbush blueberries using genome-wide association analyses 利用全基因组关联分析推断高丛蓝莓果实质地的遗传基础
IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-08-22 DOI: 10.1093/hr/uhae233
Luis Felipe V Ferrão, Camila Azevedo, Juliana Benevenuto, Molla Fentie Mengist, Claire Luby, Marti Pottorff, Gonzalo I P Casorzo, Ted Makey, Mary Ann Lila, Lara Giongo, Nahla Bassil, Penelope Perkins-Veazie, Massimo Iorizzo, Patricio R Munoz
The global production and consumption of blueberry (Vaccinium spp.), a specialty crop known for its abundant bioactive and antioxidant compounds, has more than doubled over the last decade. To hold this momentum, plant breeders have begun to use quantitative genetics and molecular breeding to guide their decisions and select new cultivars that are improved for fruit quality. In this study, we leveraged our inferences on the genetic basis of fruit texture and chemical components by surveying large breeding populations from northern (NHB) and southern (SHB) highbush blueberries, the two dominant cultivated blueberries. After evaluating 1065 NHB genotypes planted at the Oregon State University, and 992 SHB genotypes maintained at the University of Florida for 20 texture-related traits, evaluated over multiple years, our contributions consist of: (i) We drew attention to differences between NHB and SHB materials and showed that both blueberry types can be differentiated using texture traits; (ii) We computed genetic parameters and shed light on the genetic architecture of important texture attributes, indicating that most traits had a complex nature with low to moderate heritability; (iii) using molecular breeding, we emphasized that prediction could be performed across populations; and finally (iv) the genomic-association analyses pinpointed some genomic regions harboring potential candidate genes for texture that could be used for further validation studies. Altogether, the methods and approaches used here can guide future breeding efforts focused on maximizing texture improvements in blueberries.
蓝莓(Vaccinium spp.)是一种以富含生物活性和抗氧化化合物而闻名的特种作物,其全球产量和消费量在过去十年中增长了一倍多。为了保持这一势头,植物育种者已开始利用定量遗传学和分子育种来指导他们的决策,并选择出能改善果实品质的新栽培品种。在本研究中,我们通过调查北方(NHB)和南方(SHB)高丛蓝莓(两种主要栽培蓝莓)的大型育种群体,充分利用了我们对果实质地和化学成分遗传基础的推断。在对俄勒冈州立大学种植的 1065 个 NHB 基因型和佛罗里达大学培育的 992 个 SHB 基因型的 20 个质地相关性状进行多年评估后,我们的贡献包括(i) 我们提请注意 NHB 和 SHB 材料之间的差异,并表明这两种蓝莓类型均可通过质地性状加以区分;(ii) 我们计算了遗传参数,并阐明了重要质地属性的遗传结构,表明大多数性状具有复杂性,遗传率为中低水平;(iii) 通过分子育种,我们强调可以在不同种群间进行预测;最后 (iv) 通过基因组关联分析,我们确定了一些含有潜在质地候选基因的基因组区域,可用于进一步的验证研究。总之,本文所使用的方法和途径可以指导未来的育种工作,最大限度地改善蓝莓的质地。
{"title":"Inference of the genetic basis of fruit texture in highbush blueberries using genome-wide association analyses","authors":"Luis Felipe V Ferrão, Camila Azevedo, Juliana Benevenuto, Molla Fentie Mengist, Claire Luby, Marti Pottorff, Gonzalo I P Casorzo, Ted Makey, Mary Ann Lila, Lara Giongo, Nahla Bassil, Penelope Perkins-Veazie, Massimo Iorizzo, Patricio R Munoz","doi":"10.1093/hr/uhae233","DOIUrl":"https://doi.org/10.1093/hr/uhae233","url":null,"abstract":"The global production and consumption of blueberry (Vaccinium spp.), a specialty crop known for its abundant bioactive and antioxidant compounds, has more than doubled over the last decade. To hold this momentum, plant breeders have begun to use quantitative genetics and molecular breeding to guide their decisions and select new cultivars that are improved for fruit quality. In this study, we leveraged our inferences on the genetic basis of fruit texture and chemical components by surveying large breeding populations from northern (NHB) and southern (SHB) highbush blueberries, the two dominant cultivated blueberries. After evaluating 1065 NHB genotypes planted at the Oregon State University, and 992 SHB genotypes maintained at the University of Florida for 20 texture-related traits, evaluated over multiple years, our contributions consist of: (i) We drew attention to differences between NHB and SHB materials and showed that both blueberry types can be differentiated using texture traits; (ii) We computed genetic parameters and shed light on the genetic architecture of important texture attributes, indicating that most traits had a complex nature with low to moderate heritability; (iii) using molecular breeding, we emphasized that prediction could be performed across populations; and finally (iv) the genomic-association analyses pinpointed some genomic regions harboring potential candidate genes for texture that could be used for further validation studies. Altogether, the methods and approaches used here can guide future breeding efforts focused on maximizing texture improvements in blueberries.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"17 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial transcriptome analysis reveals de novo regeneration of poplar roots 空间转录组分析揭示了杨树根系的新生
IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Pub Date : 2024-08-21 DOI: 10.1093/hr/uhae237
Kaiwen Lv, Naixu Liu, Yani Niu, Xiehai Song, Yongqi Liu, Zhiliang Yue, Muhammad Ali, Qiuyue Guo, Chunyu Lv, Dongdong Lu, Shaoman Zhang, Yangyan Zhou, Bosheng Li
Propagation through cuttings is a well-established and effective technique for plant multiplication. This study explores the regeneration of poplar roots using spatial transcriptomics to map a detailed developmental trajectory. Mapping of the time-series transcriptome data revealed notable alterations in gene expression during root development, particularly in the activation of cytokinin-responsive genes. Our analysis identified six distinct clusters during the second and third stages, each corresponding to specific anatomical regions with unique gene expression profiles. Auxin response cis-elements (AuxREs) were prevalent in the promoters of these cytokinin-responsive genes, indicating a regulatory interplay between auxin and cytokinin. Pseudo-temporal trajectory analysis mapped the differentiation from cambium cells to root primordium cells, revealing a complex pattern of cell differentiation. SAC56 and LOS1 emerged as potential novel biomarkers for enhancing root regeneration, with distinct spatial expression patterns confirmed by in situ hybridization. This comprehensive spatial analysis enhances our understanding of the molecular interactions driving root regeneration and provides insights for improving plant propagation techniques.
扦插繁殖是一种行之有效的植物繁殖技术。本研究利用空间转录组学绘制详细的发育轨迹,探索杨树根系的再生过程。时间序列转录组数据图谱显示,根系发育过程中基因表达发生了显著变化,尤其是细胞分裂素响应基因的激活。我们的分析在第二和第三阶段发现了六个不同的群组,每个群组都对应于具有独特基因表达谱的特定解剖区域。在这些细胞分裂素响应基因的启动子中,普遍存在叶绿素响应顺式元件(AuxREs),这表明叶绿素和细胞分裂素之间存在相互调控作用。伪时序轨迹分析绘制了从骨皮层细胞到根原基细胞的分化图,揭示了复杂的细胞分化模式。SAC56 和 LOS1 成为促进根再生的潜在新型生物标记物,其独特的空间表达模式得到了原位杂交的证实。这种全面的空间分析增强了我们对驱动根再生的分子相互作用的理解,并为改进植物繁殖技术提供了启示。
{"title":"Spatial transcriptome analysis reveals de novo regeneration of poplar roots","authors":"Kaiwen Lv, Naixu Liu, Yani Niu, Xiehai Song, Yongqi Liu, Zhiliang Yue, Muhammad Ali, Qiuyue Guo, Chunyu Lv, Dongdong Lu, Shaoman Zhang, Yangyan Zhou, Bosheng Li","doi":"10.1093/hr/uhae237","DOIUrl":"https://doi.org/10.1093/hr/uhae237","url":null,"abstract":"Propagation through cuttings is a well-established and effective technique for plant multiplication. This study explores the regeneration of poplar roots using spatial transcriptomics to map a detailed developmental trajectory. Mapping of the time-series transcriptome data revealed notable alterations in gene expression during root development, particularly in the activation of cytokinin-responsive genes. Our analysis identified six distinct clusters during the second and third stages, each corresponding to specific anatomical regions with unique gene expression profiles. Auxin response cis-elements (AuxREs) were prevalent in the promoters of these cytokinin-responsive genes, indicating a regulatory interplay between auxin and cytokinin. Pseudo-temporal trajectory analysis mapped the differentiation from cambium cells to root primordium cells, revealing a complex pattern of cell differentiation. SAC56 and LOS1 emerged as potential novel biomarkers for enhancing root regeneration, with distinct spatial expression patterns confirmed by in situ hybridization. This comprehensive spatial analysis enhances our understanding of the molecular interactions driving root regeneration and provides insights for improving plant propagation techniques.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"4 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142022052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Horticulture Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1