首页 > 最新文献

Batteries & Supercaps最新文献

英文 中文
Front Cover: Data-Driven Entropy Coefficient Estimation for Large Format Lithium-Ion Batteries (Batteries & Supercaps 1/2026) 封面:大尺寸锂离子电池的数据驱动熵系数估计(电池和超级电容器1/2026)
IF 4.7 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2026-01-10 DOI: 10.1002/batt.70224
Svenas Burba, Johannes Bakkelund, Rikesh Kumar, Ankit Singh, Mukul Parmananda, Williams Agyei Appiah

The Front Cover illustrates entropy coefficient estimation from the charge/discharge data of large-format (100 Ah) lithium-ion prismatic cell at various current densities and temperatures using empirical and data-driven methods. The method accelerates the estimation of entropy coefficients of batteries, resulting in the improvement of the predictability of physics-based electrochemical models at high current densities where reversible heat generation due to entropy is significant. More information can be found in the Research Article by W. A. Appiah and co-workers (DOI: 10.1002/batt.202500533).

前封面展示了在不同电流密度和温度下,使用经验和数据驱动的方法,从大尺寸(100 Ah)锂离子柱形电池的充放电数据中估计熵系数。该方法加速了电池熵系数的估计,从而提高了基于物理的电化学模型在高电流密度下的可预测性,在高电流密度下,由熵引起的可逆热产生是显著的。更多信息可以在W. A. Appiah及其同事的研究文章中找到(DOI: 10.1002/bat .202500533)。
{"title":"Front Cover: Data-Driven Entropy Coefficient Estimation for Large Format Lithium-Ion Batteries (Batteries & Supercaps 1/2026)","authors":"Svenas Burba,&nbsp;Johannes Bakkelund,&nbsp;Rikesh Kumar,&nbsp;Ankit Singh,&nbsp;Mukul Parmananda,&nbsp;Williams Agyei Appiah","doi":"10.1002/batt.70224","DOIUrl":"https://doi.org/10.1002/batt.70224","url":null,"abstract":"<p><b>The Front Cover</b> illustrates entropy coefficient estimation from the charge/discharge data of large-format (100 Ah) lithium-ion prismatic cell at various current densities and temperatures using empirical and data-driven methods. The method accelerates the estimation of entropy coefficients of batteries, resulting in the improvement of the predictability of physics-based electrochemical models at high current densities where reversible heat generation due to entropy is significant. More information can be found in the Research Article by W. A. Appiah and co-workers (DOI: 10.1002/batt.202500533).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"9 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2026-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/batt.70224","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145964056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CuInSe2/N-Doped Carbon Nanofibers Enable Durable and Fast Sodium Storage via a Multifunctional InSe Framework CuInSe2/ n掺杂碳纳米纤维通过多功能In - Se框架实现持久和快速的钠存储
IF 4.7 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2026-01-10 DOI: 10.1002/batt.202500814
Hui Ping Li, Jian Hui Jia, Hong Zhang, Chang Chun Wang, Chun Cheng Yang, Qing Jiang

Metal selenides are attractive anode candidates for sodium-ion batteries due to their superior theoretical capacity and weak metal–Se bonds. However, their practical deployment is hampered by sluggish kinetics and severe volume expansion during cycling. Herein, strongly bonded InSe motifs are integrated into the Cu2−xSe lattice to form CuInSe2, which synergistically enhances sodium storage kinetics and durability. During the conversion reaction, the InSe motifs evolve into intercalative In6Se7 framework, converting sluggish bonding breaking/reforming behavior into rapid ion insertion/extraction. Additionally, this framework provides a robust space-confinement and conductive platform, ensuring high reversibility and fast kinetics of the redox reactions. The well-designed CuInSe2/N-doped carbon nanofibers composite demonstrates superior cycling stability of 84.8% capacity retention after 5000 cycles and decent rate performance of 234.3 mAh−1 at 10 A g−1. Even at −20 °C, it exhibits fast-charging performance at 2 A g−1 and durability over 900 cycles. The in situ incorporation of a multifunctional framework offers a new solution for developing advanced conversion-based anode materials.

金属硒化物由于其优越的理论容量和弱的金属-硒键而成为钠离子电池极具吸引力的阳极候选者。然而,它们的实际部署受到缓慢的动力学和循环过程中严重的体积膨胀的阻碍。在这里,强键合的In - Se基序被整合到Cu2−xSe晶格中形成CuInSe2,这协同提高了钠的储存动力学和耐久性。在转化反应中,In - Se基序演化为插入的In6Se7框架,将缓慢的键断/重整行为转变为快速的离子插入/提取。此外,该框架提供了一个强大的空间约束和导电平台,确保氧化还原反应的高可逆性和快速动力学。精心设计的CuInSe2/ n掺杂碳纳米纤维复合材料在5000次循环后具有84.8%的循环稳定性,在10 A g−1下具有234.3 mAh−1的良好倍率性能。即使在- 20°C下,它也具有2g−1的快速充电性能和超过900次循环的耐久性。多功能框架的原位结合为开发先进的转化基阳极材料提供了新的解决方案。
{"title":"CuInSe2/N-Doped Carbon Nanofibers Enable Durable and Fast Sodium Storage via a Multifunctional InSe Framework","authors":"Hui Ping Li,&nbsp;Jian Hui Jia,&nbsp;Hong Zhang,&nbsp;Chang Chun Wang,&nbsp;Chun Cheng Yang,&nbsp;Qing Jiang","doi":"10.1002/batt.202500814","DOIUrl":"https://doi.org/10.1002/batt.202500814","url":null,"abstract":"<p>Metal selenides are attractive anode candidates for sodium-ion batteries due to their superior theoretical capacity and weak metal–Se bonds. However, their practical deployment is hampered by sluggish kinetics and severe volume expansion during cycling. Herein, strongly bonded In<span></span>Se motifs are integrated into the Cu<sub>2−<i>x</i></sub>Se lattice to form CuInSe<sub>2</sub>, which synergistically enhances sodium storage kinetics and durability. During the conversion reaction, the In<span></span>Se motifs evolve into intercalative In<sub>6</sub>Se<sub>7</sub> framework, converting sluggish bonding breaking/reforming behavior into rapid ion insertion/extraction. Additionally, this framework provides a robust space-confinement and conductive platform, ensuring high reversibility and fast kinetics of the redox reactions. The well-designed CuInSe<sub>2</sub>/N-doped carbon nanofibers composite demonstrates superior cycling stability of 84.8% capacity retention after 5000 cycles and decent rate performance of 234.3 mAh<sup>−1</sup> at 10 A g<sup>−1</sup>. Even at −20 °C, it exhibits fast-charging performance at 2 A g<sup>−1</sup> and durability over 900 cycles. The in situ incorporation of a multifunctional framework offers a new solution for developing advanced conversion-based anode materials.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"9 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2026-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145964055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Design and Application of Hydrogen-Bonded Organic Frameworks with Tetrathiafulvalene-Tetrabenzoate for Cathode Active Materials in Lithium- and Sodium-Ion Batteries (Batteries & Supercaps 12/2025) 封面:锂离子电池和钠离子电池正极活性材料氢键有机框架的设计与应用(battery & Supercaps 12/2025)
IF 4.7 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2025-12-15 DOI: 10.1002/batt.70186
Katsuhiro Wakamatsu, Soichiro Furuno, Hosei Oshima, Naoki Kobayashi, Tomohiro Miyaji, Takeshi Shimizu, Heng Wang, Hirofumi Yoshikawa

The Front Cover shows that organic molecules that are mostly made from fossils over long time form framework-like blocks; they can work as electric pools through electron and ion transport. More information can be found in the Research Article by K. Wakamatsu, H. Yoshikawa and co-workers (DOI: 10.1002/batt.202500524).

《封面》显示,有机分子主要是由化石经过很长时间形成的框架状块;它们可以通过电子和离子传递作为电池。更多信息可以在K. Wakamatsu, H. Yoshikawa及其同事的研究文章中找到(DOI: 10.1002/bat .202500524)。
{"title":"Front Cover: Design and Application of Hydrogen-Bonded Organic Frameworks with Tetrathiafulvalene-Tetrabenzoate for Cathode Active Materials in Lithium- and Sodium-Ion Batteries (Batteries & Supercaps 12/2025)","authors":"Katsuhiro Wakamatsu,&nbsp;Soichiro Furuno,&nbsp;Hosei Oshima,&nbsp;Naoki Kobayashi,&nbsp;Tomohiro Miyaji,&nbsp;Takeshi Shimizu,&nbsp;Heng Wang,&nbsp;Hirofumi Yoshikawa","doi":"10.1002/batt.70186","DOIUrl":"https://doi.org/10.1002/batt.70186","url":null,"abstract":"<p><b>The Front Cover</b> shows that organic molecules that are mostly made from fossils over long time form framework-like blocks; they can work as electric pools through electron and ion transport. More information can be found in the Research Article by K. Wakamatsu, H. Yoshikawa and co-workers (DOI: 10.1002/batt.202500524).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 12","pages":""},"PeriodicalIF":4.7,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/batt.70186","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145761153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal–Organic Hybrid Material with Polar Covalent Bonds as a Protective Layer for Zn Anodes in Aqueous Zinc Batteries 具有极性共价键的金属-有机杂化材料作为锌阳极保护层的研究
IF 4.7 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2025-12-15 DOI: 10.1002/batt.202500631
Won Jun Chang, Seunghwan Lee, Geon Ho Baek, Daeyeop Jeong, Jin-Seong Park, Won Il Park

Aqueous zinc batteries are promising candidates for safe, low-cost energy storage, yet their practical deployment is limited by dendrite growth, hydrogen evolution, and poor interfacial stability. Here, we report a polar-covalent metal–organic hybrid coating, termed Zincone–PC, that stabilizes Zn metal anodes by combining hydrolytic durability with directional ion transport. The Zincone–PC, synthesized via molecular layer deposition, consists of vertically aligned (–Zn–S–hydroquinone–O–)n chains, where polar ZnS bonds provide water resistance and facilitate Zn2+ conduction through an ionic hopping mechanism. Spectroscopic and structural analyses confirm strong vertical ordering and chemical integrity in aqueous media. Zincone–PC enables stable Zn plating/stripping over 550 cycles at 1 mA cm−2 with nearly 100% Coulombic efficiency. In full cells, it delivers 86% capacity retention after 200 cycles at 0.5 C and maintains 19% at 2 C, demonstrating excellent long-term stability and rate capability. This work establishes a molecularly engineered strategy for interfacial stabilization in high-rate, long-life aqueous Zn batteries.

水锌电池是安全、低成本储能的理想选择,但其实际部署受到枝晶生长、析氢和界面稳定性差的限制。在这里,我们报道了一种称为zincon - pc的极性共价金属-有机杂化涂层,它通过结合水解耐久性和定向离子传输来稳定Zn金属阳极。通过分子层沉积合成的zincon - pc由垂直排列的(- Zn - S -对苯二酚- o -)n链组成,其中极性Zn - S键具有耐水性,并通过离子跳变机制促进Zn2+的传导。光谱和结构分析证实水介质具有很强的垂直有序性和化学完整性。Zincone-PC能够在1ma cm - 2下稳定地镀锌/剥离550次,库仑效率接近100%。在完整的电池中,在0.5℃下循环200次后,它的容量保持率为86%,在2℃下保持19%,表现出出色的长期稳定性和倍率能力。本研究为高速率、长寿命水性锌电池的界面稳定建立了一种分子工程策略。
{"title":"Metal–Organic Hybrid Material with Polar Covalent Bonds as a Protective Layer for Zn Anodes in Aqueous Zinc Batteries","authors":"Won Jun Chang,&nbsp;Seunghwan Lee,&nbsp;Geon Ho Baek,&nbsp;Daeyeop Jeong,&nbsp;Jin-Seong Park,&nbsp;Won Il Park","doi":"10.1002/batt.202500631","DOIUrl":"https://doi.org/10.1002/batt.202500631","url":null,"abstract":"<p>Aqueous zinc batteries are promising candidates for safe, low-cost energy storage, yet their practical deployment is limited by dendrite growth, hydrogen evolution, and poor interfacial stability. Here, we report a polar-covalent metal–organic hybrid coating, termed Zincone–PC, that stabilizes Zn metal anodes by combining hydrolytic durability with directional ion transport. The Zincone–PC, synthesized via molecular layer deposition, consists of vertically aligned (–Zn–S–hydroquinone–O–)<sub><i>n</i></sub> chains, where polar Zn<span></span>S bonds provide water resistance and facilitate Zn<sup>2+</sup> conduction through an ionic hopping mechanism. Spectroscopic and structural analyses confirm strong vertical ordering and chemical integrity in aqueous media. Zincone–PC enables stable Zn plating/stripping over 550 cycles at 1 mA cm<sup>−2</sup> with nearly 100% Coulombic efficiency. In full cells, it delivers 86% capacity retention after 200 cycles at 0.5 C and maintains 19% at 2 C, demonstrating excellent long-term stability and rate capability. This work establishes a molecularly engineered strategy for interfacial stabilization in high-rate, long-life aqueous Zn batteries.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"9 2","pages":""},"PeriodicalIF":4.7,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146139689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Feature: Flexible Asymmetric Supercapacitors using Mildly Etched Ti3C2Tx MXene for Powering Wearable Devices (Batteries & Supercaps 12/2025) 外壳特点:采用轻度蚀刻Ti3C2Tx MXene的柔性非对称超级电容器,为可穿戴设备供电(电池和超级电容器12/2025)
IF 4.7 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2025-12-15 DOI: 10.1002/batt.70185
Anamika Ashok, Varsha Vijayan, Shalu Mariam George, Aleena Tomy, Asha Arackal Sukumaran, Oleksii Klymov, Vicente Muñoz-Sanjose, Mahesh Eledath Changarath, Juan F. Sánchez Royo

The Cover Feature shows how supercapacitors can achieve a balance between batteries and capacitors. Having a higher energy density than capacitors and power density than batteries, super capacitors occupy a unique position between the two. Two-dimensional materials like MXene play a seminal role in improving the energy density of flexible supercapacitors, which can be used to power wearable devices. More information can be found in the Research Article by A. A. Sukumaran and co-workers (DOI: 10.1002/batt.202500389).

封面功能显示了超级电容器如何在电池和电容器之间实现平衡。超级电容器具有比电容器更高的能量密度和比电池更高的功率密度,在两者之间占有独特的地位。像MXene这样的二维材料在提高柔性超级电容器的能量密度方面发挥了重要作用,可用于为可穿戴设备供电。更多信息可以在a.a. Sukumaran及其同事的研究文章中找到(DOI: 10.1002/bat .202500389)。
{"title":"Cover Feature: Flexible Asymmetric Supercapacitors using Mildly Etched Ti3C2Tx MXene for Powering Wearable Devices (Batteries & Supercaps 12/2025)","authors":"Anamika Ashok,&nbsp;Varsha Vijayan,&nbsp;Shalu Mariam George,&nbsp;Aleena Tomy,&nbsp;Asha Arackal Sukumaran,&nbsp;Oleksii Klymov,&nbsp;Vicente Muñoz-Sanjose,&nbsp;Mahesh Eledath Changarath,&nbsp;Juan F. Sánchez Royo","doi":"10.1002/batt.70185","DOIUrl":"https://doi.org/10.1002/batt.70185","url":null,"abstract":"<p><b>The Cover Feature</b> shows how supercapacitors can achieve a balance between batteries and capacitors. Having a higher energy density than capacitors and power density than batteries, super capacitors occupy a unique position between the two. Two-dimensional materials like MXene play a seminal role in improving the energy density of flexible supercapacitors, which can be used to power wearable devices. More information can be found in the Research Article by A. A. Sukumaran and co-workers (DOI: 10.1002/batt.202500389).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 12","pages":""},"PeriodicalIF":4.7,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/batt.70185","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145761154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-Driven Entropy Coefficient Estimation for Large Format Lithium-Ion Batteries 大尺寸锂离子电池的数据驱动熵系数估计
IF 4.7 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2025-11-19 DOI: 10.1002/batt.202500533
Svenas Burba, Johannes Bakkelund, Rikesh Kumar, Ankit Singh, Mukul Parmananda, Williams Agyei Appiah

Large format lithium-ion cell operations are nonisothermal and require an additional entropy term to the open-circuit potential expression in physics-based electrochemical models to accurately predict and optimize cell designs for a given application. However, the experimental estimation of entropy coefficient via potentiometric and colorimetric methods is time-consuming and expensive. A fast method based on parameter optimization of empirical expressions and data-driven approaches is presented to accelerate the estimation of the entropy coefficient term. This involves the use of (dis) charge and hybrid pulse power characterization (HPPC) data from a 100 Ah prismatic cell comprising lithium iron phosphate and graphite electrodes to determine the entropy coefficient via least-squares method. The estimated entropy coefficient is implemented in the Doyle–Fuller–Newman model to predict the voltage profiles at different temperatures and validated against experiments. Complex empirical functions and data-driven estimated entropy from the HPPC data give the best model predictions, especially at low temperatures.

大尺寸锂离子电池的操作是非等温的,在基于物理的电化学模型中,开路电位表达式需要额外的熵项,以准确预测和优化给定应用的电池设计。然而,通过电位法和比色法来实验估计熵系数既耗时又昂贵。提出了一种基于经验表达式参数优化和数据驱动方法的快速熵系数项估计方法。这涉及使用由磷酸铁锂和石墨电极组成的100 Ah柱状电池的(非)电荷和混合脉冲功率表征(HPPC)数据,通过最小二乘法确定熵系数。估计的熵系数在Doyle-Fuller-Newman模型中实现,以预测不同温度下的电压分布,并通过实验验证。复杂的经验函数和数据驱动的HPPC数据估计熵给出了最好的模型预测,特别是在低温下。
{"title":"Data-Driven Entropy Coefficient Estimation for Large Format Lithium-Ion Batteries","authors":"Svenas Burba,&nbsp;Johannes Bakkelund,&nbsp;Rikesh Kumar,&nbsp;Ankit Singh,&nbsp;Mukul Parmananda,&nbsp;Williams Agyei Appiah","doi":"10.1002/batt.202500533","DOIUrl":"https://doi.org/10.1002/batt.202500533","url":null,"abstract":"<p>Large format lithium-ion cell operations are nonisothermal and require an additional entropy term to the open-circuit potential expression in physics-based electrochemical models to accurately predict and optimize cell designs for a given application. However, the experimental estimation of entropy coefficient via potentiometric and colorimetric methods is time-consuming and expensive. A fast method based on parameter optimization of empirical expressions and data-driven approaches is presented to accelerate the estimation of the entropy coefficient term. This involves the use of (dis) charge and hybrid pulse power characterization (HPPC) data from a 100 Ah prismatic cell comprising lithium iron phosphate and graphite electrodes to determine the entropy coefficient via least-squares method. The estimated entropy coefficient is implemented in the Doyle–Fuller–Newman model to predict the voltage profiles at different temperatures and validated against experiments. Complex empirical functions and data-driven estimated entropy from the HPPC data give the best model predictions, especially at low temperatures.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"9 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2025-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146057887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Feature: Polymer Coating for Li-Metal Anode in Polyethylene Oxide-Based Electrolyte Batteries (Batteries & Supercaps 11/2025) 覆盖特性:聚合物涂层用于聚乙烯氧化物基电解质电池的锂金属阳极(电池& Supercaps 11/2025)
IF 4.7 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2025-11-17 DOI: 10.1002/batt.70164
Urban Košir, Alen Vizintin, Elena Tchernychova, Gregor Kapun, Matteo Gastaldi, Alia Jouhara, Margaud Lecuyer, Claudio Gerbaldi, Miran Gaberšček, Robert Dominko, Sara Drvarič Talian

The Cover Feature depicts a polymeric coating applied directly onto metallic lithium. This protective layer promotes the formation of a stable interface with solid polymer electrolyte, while preventing side reactions with the plasticizer. The approach provides a straightforward and scalable strategy for enabling safer and more efficient next-generation lithium metal batteries. More information can be found in the Research Article by S. Drvarič Talian and co-workers (DOI: 10.1002/batt.202500402).

封面特征描绘了直接应用在金属锂上的聚合物涂层。这种保护层促进了与固体聚合物电解质形成稳定的界面,同时防止了与增塑剂的副反应。该方法为实现更安全、更高效的下一代锂金属电池提供了一种简单、可扩展的策略。更多的信息可以在S. drvarieta Talian及其同事的研究文章中找到(DOI: 10.1002/bat .202500402)。
{"title":"Cover Feature: Polymer Coating for Li-Metal Anode in Polyethylene Oxide-Based Electrolyte Batteries (Batteries & Supercaps 11/2025)","authors":"Urban Košir,&nbsp;Alen Vizintin,&nbsp;Elena Tchernychova,&nbsp;Gregor Kapun,&nbsp;Matteo Gastaldi,&nbsp;Alia Jouhara,&nbsp;Margaud Lecuyer,&nbsp;Claudio Gerbaldi,&nbsp;Miran Gaberšček,&nbsp;Robert Dominko,&nbsp;Sara Drvarič Talian","doi":"10.1002/batt.70164","DOIUrl":"https://doi.org/10.1002/batt.70164","url":null,"abstract":"<p><b>The Cover Feature</b> depicts a polymeric coating applied directly onto metallic lithium. This protective layer promotes the formation of a stable interface with solid polymer electrolyte, while preventing side reactions with the plasticizer. The approach provides a straightforward and scalable strategy for enabling safer and more efficient next-generation lithium metal batteries. More information can be found in the Research Article by S. Drvarič Talian and co-workers (DOI: 10.1002/batt.202500402).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 11","pages":""},"PeriodicalIF":4.7,"publicationDate":"2025-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/batt.70164","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145533591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Understanding the Temperature–Induced Decomposition of Commercial Nickel–Cobalt–Aluminum Oxide (LiNi0.8Co0.15Al0.05O2) Electrodes (Batteries & Supercaps 11/2025) 封面:了解商业镍钴铝氧化物(LiNi0.8Co0.15Al0.05O2)电极的温度诱导分解(电池和超级电容器11/2025)
IF 4.7 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2025-11-17 DOI: 10.1002/batt.70165
Tobias Hölderle, Volodymyr Baran, Alexander Schökel, Lea Westphal, Robert U. Stelzer, Rainer Niewa, Peter Müller-Buschbaum, Anatoliy Senyshyn

The Front Cover depicts the structural degradation of commercial 18650-type lithium-ion battery cathodes that occurs at elevated temperatures. It illustrates the transition path from a well-ordered layered structure (shown in blue) to a spinel intermediate (represented in green), and finally to a rock salt phase (indicated in red). The colour gradient highlights how phase evolution occurs under thermal stress, emphasising the critical role temperature plays in driving structural instability and performance loss in modern Li-ion batteries. More information can be found in the Research Article by A. Senyshyn and co-workers (DOI: 10.1002/batt.202500421).

封面描述了商用18650型锂离子电池阴极在高温下发生的结构退化。它说明了从有序的层状结构(蓝色表示)到尖晶石中间体(绿色表示),最后到岩盐相(红色表示)的过渡路径。颜色梯度突出了热应力下相演化的过程,强调了温度在驱动现代锂离子电池结构不稳定和性能损失中的关键作用。更多信息可以在A. Senyshyn及其同事的研究文章中找到(DOI: 10.1002/bat .202500421)。
{"title":"Front Cover: Understanding the Temperature–Induced Decomposition of Commercial Nickel–Cobalt–Aluminum Oxide (LiNi0.8Co0.15Al0.05O2) Electrodes (Batteries & Supercaps 11/2025)","authors":"Tobias Hölderle,&nbsp;Volodymyr Baran,&nbsp;Alexander Schökel,&nbsp;Lea Westphal,&nbsp;Robert U. Stelzer,&nbsp;Rainer Niewa,&nbsp;Peter Müller-Buschbaum,&nbsp;Anatoliy Senyshyn","doi":"10.1002/batt.70165","DOIUrl":"https://doi.org/10.1002/batt.70165","url":null,"abstract":"<p><b>The Front Cover</b> depicts the structural degradation of commercial 18650-type lithium-ion battery cathodes that occurs at elevated temperatures. It illustrates the transition path from a well-ordered layered structure (shown in blue) to a spinel intermediate (represented in green), and finally to a rock salt phase (indicated in red). The colour gradient highlights how phase evolution occurs under thermal stress, emphasising the critical role temperature plays in driving structural instability and performance loss in modern Li-ion batteries. More information can be found in the Research Article by A. Senyshyn and co-workers (DOI: 10.1002/batt.202500421).\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 11","pages":""},"PeriodicalIF":4.7,"publicationDate":"2025-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/batt.70165","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145533566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Study of Capacity Fade in Large Vanadium Redox Flow Battery Cells 大型钒氧化还原液流电池容量衰减实验研究
IF 4.7 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2025-11-10 DOI: 10.1002/batt.202500450
Shiv Shankar Kumar, Sreenivas Jayanti

One of the not so well understood aspects of vanadium redox flow battery cells is the capacity fade that happens during continuous charge–discharge cycles. While several modeling and experimental studies have been reported, reliable data are not available in the open literature. In the present work, long-duration charge–discharge cycling studies are reported in cells of industrial size having an electrode area of about 400 and 1800 cm2. The continuous current and cell voltage measurements have been supplemented by periodic measurement of concentration of the electro-active vanadium ions in the positive and the negative electrolytes. The weight of the electrolyte tanks and the open circuit voltage of the cell have also been monitored. The mutual self-consistency of these data has been verified by post-test analyses. Data from over thirteen different cases spanning a range of current densities and electrolyte circulation rates show that the capacity fade is about (0.15 ± 0.05)% per cycle. In all cases, an asymptotic capacity fade pattern is established in which the concentration of V(V) increased and V(IV) decreased steadily on the positive side, and that of V(III) decreased steadily but slightly on the negative side.

钒氧化还原液流电池的一个不太清楚的方面是在连续充放电循环中发生的容量衰减。虽然已经报道了一些模型和实验研究,但在公开文献中没有可靠的数据。在目前的工作中,长时间的充放电循环研究报告了工业尺寸的电池,其电极面积约为400和1800平方厘米。除连续电流和电池电压测量外,还定期测量正极和负极电解质中电活性钒离子的浓度。电解液罐的重量和电池的开路电压也进行了监测。通过后验分析验证了这些数据的相互自洽性。在电流密度和电解质循环速率范围内的13种不同情况下的数据表明,每个循环的容量衰减约为(0.15±0.05)%。在所有情况下,都建立了一个渐近容量衰减模式,其中V(V)的浓度在正侧稳步上升,V(IV)的浓度稳步下降,V(III)的浓度在负侧稳步下降,但略有下降。
{"title":"Experimental Study of Capacity Fade in Large Vanadium Redox Flow Battery Cells","authors":"Shiv Shankar Kumar,&nbsp;Sreenivas Jayanti","doi":"10.1002/batt.202500450","DOIUrl":"https://doi.org/10.1002/batt.202500450","url":null,"abstract":"<p>One of the not so well understood aspects of vanadium redox flow battery cells is the capacity fade that happens during continuous charge–discharge cycles. While several modeling and experimental studies have been reported, reliable data are not available in the open literature. In the present work, long-duration charge–discharge cycling studies are reported in cells of industrial size having an electrode area of about 400 and 1800 cm<sup>2</sup>. The continuous current and cell voltage measurements have been supplemented by periodic measurement of concentration of the electro-active vanadium ions in the positive and the negative electrolytes. The weight of the electrolyte tanks and the open circuit voltage of the cell have also been monitored. The mutual self-consistency of these data has been verified by post-test analyses. Data from over thirteen different cases spanning a range of current densities and electrolyte circulation rates show that the capacity fade is about (0.15 ± 0.05)% per cycle. In all cases, an asymptotic capacity fade pattern is established in which the concentration of V(V) increased and V(IV) decreased steadily on the positive side, and that of V(III) decreased steadily but slightly on the negative side.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"9 2","pages":""},"PeriodicalIF":4.7,"publicationDate":"2025-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146139723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nitrogen-Doped Carbon-Coated 2D Cobalt Phosphide Nanosheets for High-Performance Sodium Storage 用于高性能钠存储的氮掺杂碳包覆二维磷化钴纳米片
IF 4.7 4区 材料科学 Q2 ELECTROCHEMISTRY Pub Date : 2025-11-02 DOI: 10.1002/batt.202500625
Jingyu Guo, Qingzhe Meng, Kaizhong Li, Jiahao Cai, Zhan Zhao, Jinheng Wang, Yang Li, Xiangjuan Zhao, Mingyao Xu, Yunxiu Wang, Xiaomei Song, Zhongchao Bai, Caifu Dong

A rational structural design is an effective way to enhance the sodium storage cycle stability and reaction kinetics of metal phosphides. Therefore, nitrogen-doped carbon-coated CoP nanosheets are obtained by a facile solvothermal method coupled with a polydopamine coating and phosphorization strategy. Combining the advantages of the nitrogen-doped carbon layer and the nanosheet structure, the pseudocapacitance contribution and reaction kinetics of CoP@NC are significantly enhanced compared to pure phase CoP, as evidenced by electrochemical tests including cyclic voltammetry and GITT. Based on this, CoP@NC exhibits excellent cycling stability and rate performance. A specific capacity of 169 mAh g−1 can be maintained after 100 cycles at a current density of 0.5 A g−1, corresponding to a capacity drop of only 0.2% per cycle. In addition, the CoP@NC electrode can deliver the discharge capacities of up to 303,3 and 106.6 mAh g−1 at 0.1 and 2 A g−1, respectively. These excellent properties demonstrate that CoP@NC is a promising anode material for sodium storage.

合理的结构设计是提高金属磷化物钠贮存循环稳定性和反应动力学的有效途径。因此,通过简单的溶剂热法结合聚多巴胺包覆和磷酸化策略,获得了氮掺杂碳包覆的CoP纳米片。结合氮掺杂碳层和纳米片结构的优势,通过循环伏安法和GITT等电化学测试证明,与纯相CoP相比,CoP@NC的赝电容贡献和反应动力学显著增强。基于此,CoP@NC具有优异的循环稳定性和速率性能。在0.5 A g−1的电流密度下,经过100次循环后,电池的比容量可保持在169 mAh g−1,相当于每循环容量仅下降0.2%。此外,CoP@NC电极在0.1和2 A g - 1时的放电容量分别可达303、3和106.6 mAh g - 1。这些优异的性能表明CoP@NC是一种很有前途的钠存储阳极材料。
{"title":"Nitrogen-Doped Carbon-Coated 2D Cobalt Phosphide Nanosheets for High-Performance Sodium Storage","authors":"Jingyu Guo,&nbsp;Qingzhe Meng,&nbsp;Kaizhong Li,&nbsp;Jiahao Cai,&nbsp;Zhan Zhao,&nbsp;Jinheng Wang,&nbsp;Yang Li,&nbsp;Xiangjuan Zhao,&nbsp;Mingyao Xu,&nbsp;Yunxiu Wang,&nbsp;Xiaomei Song,&nbsp;Zhongchao Bai,&nbsp;Caifu Dong","doi":"10.1002/batt.202500625","DOIUrl":"https://doi.org/10.1002/batt.202500625","url":null,"abstract":"<p>A rational structural design is an effective way to enhance the sodium storage cycle stability and reaction kinetics of metal phosphides. Therefore, nitrogen-doped carbon-coated CoP nanosheets are obtained by a facile solvothermal method coupled with a polydopamine coating and phosphorization strategy. Combining the advantages of the nitrogen-doped carbon layer and the nanosheet structure, the pseudocapacitance contribution and reaction kinetics of CoP@NC are significantly enhanced compared to pure phase CoP, as evidenced by electrochemical tests including cyclic voltammetry and GITT. Based on this, CoP@NC exhibits excellent cycling stability and rate performance. A specific capacity of 169 mAh g<sup>−1</sup> can be maintained after 100 cycles at a current density of 0.5 A g<sup>−1</sup>, corresponding to a capacity drop of only 0.2% per cycle. In addition, the CoP@NC electrode can deliver the discharge capacities of up to 303,3 and 106.6 mAh g<sup>−1</sup> at 0.1 and 2 A g<sup>−1</sup>, respectively. These excellent properties demonstrate that CoP@NC is a promising anode material for sodium storage.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"9 2","pages":""},"PeriodicalIF":4.7,"publicationDate":"2025-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146139250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Batteries & Supercaps
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1