首页 > 最新文献

Batteries & Supercaps最新文献

英文 中文
Cover Feature: Use of Ferrocenyl Ni(II) and Zn(II) Porphyrins as Active Organic Electrode Materials for Sodium Secondary Batteries (Batteries & Supercaps 6/2024) 封面专题:使用二茂铁基镍(II)和锌(II)卟啉作为钠二次电池的活性有机电极材料(电池与超级电容器 6/2024)
IF 5.7 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2024-06-12 DOI: 10.1002/batt.202480603
Shaoning Zhang, Prof. Jinkwang Hwang, Prof. Quan Manh Phung, Prof. Kazuhiko Matsumoto, Prof. Rika Hagiwara, Prof. Ji-Young Shin

The Cover Feature showcases a practical organic electrode material comprising zinc porphyrin and ferrocene in a single molecule. Its sodium battery exposed a durably reversible 118 mA h g−1 capacity at 200 mA g−1, thereby demonstrating superior rapid electrochemical charge-storage capacity and stable cycling performances than its parallel free base and nickel porphyrin electrodes. More information can be found in the Research Article by J. Hwang, J.-Y. Shin and co-workers (DOI: 10.1002/batt.202400004).

封面专题展示了一种实用的有机电极材料,该材料由卟啉锌和二茂铁组成。其钠离子电池在 200 mA g-1 电流条件下显示出 118 mA h g-1 的持久可逆容量,从而显示出比平行游离基和卟啉镍电极更优越的快速电化学电荷存储容量和稳定的循环性能。更多信息,请参阅 J. Hwang、J.-Y. Shin 及合作者的研究文章(DOI.Shin 及其合作者的研究文章中(DOI: 10.1002/batt.202400004)。
{"title":"Cover Feature: Use of Ferrocenyl Ni(II) and Zn(II) Porphyrins as Active Organic Electrode Materials for Sodium Secondary Batteries (Batteries & Supercaps 6/2024)","authors":"Shaoning Zhang,&nbsp;Prof. Jinkwang Hwang,&nbsp;Prof. Quan Manh Phung,&nbsp;Prof. Kazuhiko Matsumoto,&nbsp;Prof. Rika Hagiwara,&nbsp;Prof. Ji-Young Shin","doi":"10.1002/batt.202480603","DOIUrl":"https://doi.org/10.1002/batt.202480603","url":null,"abstract":"<p><b>The Cover Feature</b> showcases a practical organic electrode material comprising zinc porphyrin and ferrocene in a single molecule. Its sodium battery exposed a durably reversible 118 mA h g<sup>−1</sup> capacity at 200 mA g<sup>−1</sup>, thereby demonstrating superior rapid electrochemical charge-storage capacity and stable cycling performances than its parallel free base and nickel porphyrin electrodes. More information can be found in the Research Article by J. Hwang, J.-Y. Shin and co-workers (DOI: 10.1002/batt.202400004).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 6","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202480603","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Interphase design of LiNi0.6Mn0.2Co0.2O2 as positive active material for lithium ion batteries via Al2O3 coatings using magnetron sputtering for improved performance and stability (Batteries & Supercaps 6/2024) 封面图片:通过磁控溅射 Al2O3 涂层将 LiNi0.6Mn0.2Co0.2O2 相间设计为锂离子电池正极活性材料,以提高性能和稳定性(电池与超级电容器 6/2024)
IF 5.7 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2024-06-12 DOI: 10.1002/batt.202480601
Atif Javed, Ardavan Makvandi, Feleke Demelash, Egy Adhitama, Bastian Heidrich, Martin Peterlechner, Gerhard Wilde, Martin Winter, Markus Börner

The Front Cover shows how alumina coating deposited on NMC cathode particles by using innovative RF-magnetron sputtering enhances electrochemical performance structural and thermal stability. The alumina-coated NMC skier performs much better than uncoated samples in the race for long-term charge/discharge cycling stability and capacity retention due to effective protection of active material from direct contact with electrolyte and mitigating parasitic side reactions. Moreover, the coated sample showed better structural stability and safety properties. More information can be found in the Research Article by M. Börner and co-workers (DOI: 10.1002/batt.202300580).

封面展示了如何通过创新的射频-磁控溅射技术在 NMC 阴极颗粒上沉积氧化铝涂层,从而提高电化学性能、结构和热稳定性。由于有效保护了活性材料不与电解质直接接触,并减轻了寄生副反应,因此在长期充放电循环稳定性和容量保持方面,氧化铝涂层的 NMC 阴极比未涂层的样品表现得更好。此外,涂层样品还具有更好的结构稳定性和安全性能。更多信息,请参阅 M. Börner 及其合作者的研究文章(DOI: 10.1002/batt.202300580)。
{"title":"Cover Picture: Interphase design of LiNi0.6Mn0.2Co0.2O2 as positive active material for lithium ion batteries via Al2O3 coatings using magnetron sputtering for improved performance and stability (Batteries & Supercaps 6/2024)","authors":"Atif Javed,&nbsp;Ardavan Makvandi,&nbsp;Feleke Demelash,&nbsp;Egy Adhitama,&nbsp;Bastian Heidrich,&nbsp;Martin Peterlechner,&nbsp;Gerhard Wilde,&nbsp;Martin Winter,&nbsp;Markus Börner","doi":"10.1002/batt.202480601","DOIUrl":"https://doi.org/10.1002/batt.202480601","url":null,"abstract":"<p><b>The Front Cover</b> shows how alumina coating deposited on NMC cathode particles by using innovative RF-magnetron sputtering enhances electrochemical performance structural and thermal stability. The alumina-coated NMC skier performs much better than uncoated samples in the race for long-term charge/discharge cycling stability and capacity retention due to effective protection of active material from direct contact with electrolyte and mitigating parasitic side reactions. Moreover, the coated sample showed better structural stability and safety properties. More information can be found in the Research Article by M. Börner and co-workers (DOI: 10.1002/batt.202300580).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 6","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202480601","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interphase Design of LiNi0.6Mn0.2Co0.2O2 as Positive Active Material for Lithium Ion Batteries via Al2O3 Coatings Using Magnetron Sputtering for Improved Performance and Stability 利用磁控溅射技术通过 Al2O3 涂层将 LiNi0.6Mn0.2Co0.2O2 相间设计为锂离子电池的正极活性材料以提高性能和稳定性
IF 5.7 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2024-06-10 DOI: 10.1002/batt.202400324
Atif Javed, Ardavan Makvandi, Feleke Demelash, Egy Adhitama, Bastian Heidrich, Martin Peterlechner, Gerhard Wilde, Martin Winter, Markus Börner

Invited for this month's cover picture is the group of Markus Börner at MEET Battery Research Center from the University of Münster. The cover picture depicts skiers (NMC active material) competing in a skiing race (electrochemical stability). RF-magnetron-based homogenously coated NMC outperformed inhomogeneously coated and uncoated ones due to better protection. Read the full text of the article at 10.1002/batt.202300580

受邀拍摄本月封面图片的是明斯特大学 MEET 电池研究中心的 Markus Börner 小组。封面图片描绘的是滑雪运动员(NMC 活性材料)在滑雪比赛(电化学稳定性)中角逐的场景。基于射频-磁控管的均质涂层 NMC 由于具有更好的保护性能而优于非均质涂层和无涂层 NMC。阅读全文请访问 10.1002/batt.202300580
{"title":"Interphase Design of LiNi0.6Mn0.2Co0.2O2 as Positive Active Material for Lithium Ion Batteries via Al2O3 Coatings Using Magnetron Sputtering for Improved Performance and Stability","authors":"Atif Javed,&nbsp;Ardavan Makvandi,&nbsp;Feleke Demelash,&nbsp;Egy Adhitama,&nbsp;Bastian Heidrich,&nbsp;Martin Peterlechner,&nbsp;Gerhard Wilde,&nbsp;Martin Winter,&nbsp;Markus Börner","doi":"10.1002/batt.202400324","DOIUrl":"https://doi.org/10.1002/batt.202400324","url":null,"abstract":"<p>Invited for this month's cover picture is the group of Markus Börner at MEET Battery Research Center from the University of Münster. The cover picture depicts skiers (NMC active material) competing in a skiing race (electrochemical stability). RF-magnetron-based homogenously coated NMC outperformed inhomogeneously coated and uncoated ones due to better protection. Read the full text of the article at 10.1002/batt.202300580</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 6","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400324","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141315396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dimensionality Control of Li Transport by MOFs Based Quasi-Solid to Solid Electrolyte (Q-SSEs) for Li−Metal Batteries 基于 MOFs 的锂金属电池准固转固电解质 (Q-SSE) 对锂传输的尺寸控制
IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2024-06-07 DOI: 10.1002/batt.202400134
Dr. M. Salado, Dr. R. Fernández de Luis, Dr. T. H. Smith, Dr. M. Hasanpoor, Prof. S. Lanceros-Mendez, Prof. M. Forsyth

Nowadays, lithium-ion batteries (LIBs) are widely used in all walks of life and play a very important role. As complex systems composed of multiple materials with diverse chemical compositions, where different electrochemical reactions take place, battery interfaces are essential for determining the operation, performance, durability and safety of the battery. This work, set out to study the incorporation of lithium bis(fluorosulfonyl)amide (LiFSI) doped 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][TFSI]) ionic liquid into an archetype Ti-based Metal Organic Framework (MOF) ((Ti) MIL125−NH2) to create a solid to quasi-solid (depending on the amount of IL in the system), and how it affects not only ionic transport but also the structural properties of the IL/MOF electrolyte. Remarkably high ionic conductivity values (2.13×10−3 S ⋅ cm−1 at room temperature) as well as a lithium transference number (tLi=0.58) were achieved, supported by pulsed field gradient (PFG) NMR experiments. Electrochemical characterization revealed reversible plating-stripping of lithium and lower overpotential after 750 h at 50 °C. Additionally, a proof-of-concept solid state battery was fabricated resulting in a discharge capacity of 160 mAh ⋅ g−1 at 50 °C and 0.1 C rate after 50 cycles. This work presents a suitable strategy to dendrite suppression capability, allowing its implementation as interface modifiers in next-generation solid-state batteries.

如今,锂离子电池(LIB)已广泛应用于各行各业,并发挥着重要作用。作为一个由多种材料组成的复杂系统,其化学成分各不相同,并在其中发生不同的电化学反应,电池界面对于决定电池的运行、性能、耐用性和安全性至关重要。在这项研究中,拟研究将掺杂了 1-ethyl-3- methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][TFSI])离子液体的双(氟磺酰)酰胺锂(LiFSI)掺入典型的钛基金属有机框架(MOF)((Ti) MIL125-NH2),以形成固体或准固体(取决于体系中的离子液体量)、以及它不仅如何影响离子传输,还如何影响 IL/MOF 电解质的结构特性。值得注意的是,在脉冲场梯度(PFG)核磁共振实验的支持下,这种电解质实现了较高的离子电导率值(室温下为 2.13 x 10-3 S-cm-1)和锂转移数(tLi=0.58)。电化学特性分析表明,在 50 ºC 温度下 750 小时后,锂的可逆电镀剥离和过电位降低。此外,还制造出了概念验证型固态电池,在 50 ºC 和 0.1C 放电速率下循环 50 次后,放电容量达到 160 mAh-g-1。这项研究提出了一种抑制枝晶能力的合适策略,可将其用作下一代电池的界面改性剂。
{"title":"Dimensionality Control of Li Transport by MOFs Based Quasi-Solid to Solid Electrolyte (Q-SSEs) for Li−Metal Batteries","authors":"Dr. M. Salado,&nbsp;Dr. R. Fernández de Luis,&nbsp;Dr. T. H. Smith,&nbsp;Dr. M. Hasanpoor,&nbsp;Prof. S. Lanceros-Mendez,&nbsp;Prof. M. Forsyth","doi":"10.1002/batt.202400134","DOIUrl":"10.1002/batt.202400134","url":null,"abstract":"<p>Nowadays, lithium-ion batteries (LIBs) are widely used in all walks of life and play a very important role. As complex systems composed of multiple materials with diverse chemical compositions, where different electrochemical reactions take place, battery interfaces are essential for determining the operation, performance, durability and safety of the battery. This work, set out to study the incorporation of lithium bis(fluorosulfonyl)amide (LiFSI) doped 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][TFSI]) ionic liquid into an archetype Ti-based Metal Organic Framework (MOF) ((Ti) MIL125−NH<sub>2</sub>) to create a solid to quasi-solid (depending on the amount of IL in the system), and how it affects not only ionic transport but also the structural properties of the IL/MOF electrolyte. Remarkably high ionic conductivity values (2.13×10<sup>−3</sup> S ⋅ cm<sup>−1</sup> at room temperature) as well as a lithium transference number (t<sub>Li</sub>=0.58) were achieved, supported by pulsed field gradient (PFG) NMR experiments. Electrochemical characterization revealed reversible plating-stripping of lithium and lower overpotential after 750 h at 50 °C. Additionally, a proof-of-concept solid state battery was fabricated resulting in a discharge capacity of 160 mAh ⋅ g<sup>−1</sup> at 50 °C and 0.1 C rate after 50 cycles. This work presents a suitable strategy to dendrite suppression capability, allowing its implementation as interface modifiers in next-generation solid-state batteries.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 9","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141374154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence of the Electrochemical Ca2+ Intercalation in Anatase Nanotubes 铝钛矿纳米管中电化学 Ca2+ 互嵌的证据
IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2024-06-03 DOI: 10.1002/batt.202400183
Andrea Ceppetelli, Matteo Busato, Gabriele Dilena, Carmen Cavallo, Maria Assunta Navarra, Paola D'Angelo, Laura Silvestri, Priscilla Reale, Antonino Santoni, Lorenzo Stievano, Sergio Brutti

Here, we demonstrate the electrochemical intercalation of Ca2+ ions within the lattice of anatase nanotubes (a-NTs) synthesized by hydrothermal treatment of TiO2/NaOH precursors followed by Na+/H+ ion exchange and H2O-loss at high temperature in air. Scanning electron microscopy, X-ray diffraction, and Raman spectroscopy confirm the formation of nanosized anatase, whereas transmission electron microscopy highlights the formation of nanotubular morphologies with an average diameter of 10 nm. TiO2 electrodes are able to deliver reversible specific capacities in aprotic batteries vs. calcium metal or in hybrid configurations vs. capacitive activated carbon using aprotic electrolytes (i. e., Ca(BH4)2 in tetrahydrofuran or Ca(TFSI)2 in dimethoxyethane, respectively). The electrochemical intercalation of Ca2+ ions into the anatase lattice is confirmed by X-ray absorption spectroscopy in close comparison with Na+ and Li+ intercalations. Ca2+ incorporation leads to the partial amorphization of the TiO2 lattice despite the limited Ca/Ti ratio (i. e., 0.09) obtained in discharge. The analysis of the extended X-ray absorption fine structure region allows the determination of the local structure of the incorporated Ca2+ ions and confirms that a disordered environment is obtained after the electrochemical reaction.

在这里,我们展示了通过对 TiO2/NaOH 前驱体进行水热处理,然后在空气中高温进行 Na+/H+ 离子交换和 H2O 失重合成的锐钛矿纳米管(a-NTs)晶格内 Ca2+ 离子的电化学插层。扫描电子显微镜、X 射线衍射和拉曼光谱证实了纳米级锐钛矿的形成,而透射电子显微镜则强调了平均直径为 10 纳米的纳米管形态的形成。钛氧化物电极在无水电池中与金属钙相比,或在混合配置中与使用无水电解质(即四氢呋喃中的 Ca(BH4)2 或二甲氧基乙烷中的 Ca(TFSI)2)的电容活性碳相比,都能提供可逆的比容量。通过 X 射线吸收光谱与 Na+ 和 Li+ 的插层相比,证实了 Ca2+ 离子在锐钛矿晶格中的电化学插层。尽管在放电过程中获得的 Ca/Ti 比值有限(即 0.09),但 Ca2+ 的加入导致了 TiO2 晶格的部分非晶化。通过对扩展 X 射线吸收精细结构区域的分析,可以确定掺入的 Ca2+ 离子的局部结构,并证实电化学反应后获得了无序环境。
{"title":"Evidence of the Electrochemical Ca2+ Intercalation in Anatase Nanotubes","authors":"Andrea Ceppetelli,&nbsp;Matteo Busato,&nbsp;Gabriele Dilena,&nbsp;Carmen Cavallo,&nbsp;Maria Assunta Navarra,&nbsp;Paola D'Angelo,&nbsp;Laura Silvestri,&nbsp;Priscilla Reale,&nbsp;Antonino Santoni,&nbsp;Lorenzo Stievano,&nbsp;Sergio Brutti","doi":"10.1002/batt.202400183","DOIUrl":"10.1002/batt.202400183","url":null,"abstract":"<p>Here, we demonstrate the electrochemical intercalation of Ca<sup>2+</sup> ions within the lattice of anatase nanotubes (a-NTs) synthesized by hydrothermal treatment of TiO<sub>2</sub>/NaOH precursors followed by Na<sup>+</sup>/H<sup>+</sup> ion exchange and H<sub>2</sub>O-loss at high temperature in air. Scanning electron microscopy, X-ray diffraction, and Raman spectroscopy confirm the formation of nanosized anatase, whereas transmission electron microscopy highlights the formation of nanotubular morphologies with an average diameter of 10 nm. TiO<sub>2</sub> electrodes are able to deliver reversible specific capacities in aprotic batteries vs. calcium metal or in hybrid configurations vs. capacitive activated carbon using aprotic electrolytes (<i>i. e</i>., Ca(BH<sub>4</sub>)<sub>2</sub> in tetrahydrofuran or Ca(TFSI)<sub>2</sub> in dimethoxyethane, respectively). The electrochemical intercalation of Ca<sup>2+</sup> ions into the anatase lattice is confirmed by X-ray absorption spectroscopy in close comparison with Na<sup>+</sup> and Li<sup>+</sup> intercalations. Ca<sup>2+</sup> incorporation leads to the partial amorphization of the TiO<sub>2</sub> lattice despite the limited Ca/Ti ratio (<i>i. e</i>., 0.09) obtained in discharge. The analysis of the extended X-ray absorption fine structure region allows the determination of the local structure of the incorporated Ca<sup>2+</sup> ions and confirms that a disordered environment is obtained after the electrochemical reaction.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 9","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400183","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nucleation Mechanisms of Electrodeposited Magnesium on Metal Substrates 金属基底上电沉积镁的成核机制
IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2024-06-03 DOI: 10.1002/batt.202400250
Mario Löw, Dr. Fabio Maroni, Dr. Steve Zaubitzer, Dr. Saustin Dongmo, Dr. Mario Marinaro

Magnesium rechargeable batteries (RMBs) are a promising alternative to lithium-based ones. However, a major challenge in their advance concerns the development of aprotic electrolytes from which magnesium can be electrodeposited with high efficiency and without the formation of dendrites. Of note, the mechanism of the magnesium electrodeposition from aprotic electrolytes remains largely unexplored. In this study, we propose a combined experimental and theoretical approach based on the Scharifker-Hills (S−H) mathematical model for the potentiostatic transients to analyse the nucleation and growth of magnesium during electrodeposition in order to shed light on the nucleation process and increase battery safety and cycle lifetime. The model is used to investigate the electrodeposition of magnesium from a Magnesocene (MgCp2)-based electrolyte onto metal current substrates such as copper, nickel, aluminium and stainless steel.

镁充电电池(RMB)是锂电池的一种很有前途的替代品。然而,镁充电电池发展过程中的一个主要挑战是如何开发出能高效电沉积镁且不形成枝晶的浊电解质。值得注意的是,从非沸腾电解质中电沉积镁的机理在很大程度上仍未得到探索。在本研究中,我们提出了一种基于 Scharifker-Hills (S-H) 静电位瞬态数学模型的实验和理论相结合的方法,用于分析电沉积过程中镁的成核和生长,从而揭示成核过程,提高电池的安全性和循环寿命。该模型用于研究镁从二茂镁 (MgCp2) 基电解质电沉积到铜、镍、铝和不锈钢等金属电流基底上的过程。
{"title":"Nucleation Mechanisms of Electrodeposited Magnesium on Metal Substrates","authors":"Mario Löw,&nbsp;Dr. Fabio Maroni,&nbsp;Dr. Steve Zaubitzer,&nbsp;Dr. Saustin Dongmo,&nbsp;Dr. Mario Marinaro","doi":"10.1002/batt.202400250","DOIUrl":"10.1002/batt.202400250","url":null,"abstract":"<p>Magnesium rechargeable batteries (RMBs) are a promising alternative to lithium-based ones. However, a major challenge in their advance concerns the development of aprotic electrolytes from which magnesium can be electrodeposited with high efficiency and without the formation of dendrites. Of note, the mechanism of the magnesium electrodeposition from aprotic electrolytes remains largely unexplored. In this study, we propose a combined experimental and theoretical approach based on the Scharifker-Hills (S−H) mathematical model for the potentiostatic transients to analyse the nucleation and growth of magnesium during electrodeposition in order to shed light on the nucleation process and increase battery safety and cycle lifetime. The model is used to investigate the electrodeposition of magnesium from a Magnesocene (MgCp<sub>2</sub>)-based electrolyte onto metal current substrates such as copper, nickel, aluminium and stainless steel.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 11","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141254526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lithiated Graphene Current Collector for Stable Anode-Free and Anode-Less Lithium Metal Batteries 用于稳定的无阳极和无阳极金属锂电池的锂化石墨烯集流器
IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2024-06-03 DOI: 10.1002/batt.202400144
Yi Ping Zheng, Xun Jian Hu, Xiao Ming Xu, Hai Feng Wang, Yu Long Sun, Ting Liu, Xian Bin Liu, Prof. Zi Ping Wu, Prof. Bao Yu Xia

Anode-free and anode-less lithium (Li) metal batteries provide cell safety and afford maximum energy density. However, their practical applications are hampered by poor cycling performances. In this study, a composite of LiC6 phase in highly reduced graphene (HrGO, LC-HrGO) is proposed as a current collector for Li metal plating. LC-HrGO provided homogenous plating sites and favorable conductivity, which facilitated Li metal plating with reduced nucleation barrier. The LiC6 in composite is not easily delithiated, and the HrGO is not easily lithiated. The obtained anode-free batteries based on the LC-HrGO current collector showed a capacity retention of 60 % after 100 cycles, and the corresponding anode-less batteries indicated a stable specific capacity of 134.5 mAh g−1 after 250 cycles and a remarkable rate capacity of 130.1 mA h g−1 at 5 C. The work provides valuable concepts for fabricating promising current collectors towards Li metal batteries and beyond for high-level services.

无阳极和无负极锂(Li)金属电池可确保电池安全,并提供最大的能量密度。然而,它们的实际应用却因循环性能不佳而受到阻碍。本研究提出在高度还原石墨烯(HrGO,LC-HrGO)中加入 LiC6 相作为锂金属电镀的集流体。LC-HrGO 提供了均匀的电镀位点和良好的导电性,有利于锂金属的电镀,同时降低了成核障碍。复合材料中的 LiC6 不易脱锂,HrGO 不易锂化。基于 LC-HrGO 集流器获得的无阳极电池在 100 次循环后显示出 60% 的容量保持率,相应的无阳极电池在 250 次循环后显示出 134.5 mAh g-1 的稳定比容量,在 5 C 下显示出 130.1 mA h g-1 的显著速率容量。
{"title":"Lithiated Graphene Current Collector for Stable Anode-Free and Anode-Less Lithium Metal Batteries","authors":"Yi Ping Zheng,&nbsp;Xun Jian Hu,&nbsp;Xiao Ming Xu,&nbsp;Hai Feng Wang,&nbsp;Yu Long Sun,&nbsp;Ting Liu,&nbsp;Xian Bin Liu,&nbsp;Prof. Zi Ping Wu,&nbsp;Prof. Bao Yu Xia","doi":"10.1002/batt.202400144","DOIUrl":"10.1002/batt.202400144","url":null,"abstract":"<p>Anode-free and anode-less lithium (Li) metal batteries provide cell safety and afford maximum energy density. However, their practical applications are hampered by poor cycling performances. In this study, a composite of LiC<sub>6</sub> phase in highly reduced graphene (HrGO, LC-HrGO) is proposed as a current collector for Li metal plating. LC-HrGO provided homogenous plating sites and favorable conductivity, which facilitated Li metal plating with reduced nucleation barrier. The LiC<sub>6</sub> in composite is not easily delithiated, and the HrGO is not easily lithiated. The obtained anode-free batteries based on the LC-HrGO current collector showed a capacity retention of 60 % after 100 cycles, and the corresponding anode-less batteries indicated a stable specific capacity of 134.5 mAh g<sup>−1</sup> after 250 cycles and a remarkable rate capacity of 130.1 mA h g<sup>−1</sup> at 5 C. The work provides valuable concepts for fabricating promising current collectors towards Li metal batteries and beyond for high-level services.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 9","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141272711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifunctional Mn-Fe Oxide Catalysts for Zn-Air Battery Air Electrodes Fabricated Through Atomic Layer Deposition 通过原子层沉积制备用于锌-空气电池空气电极的双功能锰-铁氧化物催化剂
IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2024-05-31 DOI: 10.1002/batt.202400133
Matthew Labbe, Michael P. Clark, Dr. Ken Cadien, Dr. Douglas G. Ivey

Zinc-air batteries (ZABs) are one of many energy storage technologies that can help integrate renewable energy into the power grid. A key developmental goal for ZABs is replacing the precious metal catalysts at the air electrode with more abundant and inexpensive materials. In this work, a MnFexOy bifunctional catalyst is directly deposited on a ZAB air electrode using atomic layer deposition (ALD). With ALD, the atomic composition of the air electrode coating can be finely tuned based on catalytic activity. Characterization through electron microscopy, photoelectron spectroscopy and diffraction techniques indicate that the novel ALD film deposits as a nanocrystalline (Mn,Fe)3O4 cubic spinel. The mixed oxide catalyst outperforms its individual binary MnOx or FeOx constituents, operating at 52.5 % bifunctional efficiency at 20 mA cm−2. Moreover, the long term stability of the ALD catalyst is showcased by 600 h (1565 cycles) of ZAB cycling at 10 mA cm−2. The efficiency retention of the bifunctional transition metal oxide catalyst is superior to a precious metal benchmark of Pt−Ru−C, with 84.7 % efficiency retention after more than 1500 cycles versus only 66.2 % retention for the precious metal catalyst. The ALD technique enables deep penetration of catalyst material into the air electrode structure, improving the cycling behaviour.

锌-空气电池(ZAB)是众多储能技术之一,有助于将可再生能源并入电网。锌空气电池的一个关键发展目标是用更丰富、更廉价的材料取代空气电极上的贵金属催化剂。在这项工作中,利用原子层沉积(ALD)技术在 ZAB 空气电极上直接沉积了 MnFexOy 双功能催化剂。通过原子层沉积,可以根据催化活性调整空气电极涂层的原子成分。通过电子显微镜、光电子能谱和衍射技术进行的表征表明,新型 ALD 薄膜沉积为纳米晶(Mn,Fe)3O4 立方尖晶石。这种混合氧化物催化剂的性能优于其单独的二元氧化锰或氧化铁成分,在 20 mA cm-2 电流条件下的双功能效率为 50.7%。此外,在 10 mA cm-2 下进行 600 小时(1565 个循环)的 ZAB 循环也证明了 ALD 催化剂的长期稳定性。双功能过渡金属氧化物催化剂的效率保持率优于贵金属基准 Pt-Ru-C,在超过 1500 次循环后,效率保持率为 84.7%,而贵金属催化剂的效率保持率仅为 66.2%。ALD 技术使催化剂材料深入空气电极结构,从而改善了循环性能。
{"title":"Bifunctional Mn-Fe Oxide Catalysts for Zn-Air Battery Air Electrodes Fabricated Through Atomic Layer Deposition","authors":"Matthew Labbe,&nbsp;Michael P. Clark,&nbsp;Dr. Ken Cadien,&nbsp;Dr. Douglas G. Ivey","doi":"10.1002/batt.202400133","DOIUrl":"10.1002/batt.202400133","url":null,"abstract":"<p>Zinc-air batteries (ZABs) are one of many energy storage technologies that can help integrate renewable energy into the power grid. A key developmental goal for ZABs is replacing the precious metal catalysts at the air electrode with more abundant and inexpensive materials. In this work, a MnFe<sub><i>x</i></sub>O<sub><i>y</i></sub> bifunctional catalyst is directly deposited on a ZAB air electrode using atomic layer deposition (ALD). With ALD, the atomic composition of the air electrode coating can be finely tuned based on catalytic activity. Characterization through electron microscopy, photoelectron spectroscopy and diffraction techniques indicate that the novel ALD film deposits as a nanocrystalline (Mn,Fe)<sub>3</sub>O<sub>4</sub> cubic spinel. The mixed oxide catalyst outperforms its individual binary MnO<sub><i>x</i></sub> or FeO<sub><i>x</i></sub> constituents, operating at 52.5 % bifunctional efficiency at 20 mA cm<sup>−2</sup>. Moreover, the long term stability of the ALD catalyst is showcased by 600 h (1565 cycles) of ZAB cycling at 10 mA cm<sup>−2</sup>. The efficiency retention of the bifunctional transition metal oxide catalyst is superior to a precious metal benchmark of Pt−Ru−C, with 84.7 % efficiency retention after more than 1500 cycles versus only 66.2 % retention for the precious metal catalyst. The ALD technique enables deep penetration of catalyst material into the air electrode structure, improving the cycling behaviour.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 9","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141197428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Progress and Prospect of Sn-Based Metal-Organic Framework Derived Anode Materials for Metal-Ion Batteries 锡基金属有机框架衍生金属离子电池负极材料的研究进展与前景
IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2024-05-31 DOI: 10.1002/batt.202400227
Weitao Zhang, Yongyu Qi, Jie Fang, Wanxin Mai, Prof. Xiaoming Lin, Prof. Huachao Yang, Prof. Yongbo Wu

In order to realize the growing demand for superior energy storage devices and electric vehicles, commercial anode candidates for next-generation rechargeable batteries need to meet the characteristics of low cost, high energy density, high capacity, and stable performance. The emerging tin-based anodes show great potential for high performance metal-ion battery anodes due to their high theoretical capacity, low cost, green harmless and high safety. Tin based anode materials include tin gold based materials, tin alloy materials, tin based oxides, tin based phosphide, tin based sulfides, multi-component composite materials, etc. However, the change in volume and structure of tin-based anode materials during the cycle has become the biggest obstacle to its development. Metal-organic frameworks (MOFs) provide a wide range of possibilities for achieving high rate capacity and excellent cycle stability by finely regulating the structure and composition of tin-based materials at the molecular level. The latest progress of tin-based materials derived from MOFs as anode materials for metal-ion batteries (including lithium ion batteries, sodium ion batteries, potassium ion batteries, magnesium ion batteries) was reviewed in this paper. Firstly, the preparation method and morphology control of tin-based MOF are briefly introduced, and the structural characteristics, storage mechanism and modification of tin-based MOF derived materials are emphatically discussed. Finally, we summarized the existing modification measures and challenges of these anode materials, and put forward the prospect of the future.

新兴的锡基阳极具有理论容量高、成本低、绿色无害、安全性高等特点,在高性能金属离子电池阳极领域具有巨大潜力。锡基阳极材料包括锡金基材料、锡合金材料、锡基氧化物、锡基磷化物、锡基硫化物、多组分复合材料等。然而,锡基阳极材料在循环过程中体积和结构的变化成为其发展的最大障碍。金属有机框架(MOFs)通过在分子水平上精细调节锡基材料的结构和组成,为实现高倍率容量和出色的循环稳定性提供了广泛的可能性。本文综述了由 MOFs 衍生的锡基材料作为金属离子电池(包括锂离子电池、钠离子电池、钾离子电池和镁离子电池)负极材料的最新进展。首先,简要介绍了锡基 MOF 的制备方法和形貌控制,重点讨论了锡基 MOF 衍生材料的结构特征、储能机理和改性。最后,总结了这些正极材料现有的改性措施和面临的挑战,并提出了对未来的展望。
{"title":"Progress and Prospect of Sn-Based Metal-Organic Framework Derived Anode Materials for Metal-Ion Batteries","authors":"Weitao Zhang,&nbsp;Yongyu Qi,&nbsp;Jie Fang,&nbsp;Wanxin Mai,&nbsp;Prof. Xiaoming Lin,&nbsp;Prof. Huachao Yang,&nbsp;Prof. Yongbo Wu","doi":"10.1002/batt.202400227","DOIUrl":"10.1002/batt.202400227","url":null,"abstract":"<p>In order to realize the growing demand for superior energy storage devices and electric vehicles, commercial anode candidates for next-generation rechargeable batteries need to meet the characteristics of low cost, high energy density, high capacity, and stable performance. The emerging tin-based anodes show great potential for high performance metal-ion battery anodes due to their high theoretical capacity, low cost, green harmless and high safety. Tin based anode materials include tin gold based materials, tin alloy materials, tin based oxides, tin based phosphide, tin based sulfides, multi-component composite materials, etc. However, the change in volume and structure of tin-based anode materials during the cycle has become the biggest obstacle to its development. Metal-organic frameworks (MOFs) provide a wide range of possibilities for achieving high rate capacity and excellent cycle stability by finely regulating the structure and composition of tin-based materials at the molecular level. The latest progress of tin-based materials derived from MOFs as anode materials for metal-ion batteries (including lithium ion batteries, sodium ion batteries, potassium ion batteries, magnesium ion batteries) was reviewed in this paper. Firstly, the preparation method and morphology control of tin-based MOF are briefly introduced, and the structural characteristics, storage mechanism and modification of tin-based MOF derived materials are emphatically discussed. Finally, we summarized the existing modification measures and challenges of these anode materials, and put forward the prospect of the future.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 10","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141189159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organic Mixed Ionic-Electronic Conductors as Multi-Functional Binders for Energy-Dense Carbon-Free Solid-State Batteries 作为高能量无碳固态电池多功能粘合剂的有机混合离子电子导体
IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2024-05-31 DOI: 10.1002/batt.202400132
Dr. Liyi Zhao, Dr. Qingyu Dong, Ms. Xuechun Wang, Ms. Zhiyun Li, Dr. Hui Shao, Prof. Yanbin Shen, Prof. Liwei Chen

Solid-state lithium-metal batteries are considered as one of the most promising candidates for next-generation energy storage devices with high energy density and enhanced safety. Great efforts have been made to design solid-state electrolytes with enhanced ionic conductivity and to protect the electrochemical interface of the lithium anode. However, the obstruction of ionic-electronic transport within the cathode remains as another key challenge that needs to be addressed for the practical application of solid-state batteries. Here, we prepared organic mixed ionic-electronic conductors (OMIECs) by in-situ co-polymerization of three organic monomers (boron-type crosslinker, ionic liquid, and sulfolene) in the network of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate). The as-prepared OMIECs show an electronic conductivity up to 33.6 S cm−1 and ionic conductivity of 1.7×10−4 S cm−1 at 30 °C, and also binder functionality, providing a combined path for Li+/e transport in cathodes and maintaining mechanical/(electro−)chemical stability. As a result, solid-state cathodes composed of 90.0 wt % active materials and only 10.0 wt % OMIECs display exceptional electrochemical characteristics at 30 °C, including high C-rate capabilities and prolonged cycle life. This novel design of all-in-one OMIECs for carbon-free cathodes demonstrates a promising strategy for developing multifunctional additives for high-performance solid-state batteries.

固态锂金属电池被认为是下一代储能设备中最有前途的候选产品之一,具有高能量密度和更高的安全性。人们一直在努力设计具有更强离子传导性的固态电解质,并保护锂阳极的电化学界面。然而,阴极内离子电子传输的阻碍仍然是固态电池实际应用中需要解决的另一个关键挑战。在这里,我们通过在聚(3,4-亚乙二氧基噻吩)/聚(4-苯乙烯磺酸盐)网络中原位共聚三种有机单体(硼型交联剂、离子液体和亚砜),制备了有机混合离子电子导体(OMIECs)。所制备的 OMIEC 在 30 °C 时的电子电导率高达 33.6 S cm-1,离子电导率为 1.7×10-4 S cm-1,同时还具有粘合剂功能,为阴极中 Li+/e- 的传输提供了一条综合路径,并保持了机械/(电)化学稳定性。因此,由 90.0 wt% 的活性材料和仅 10.0 wt% 的 OMIEC 组成的固态阴极在 30 °C 下显示出卓越的电化学特性,包括高 C 率能力和更长的循环寿命。这种用于无碳阴极的一体化 OMIECs 的新颖设计为开发高性能固态电池的多功能添加剂提供了一种前景广阔的策略。
{"title":"Organic Mixed Ionic-Electronic Conductors as Multi-Functional Binders for Energy-Dense Carbon-Free Solid-State Batteries","authors":"Dr. Liyi Zhao,&nbsp;Dr. Qingyu Dong,&nbsp;Ms. Xuechun Wang,&nbsp;Ms. Zhiyun Li,&nbsp;Dr. Hui Shao,&nbsp;Prof. Yanbin Shen,&nbsp;Prof. Liwei Chen","doi":"10.1002/batt.202400132","DOIUrl":"10.1002/batt.202400132","url":null,"abstract":"<p>Solid-state lithium-metal batteries are considered as one of the most promising candidates for next-generation energy storage devices with high energy density and enhanced safety. Great efforts have been made to design solid-state electrolytes with enhanced ionic conductivity and to protect the electrochemical interface of the lithium anode. However, the obstruction of ionic-electronic transport within the cathode remains as another key challenge that needs to be addressed for the practical application of solid-state batteries. Here, we prepared organic mixed ionic-electronic conductors (OMIECs) by in-situ co-polymerization of three organic monomers (boron-type crosslinker, ionic liquid, and sulfolene) in the network of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate). The as-prepared OMIECs show an electronic conductivity up to 33.6 S cm<sup>−1</sup> and ionic conductivity of 1.7×10<sup>−4</sup> S cm<sup>−1</sup> at 30 °C, and also binder functionality, providing a combined path for Li<sup>+</sup>/e<sup>−</sup> transport in cathodes and maintaining mechanical/(electro−)chemical stability. As a result, solid-state cathodes composed of 90.0 wt % active materials and only 10.0 wt % OMIECs display exceptional electrochemical characteristics at 30 °C, including high C-rate capabilities and prolonged cycle life. This novel design of all-in-one OMIECs for carbon-free cathodes demonstrates a promising strategy for developing multifunctional additives for high-performance solid-state batteries.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 8","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141197401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Batteries & Supercaps
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1