Duo Lv, Haifan Wen, Gang Wang, Juan Liu, Chunli Guo, Jingxian Sun, Keyan Zhang, ChaoHan Li, Jiaqi You, Ming Pan, Huanle He, Run Cai, Junsong Pan
Cucumber (Cucumis sativus) fruit spines are a classic material for researching the development of multicellular trichomes. Some key genes that influence trichome development have been confirmed to be associated with cuticle biosynthesis and secondary metabolism. However, the biological mechanisms underlying trichome development, cuticle biosynthesis, and secondary metabolism in cucumber remain poorly understood. Cucumber (Cucumis sativus) fruit spines are classic material for researching the development of multicellular trichomes. Some key genes that influence trichome development have been confirmed to be associated with cuticle biosynthesis and secondary metabolism. However, the biological mechanisms underlying trichome development, cuticle biosynthesis, and secondary metabolism in cucumber remain poorly understood. CsTs, a C-type lectin receptor-like kinase gene, reportedly causes a tender trichome phenotype in cucumber when it mutates. In this study, the role of CsTs in cucumber fruit spine morphogenesis was confirmed using gene editing technology. Sectioning technology and cell wall component detection were used to analyze the main causes of tender fruit spines in the ts mutant. Subsequently, transcriptome data and a series of molecular biology experiments were used to further investigate the relationship between CsTs and cytoskeletal homeostasis in cucumber. CsTs overexpression partially compensated for the abnormal trichome phenotype of an Arabidopsis homolog mutant. Genetic hybridization and metabolic analysis indicated that CsTs and CsMcit can affect trichome development and cuticle biosynthesis using the same pathway. Our findings provide important background information for future research on the molecular mechanism underlying cucumber trichome development and contribute to understanding the biological function of C-type lectin receptor-like kinases.
{"title":"CsTs, a C-type lectin receptor-like kinase, regulates the development trichome development and cuticle metabolism in cucumber (Cucumis sativus)","authors":"Duo Lv, Haifan Wen, Gang Wang, Juan Liu, Chunli Guo, Jingxian Sun, Keyan Zhang, ChaoHan Li, Jiaqi You, Ming Pan, Huanle He, Run Cai, Junsong Pan","doi":"10.1093/hr/uhae235","DOIUrl":"https://doi.org/10.1093/hr/uhae235","url":null,"abstract":"Cucumber (Cucumis sativus) fruit spines are a classic material for researching the development of multicellular trichomes. Some key genes that influence trichome development have been confirmed to be associated with cuticle biosynthesis and secondary metabolism. However, the biological mechanisms underlying trichome development, cuticle biosynthesis, and secondary metabolism in cucumber remain poorly understood. Cucumber (Cucumis sativus) fruit spines are classic material for researching the development of multicellular trichomes. Some key genes that influence trichome development have been confirmed to be associated with cuticle biosynthesis and secondary metabolism. However, the biological mechanisms underlying trichome development, cuticle biosynthesis, and secondary metabolism in cucumber remain poorly understood. CsTs, a C-type lectin receptor-like kinase gene, reportedly causes a tender trichome phenotype in cucumber when it mutates. In this study, the role of CsTs in cucumber fruit spine morphogenesis was confirmed using gene editing technology. Sectioning technology and cell wall component detection were used to analyze the main causes of tender fruit spines in the ts mutant. Subsequently, transcriptome data and a series of molecular biology experiments were used to further investigate the relationship between CsTs and cytoskeletal homeostasis in cucumber. CsTs overexpression partially compensated for the abnormal trichome phenotype of an Arabidopsis homolog mutant. Genetic hybridization and metabolic analysis indicated that CsTs and CsMcit can affect trichome development and cuticle biosynthesis using the same pathway. Our findings provide important background information for future research on the molecular mechanism underlying cucumber trichome development and contribute to understanding the biological function of C-type lectin receptor-like kinases.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"23 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fruit ripening depends on the accurate control of ripening-related genes expression, with histone deacetylases (HDACs) playing crucial roles in transcriptional regulation. However, the functions of HDACs in fruit maturation remain largely unexplored. Here, we show that SlHDA7 acts as a suppressor of fruit ripening and functions as an H4ac HDAC in tomato. Deletion of SlHDA7 accelerated fruit ripening, while overexpression of SlHDA7 delayed maturation process. Additionally, ethylene production and carotenoid biosynthesis significantly increased in slhda7 mutant fruits but decreased in SlHDA7-overexpressing fruits. Furthermore, SlHDA7 repress the expression of ethylene production and signaling, carotenoid metabolism, cell wall modification, and transcriptional regulation-related genes. RT-qPCR and ChIP-qPCR analyses indicated that SlHDA7 may deacetylate H4ac, leading to reduced transcript levels of ACO1, GGPPS2, Z-ISO, EXP1, and XYL1 mRNA, consequently suppressing fruit ripening. Moreover, SlHDA7 suppresses fruit ripening by targeting specific ripening-associated transcription factors (TFs) like RIN, FUL1, and ERF.E1, ultimately leading to delayed ripening and prolonged fruit shelf life. In summary, our findings indicate that SlHDA7 negatively modulates tomato fruit maturation by adjusting H4ac levels of these ripening-associated genes and key TFs.
{"title":"Histone deacetylase SlHDA7 impacts fruit ripening and shelf life in tomato","authors":"Yijie Zhou, Zhiwei Li, Xinguo Su, Huiyu Hou, Yueming Jiang, Xuewu Duan, Hongxia Qu, Guoxiang Jiang","doi":"10.1093/hr/uhae234","DOIUrl":"https://doi.org/10.1093/hr/uhae234","url":null,"abstract":"Fruit ripening depends on the accurate control of ripening-related genes expression, with histone deacetylases (HDACs) playing crucial roles in transcriptional regulation. However, the functions of HDACs in fruit maturation remain largely unexplored. Here, we show that SlHDA7 acts as a suppressor of fruit ripening and functions as an H4ac HDAC in tomato. Deletion of SlHDA7 accelerated fruit ripening, while overexpression of SlHDA7 delayed maturation process. Additionally, ethylene production and carotenoid biosynthesis significantly increased in slhda7 mutant fruits but decreased in SlHDA7-overexpressing fruits. Furthermore, SlHDA7 repress the expression of ethylene production and signaling, carotenoid metabolism, cell wall modification, and transcriptional regulation-related genes. RT-qPCR and ChIP-qPCR analyses indicated that SlHDA7 may deacetylate H4ac, leading to reduced transcript levels of ACO1, GGPPS2, Z-ISO, EXP1, and XYL1 mRNA, consequently suppressing fruit ripening. Moreover, SlHDA7 suppresses fruit ripening by targeting specific ripening-associated transcription factors (TFs) like RIN, FUL1, and ERF.E1, ultimately leading to delayed ripening and prolonged fruit shelf life. In summary, our findings indicate that SlHDA7 negatively modulates tomato fruit maturation by adjusting H4ac levels of these ripening-associated genes and key TFs.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"20 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Fu, Yunhe Chen, Yong-Xin Liu, Xiaoxi Chang, Lei Zhang, Xinyi Yang, Li Li, Lixin Zhang
Both the phyllosphere and rhizosphere are inhabited by different kinds of microorganisms that are closely related to plant growth and health. However, it is not clear whether disease-resistant cultivars shape the microbiome to facilitate disease resistance. In this study, significant differences were found in the aboveground and belowground bacterial communities of disease-resistant and disease-susceptible cultivars grown in the same kiwifruit orchard. The phyllosphere of the resistant cultivar “Wanjin” was more strongly affected by geographic factors and showed greater enrichment of Pseudomonas spp. and Sphingomonas spp. than the susceptible cultivar “Donghong”. The rhizosphere microbes of “Wanjin” were less affected by field location, with significantly greater bacterial abundance, than those of “Donghong”, and more bacteria with potential biocontrol properties. Pseudomonas syringae pv. actinidiae (Psa) infection significantly affected the microbiome of the phyllosphere of kiwifruit plants, especially that of “Donghong”. Resistant and susceptible kiwifruit cultivars exhibit distinct beneficial microbial recruitment strategies under Psa challenge. The phyllosphere of “Donghong” in Jinzhai was enriched with Sphingomonas spp. and Pantoea spp. under Psa infection, while the rhizosphere of “Wanjin” was enriched with Sphingomonas spp. and Novosphingobium spp. We further identified five key biomarkers within the microbial community associated with Psa infection. Detached-branch inoculation experiments showed that Lysobacter sp. R34, Stenotrophomonas sp. R31, Pseudomonas sp. R10 and RS54, which were isolated from the root endosphere or rhizosphere of “Wanjin”, could positively affect plant performance under Psa challenge. Our findings provided novel insights into soil–microbe–plant interactions and the role of microbes in plant disease resistance and susceptibility.
{"title":"Genotype-associated core bacteria enhance host resistance against kiwifruit bacterial canker","authors":"Min Fu, Yunhe Chen, Yong-Xin Liu, Xiaoxi Chang, Lei Zhang, Xinyi Yang, Li Li, Lixin Zhang","doi":"10.1093/hr/uhae236","DOIUrl":"https://doi.org/10.1093/hr/uhae236","url":null,"abstract":"Both the phyllosphere and rhizosphere are inhabited by different kinds of microorganisms that are closely related to plant growth and health. However, it is not clear whether disease-resistant cultivars shape the microbiome to facilitate disease resistance. In this study, significant differences were found in the aboveground and belowground bacterial communities of disease-resistant and disease-susceptible cultivars grown in the same kiwifruit orchard. The phyllosphere of the resistant cultivar “Wanjin” was more strongly affected by geographic factors and showed greater enrichment of Pseudomonas spp. and Sphingomonas spp. than the susceptible cultivar “Donghong”. The rhizosphere microbes of “Wanjin” were less affected by field location, with significantly greater bacterial abundance, than those of “Donghong”, and more bacteria with potential biocontrol properties. Pseudomonas syringae pv. actinidiae (Psa) infection significantly affected the microbiome of the phyllosphere of kiwifruit plants, especially that of “Donghong”. Resistant and susceptible kiwifruit cultivars exhibit distinct beneficial microbial recruitment strategies under Psa challenge. The phyllosphere of “Donghong” in Jinzhai was enriched with Sphingomonas spp. and Pantoea spp. under Psa infection, while the rhizosphere of “Wanjin” was enriched with Sphingomonas spp. and Novosphingobium spp. We further identified five key biomarkers within the microbial community associated with Psa infection. Detached-branch inoculation experiments showed that Lysobacter sp. R34, Stenotrophomonas sp. R31, Pseudomonas sp. R10 and RS54, which were isolated from the root endosphere or rhizosphere of “Wanjin”, could positively affect plant performance under Psa challenge. Our findings provided novel insights into soil–microbe–plant interactions and the role of microbes in plant disease resistance and susceptibility.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"48 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sugar beet (Beta vulgaris) has emerged as one of the two primary crops, alongside sugarcane, for global sugar production. Comprehensively understanding sucrose synthesis, transport, and accumulation in sugar beet holds great significance for enhancing sugar production. In this study, we collected a diverse set of 269 sugar beet accessions worldwide and measured twelve phenotypes, including biomass, soluble sugar content, and ten taproot-related traits. We re-sequenced 207 accessions to explore genetic diversity and population structure. Then we employed GWAS and RNA-seq to identify SNPs and genes associated with natural phenotypic variations. Our findings revealed a panel of genes potentially regulating biomass and sugar accumulation, notably the dual-role gene UDP-glucose 4-epimerase, which genetically balances sugar accumulation and cell wall synthesis. In summary, this study provides a foundation for molecular breeding in sugar beet.
{"title":"Genome-wide association study identifies the genetic basis of key agronomic traits in 207 sugar beet accessions","authors":"Sufang Wang, Zhiyong Yue, Chao Yu, Ruili Wang, Yang Sui, Yaguang Hou, Ying Zhao, Lingling Zhao, Chunmei Chen, Zhimin Yang, Ke Shao","doi":"10.1093/hr/uhae230","DOIUrl":"https://doi.org/10.1093/hr/uhae230","url":null,"abstract":"Sugar beet (Beta vulgaris) has emerged as one of the two primary crops, alongside sugarcane, for global sugar production. Comprehensively understanding sucrose synthesis, transport, and accumulation in sugar beet holds great significance for enhancing sugar production. In this study, we collected a diverse set of 269 sugar beet accessions worldwide and measured twelve phenotypes, including biomass, soluble sugar content, and ten taproot-related traits. We re-sequenced 207 accessions to explore genetic diversity and population structure. Then we employed GWAS and RNA-seq to identify SNPs and genes associated with natural phenotypic variations. Our findings revealed a panel of genes potentially regulating biomass and sugar accumulation, notably the dual-role gene UDP-glucose 4-epimerase, which genetically balances sugar accumulation and cell wall synthesis. In summary, this study provides a foundation for molecular breeding in sugar beet.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"2013 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoyu Duan, Yue Yuan, Núria Real, Mi Tang, Jian Ren, Jiaqi Wei, Bin Liu, Xuejun Zhang
Powdery mildew, a common disease of many major crop species, including melon (Cucumis melo L.), affects plant growth and fruit quality, and seriously reduces production. Using a combined morphological and molecular approach, we attribute the powdery mildew pathogen that naturally occurs in melon to Podosphaera xanthii, and specifically to physiological race 1. An investigation into the genetic basis of powdery mildew resistance in melon using the resistant accession “PI 164637” and susceptible counterpart “HDZ” reveals dominant inheritance of PM resistance at the seedling stage, supported by F2 and backcross population segregation ratios. Adult plant assessments indicate a major gene with an additive effect for powdery mildew resistance. Bulk segregant analysis coupled with high-throughput sequencing identified a significant quantitative trait locus on chromosome 6 that is associated with powdery mildew resistance. Genetic mapping narrowed down the candidate region to 63.5 kb using InDel molecular markers, harboring 12 candidate genes. The marker chr06_indel_5047127 demonstrated high accuracy in screening powdery mildew resistance in a F2 segregating population and 30 inbred lines as natural populations. Functional annotation and expression analysis of candidate genes revealed that MYB transcription factor MELO3C006700, GATA transcription factor MELO3C028829 and heparanase-like protein MELO3C006697 are promising candidate genes for powdery mildew resistance in melon. The genetic architecture underlying this resistance in melon offers valuable insights for breeding programs, and the identified markers, especially chr06_indel_5047127, may enable practical applications for marker-assisted selection in developing powdery-mildew-resistant melon varieties.
{"title":"Fine mapping and identification of candidate genes associated with powdery mildew resistance in melon (Cucumis melo L.)","authors":"Xiaoyu Duan, Yue Yuan, Núria Real, Mi Tang, Jian Ren, Jiaqi Wei, Bin Liu, Xuejun Zhang","doi":"10.1093/hr/uhae222","DOIUrl":"https://doi.org/10.1093/hr/uhae222","url":null,"abstract":"Powdery mildew, a common disease of many major crop species, including melon (Cucumis melo L.), affects plant growth and fruit quality, and seriously reduces production. Using a combined morphological and molecular approach, we attribute the powdery mildew pathogen that naturally occurs in melon to Podosphaera xanthii, and specifically to physiological race 1. An investigation into the genetic basis of powdery mildew resistance in melon using the resistant accession “PI 164637” and susceptible counterpart “HDZ” reveals dominant inheritance of PM resistance at the seedling stage, supported by F2 and backcross population segregation ratios. Adult plant assessments indicate a major gene with an additive effect for powdery mildew resistance. Bulk segregant analysis coupled with high-throughput sequencing identified a significant quantitative trait locus on chromosome 6 that is associated with powdery mildew resistance. Genetic mapping narrowed down the candidate region to 63.5 kb using InDel molecular markers, harboring 12 candidate genes. The marker chr06_indel_5047127 demonstrated high accuracy in screening powdery mildew resistance in a F2 segregating population and 30 inbred lines as natural populations. Functional annotation and expression analysis of candidate genes revealed that MYB transcription factor MELO3C006700, GATA transcription factor MELO3C028829 and heparanase-like protein MELO3C006697 are promising candidate genes for powdery mildew resistance in melon. The genetic architecture underlying this resistance in melon offers valuable insights for breeding programs, and the identified markers, especially chr06_indel_5047127, may enable practical applications for marker-assisted selection in developing powdery-mildew-resistant melon varieties.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"2013 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fruits are a rich source of nutrients, minerals, and dietary fibers for both humans and animals. While the gaseous phytohormone ethylene is well-known for its role in controlling fruit ripening, there is growing evidence that ethylene also plays crucial roles in regulating other developmental processes of fruits, such as sex determination, fruit set, and fruit growth. In this review, we aim to revisit these findings from various species like cucumber, melon, tomato, rice, maize, and more. These studies not only enhance our understanding of ethylene’s function in fruits but also highlight the potential for manipulating ethylene to improve crops. Furthermore, we discuss recent studies that show the ethylene precursor ACC (1-AMINOCYCLOPROPANE-1-CARBOXYLATE), and the ethylene signaling components EIN2 (ETHYLENE INSENSITIVE2) and EIN3 (ETHYLENE INSENSITIVE3) have ethylene-independent function in specific conditions. This phenomenon, along with findings indicating that ethylene functions in a dosage-dependent manner in some species, suggesting that when studying ethylene function, we should be focus on analyzing mutants with completely blocked ethylene pathways in different species at specific developmental stages and tissue types. Overall, this review offers a timely and essential summary of ethylene’s role in sex determination, fruit formation, and fruit growth, which could be beneficial for horticulture crop breeding.
{"title":"Ethylene in fruits: beyond ripening control","authors":"Wei Huang, Cong Tan, Hongwei Guo","doi":"10.1093/hr/uhae229","DOIUrl":"https://doi.org/10.1093/hr/uhae229","url":null,"abstract":"Fruits are a rich source of nutrients, minerals, and dietary fibers for both humans and animals. While the gaseous phytohormone ethylene is well-known for its role in controlling fruit ripening, there is growing evidence that ethylene also plays crucial roles in regulating other developmental processes of fruits, such as sex determination, fruit set, and fruit growth. In this review, we aim to revisit these findings from various species like cucumber, melon, tomato, rice, maize, and more. These studies not only enhance our understanding of ethylene’s function in fruits but also highlight the potential for manipulating ethylene to improve crops. Furthermore, we discuss recent studies that show the ethylene precursor ACC (1-AMINOCYCLOPROPANE-1-CARBOXYLATE), and the ethylene signaling components EIN2 (ETHYLENE INSENSITIVE2) and EIN3 (ETHYLENE INSENSITIVE3) have ethylene-independent function in specific conditions. This phenomenon, along with findings indicating that ethylene functions in a dosage-dependent manner in some species, suggesting that when studying ethylene function, we should be focus on analyzing mutants with completely blocked ethylene pathways in different species at specific developmental stages and tissue types. Overall, this review offers a timely and essential summary of ethylene’s role in sex determination, fruit formation, and fruit growth, which could be beneficial for horticulture crop breeding.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"1 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Fu, Yiqing Feng, Yanyan Zhang, Huangai Bi, Xizhen Ai
Salicylic acid (SA) plays a role in regulating of grafting-induced cold tolerance. However, the molecular mechanism behind it is still unknown. Here, we established that the phenylalanine ammonia-lyase (PAL) pathway-dependent elevate in SA content in grafted cucumber leaves was not only synthesized in the leaves but also transported from the roots under chilling stress. RNAi-CsPAL with low SA content as rootstock reduced SA accumulation in grafted seedling leaves while decreasing rootstock-induced cold tolerance, as evidenced by higher electrolyte leakage (EL), hydrogen peroxide (H2O2), and superoxide anion (O2·−) contents and lower expression of cold-responsive genes (CsICE1, CsDREB1A, CsDREB1B, and CsCOR47), whereas OE-CsPAL with high SA content as rootstock improved the cold tolerance of grafted plants in comparison with the wild type (WT). In addition, CsNPR1 was significantly upregulated in grafted cucumber under chilling stress, with exogenous and endogenous overexpressed SA inducing its transcriptional expression and protein stability, which exhibited higher expression in grafted plants than in self-root plants. While CsNPR1-overexpression (OE-CsNPR1) seedlings as scions were more tolerant to chilling stress than WT seedlings, CsNPR1-suppression (Anti-CsNPR1) seedlings as scions were more vulnerable to chilling stress. Notably, CsNPR1–CsICE1 interactions alleviated ROS accumulation and activated the expression of CsDREB1A, CsDREB1B, CsCOR47, CsCOR15, CsCOR413, and CsKIN1 to enhance SA-mediated chilling tolerance in grafted cucumber. Overall, our findings reveal that SA enhances chilling tolerance in grafted cucumbers via the model of the CsNPR1–CsICE1 transcriptional regulatory cascade.
水杨酸(SA)在调节嫁接诱导的耐寒性方面发挥作用。然而,其背后的分子机制尚不清楚。在这里,我们发现在寒冷胁迫下,嫁接黄瓜叶片中的苯丙氨酸氨解酶(PAL)途径依赖的SA含量升高不仅在叶片中合成,而且还从根部转运。以低 SA 含量的 RNAi-CsPAL 作为砧木会减少嫁接苗叶片中的 SA 积累,同时降低砧木诱导的耐寒性,这表现在较高的电解质渗漏(EL)、过氧化氢(H2O2)和超氧阴离子(O2)上、而与野生型(WT)相比,SA 含量高的 OE-CsPAL 作为砧木可提高嫁接植株的耐寒性。此外,在寒冷胁迫下,CsNPR1在嫁接黄瓜中显著上调,外源和内源过表达的SA诱导其转录表达和蛋白稳定性,其在嫁接植株中的表达高于自根植株。作为接穗的CsNPR1-overexpression(OE-CsNPR1)幼苗比WT幼苗更能承受寒冷胁迫,而作为接穗的CsNPR1-suppression(Anti-CsNPR1)幼苗则更容易受到寒冷胁迫的影响。值得注意的是,CsNPR1-CsICE1 的相互作用减轻了 ROS 的积累,并激活了 CsDREB1A、CsDREB1B、CsCOR47、CsCOR15、CsCOR413 和 CsKIN1 的表达,从而增强了嫁接黄瓜对 SA 介导的寒冷胁迫的耐受性。总之,我们的研究结果表明,SA 通过 CsNPR1-CsICE1 转录调控级联模型增强了嫁接黄瓜的耐寒性。
{"title":"Salicylic Acid Improves Chilling Tolerance via CsNPR1–CsICE1 interaction in Grafted Cucumbers","authors":"Xin Fu, Yiqing Feng, Yanyan Zhang, Huangai Bi, Xizhen Ai","doi":"10.1093/hr/uhae231","DOIUrl":"https://doi.org/10.1093/hr/uhae231","url":null,"abstract":"Salicylic acid (SA) plays a role in regulating of grafting-induced cold tolerance. However, the molecular mechanism behind it is still unknown. Here, we established that the phenylalanine ammonia-lyase (PAL) pathway-dependent elevate in SA content in grafted cucumber leaves was not only synthesized in the leaves but also transported from the roots under chilling stress. RNAi-CsPAL with low SA content as rootstock reduced SA accumulation in grafted seedling leaves while decreasing rootstock-induced cold tolerance, as evidenced by higher electrolyte leakage (EL), hydrogen peroxide (H2O2), and superoxide anion (O2·−) contents and lower expression of cold-responsive genes (CsICE1, CsDREB1A, CsDREB1B, and CsCOR47), whereas OE-CsPAL with high SA content as rootstock improved the cold tolerance of grafted plants in comparison with the wild type (WT). In addition, CsNPR1 was significantly upregulated in grafted cucumber under chilling stress, with exogenous and endogenous overexpressed SA inducing its transcriptional expression and protein stability, which exhibited higher expression in grafted plants than in self-root plants. While CsNPR1-overexpression (OE-CsNPR1) seedlings as scions were more tolerant to chilling stress than WT seedlings, CsNPR1-suppression (Anti-CsNPR1) seedlings as scions were more vulnerable to chilling stress. Notably, CsNPR1–CsICE1 interactions alleviated ROS accumulation and activated the expression of CsDREB1A, CsDREB1B, CsCOR47, CsCOR15, CsCOR413, and CsKIN1 to enhance SA-mediated chilling tolerance in grafted cucumber. Overall, our findings reveal that SA enhances chilling tolerance in grafted cucumbers via the model of the CsNPR1–CsICE1 transcriptional regulatory cascade.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"39 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Terpene trilactones (TTLs) have important medicinal value, but their low content in Ginkgo biloba leaves makes their exploitation extremely costly, thereby limiting the development of TTL related industries. It was found that exogenous methyl jasmonate (MeJA) treatment increased the accumulation of TTLs, but the molecular mechanism is still unclear. Here, we identified two bHLH transcription factors in G. biloba, with the protein subcellular localizations in the nucleus. GbMYC2s expression was strongly induced by MeJA treatment, and the interactions between GbJAZs and GbMYC2s were demonstrated by yeast two-hybrid and bimolecular fluorescence complementation experiments. Overexpression of GbMYC2_4 and GbMYC2_5 enhanced Arabidopsis root sensitivity and significantly increased TTL content. In addition, GbGGPPS was found to be a common target of GbMYC2_4 and GbMYC2_5 by yeast one-hybrid, electrophoretic mobility shift assay, dual-luciferase reporter assay, and DAP-seq, and they achieved regulation of GbGGPPS by binding to G-box. Further findings revealed that GbMYC2_4 and GbMYC2_5 bind G-box not universally but selectively. Our study revealed that jasmonic acid signaling mediates TTL biosynthesis through the GbJAZ-GbMYC2-GbGGPPS module, which enriches the terpenoid biosynthesis regulatory networks and provides a research basis and target genes for enhancing TTL content through genetic engineering.
{"title":"The transcription factor MYC2 positively regulates terpene trilactone biosynthesis through activating GbGGPPS expression in Ginkgo biloba","authors":"Jiarui Zheng, Yongling Liao, Jiabao Ye, Feng Xu, Weiwei Zhang, Xian Zhou, Lina Wang, Xiao He, Zhengyan Cao, Yuwei Yi, Yansheng Xue, Qiangwen Chen, Jiaxing Sun","doi":"10.1093/hr/uhae228","DOIUrl":"https://doi.org/10.1093/hr/uhae228","url":null,"abstract":"Terpene trilactones (TTLs) have important medicinal value, but their low content in Ginkgo biloba leaves makes their exploitation extremely costly, thereby limiting the development of TTL related industries. It was found that exogenous methyl jasmonate (MeJA) treatment increased the accumulation of TTLs, but the molecular mechanism is still unclear. Here, we identified two bHLH transcription factors in G. biloba, with the protein subcellular localizations in the nucleus. GbMYC2s expression was strongly induced by MeJA treatment, and the interactions between GbJAZs and GbMYC2s were demonstrated by yeast two-hybrid and bimolecular fluorescence complementation experiments. Overexpression of GbMYC2_4 and GbMYC2_5 enhanced Arabidopsis root sensitivity and significantly increased TTL content. In addition, GbGGPPS was found to be a common target of GbMYC2_4 and GbMYC2_5 by yeast one-hybrid, electrophoretic mobility shift assay, dual-luciferase reporter assay, and DAP-seq, and they achieved regulation of GbGGPPS by binding to G-box. Further findings revealed that GbMYC2_4 and GbMYC2_5 bind G-box not universally but selectively. Our study revealed that jasmonic acid signaling mediates TTL biosynthesis through the GbJAZ-GbMYC2-GbGGPPS module, which enriches the terpenoid biosynthesis regulatory networks and provides a research basis and target genes for enhancing TTL content through genetic engineering.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"39 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141910296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benzenoids/phenylpropanoids, the second most diverse group of plant volatiles, exhibit significant structural diversity and play crucial roles in attracting pollinators and protecting against pathogens, insects, and herbivores. This review summarizes their complex biosynthetic pathways and regulatory mechanisms, highlighting their links to plant growth, development, hormone levels, circadian rhythms, and flower coloration. External factors like light, humidity, and temperature also influence their biosynthesis. Their ecological value is discussed, offering insights for enhancing floral scent, pollinator attraction, pest resistance, and metabolic engineering through genetic modification.
{"title":"Floral volatile benzenoids/phenylpropanoids: biosynthetic pathway, regulation and ecological value","authors":"Mengwen Lv, Ling Zhang, Yizhou Wang, Linlin Ma, Yong Yang, Xian Zhou, Liangsheng Wang, Xiaonan Yu, Shanshan Li","doi":"10.1093/hr/uhae220","DOIUrl":"https://doi.org/10.1093/hr/uhae220","url":null,"abstract":"Benzenoids/phenylpropanoids, the second most diverse group of plant volatiles, exhibit significant structural diversity and play crucial roles in attracting pollinators and protecting against pathogens, insects, and herbivores. This review summarizes their complex biosynthetic pathways and regulatory mechanisms, highlighting their links to plant growth, development, hormone levels, circadian rhythms, and flower coloration. External factors like light, humidity, and temperature also influence their biosynthesis. Their ecological value is discussed, offering insights for enhancing floral scent, pollinator attraction, pest resistance, and metabolic engineering through genetic modification.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"103 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fruit aroma is an important organoleptic quality, which influences consumer preference and market competitiveness. Aroma compound synthesis pathways in plants have been widely identified, among the lipoxygenase pathway is crucial for fatty acid catabolism to form esters in apple. However, the regulatory mechanism of this pathway remains elusive. In this study, linear regression analysis and transgene verification revealed that the lipoxygenase MdLOX1a is involved in ester biosynthesis. Yeast one-hybrid library screening indicated that a protein, MdASG1 (ABIOTIC STRESS GENE 1), was a positive regulator of MdLOX1a and ester production based on yeast one-hybrid and dual-luciferase assays, as well as correlation analysis among eight different apple cultivars. Overexpression of MdASG1 in apple and tomato stimulated the lipoxygenase pathway and increased the fatty acid-derived volatile content, whereas the latter was decreased by MdASG1 silencing and CRISPR/Cas9 knockout. Furthermore, MdASG1 overexpression enhanced the salt-stress tolerance of tomato and apple “Orin” calli accompanied by a higher content of fatty acid-derived volatiles compared to that of non-stressed transgenic tomato fruit. While MdASG1-Cas9 knockdown calli do not respond to salt stress and promote the biosynthesis of fatty acid-derived volatiles. Collectively, these findings indicate that MdASG1 activates MdLOX1a expression and participates in the lipoxygenase pathway, subsequently increasing the accumulation of aroma compounds, especially under moderate salt stress treatment. The results also provide insight into the theory for improving fruit aroma quality in adversity.
{"title":"ABIOTIC STRESS GENE 1 mediates aroma volatiles accumulation by activating MdLOX1a in apple","authors":"Jing Zhang, Yongxu Wang, Susu Zhang, Shuhui Zhang, Wenjun Liu, Nan Wang, Hongcheng Fang, Zongying Zhang, Xuesen Chen","doi":"10.1093/hr/uhae215","DOIUrl":"https://doi.org/10.1093/hr/uhae215","url":null,"abstract":"Fruit aroma is an important organoleptic quality, which influences consumer preference and market competitiveness. Aroma compound synthesis pathways in plants have been widely identified, among the lipoxygenase pathway is crucial for fatty acid catabolism to form esters in apple. However, the regulatory mechanism of this pathway remains elusive. In this study, linear regression analysis and transgene verification revealed that the lipoxygenase MdLOX1a is involved in ester biosynthesis. Yeast one-hybrid library screening indicated that a protein, MdASG1 (ABIOTIC STRESS GENE 1), was a positive regulator of MdLOX1a and ester production based on yeast one-hybrid and dual-luciferase assays, as well as correlation analysis among eight different apple cultivars. Overexpression of MdASG1 in apple and tomato stimulated the lipoxygenase pathway and increased the fatty acid-derived volatile content, whereas the latter was decreased by MdASG1 silencing and CRISPR/Cas9 knockout. Furthermore, MdASG1 overexpression enhanced the salt-stress tolerance of tomato and apple “Orin” calli accompanied by a higher content of fatty acid-derived volatiles compared to that of non-stressed transgenic tomato fruit. While MdASG1-Cas9 knockdown calli do not respond to salt stress and promote the biosynthesis of fatty acid-derived volatiles. Collectively, these findings indicate that MdASG1 activates MdLOX1a expression and participates in the lipoxygenase pathway, subsequently increasing the accumulation of aroma compounds, especially under moderate salt stress treatment. The results also provide insight into the theory for improving fruit aroma quality in adversity.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"81 1","pages":""},"PeriodicalIF":8.7,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141909176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}