Jianxuan Du, Jing Lin, Ruizhuo Zhang, Prof. Shuo Wang, Dr. Sylvio Indris, Prof. Helmut Ehrenberg, Dr. Aleksandr Kondrakov, Dr. Torsten Brezesinski, Dr. Florian Strauss
Ceramic ion conductors play a pivotal role as electrolytes in solid-state batteries (SSBs). Aside from the ionic conductivity, their (electro)chemical stability has a profound effect on the performance. Lithium thiophosphates represent a widely used class of superionic materials, yet they suffer from limited stability and are known to undergo interfacial degradation upon battery cycling. Knowledge of composition-dependent properties is essential to improving upon the stability of thiophosphate solid electrolytes (SEs). In recent years, compositionally complex (multicomponent) and high-entropy lithium argyrodite SEs have been reported, having room-temperature ionic conductivities of σion>10 mS cm−1. In this work, various multi-cationic and -anionic substituted argyrodite SEs are electrochemically tested via cyclic voltammetry and impedance spectroscopy, as well as under operating conditions in SSB cells with layered Ni-rich oxide cathode and indium-lithium anode. Cation substitution is found to negatively affect the electrochemical stability, while anion substitution (introducing Cl−/Br− and increasing halide content) has a beneficial effect on the cyclability, especially at high current rates.
陶瓷离子导体作为电解质在固态电池(SSB)中发挥着举足轻重的作用。除了离子导电性之外,其(电)化学稳定性对性能也有深远影响。硫代磷酸锂是一类广泛使用的超离子材料,但它们的稳定性有限,而且已知在电池循环时会发生界面降解。要提高硫代磷酸盐固态电解质(SE)的稳定性,了解其成分相关特性至关重要。近年来,成分复杂(多组分)、高熵的箭石锂固态电解质已有报道,其室温离子电导率 σion > 10 mS cm-1。在这项工作中,通过循环伏安法和阻抗光谱法对各种多阳离子和阴离子取代的箭石 SE 进行了电化学测试,并在 SSB 电池(带层状富氧化镍阴极和铟锂阳极)的工作条件下进行了测试。结果发现,阳离子取代会对电化学稳定性产生负面影响,而阴离子取代(引入 Cl-/Br- 和增加卤化物含量)则会对循环性产生有利影响,尤其是在高电流速率下。
{"title":"Electrochemical Testing and Benchmarking of Compositionally Complex Lithium Argyrodite Electrolytes for All-Solid-State Battery Application","authors":"Jianxuan Du, Jing Lin, Ruizhuo Zhang, Prof. Shuo Wang, Dr. Sylvio Indris, Prof. Helmut Ehrenberg, Dr. Aleksandr Kondrakov, Dr. Torsten Brezesinski, Dr. Florian Strauss","doi":"10.1002/batt.202400112","DOIUrl":"10.1002/batt.202400112","url":null,"abstract":"<p>Ceramic ion conductors play a pivotal role as electrolytes in solid-state batteries (SSBs). Aside from the ionic conductivity, their (electro)chemical stability has a profound effect on the performance. Lithium thiophosphates represent a widely used class of superionic materials, yet they suffer from limited stability and are known to undergo interfacial degradation upon battery cycling. Knowledge of composition-dependent properties is essential to improving upon the stability of thiophosphate solid electrolytes (SEs). In recent years, compositionally complex (multicomponent) and high-entropy lithium argyrodite SEs have been reported, having room-temperature ionic conductivities of <i>σ</i><sub>ion</sub>>10 mS cm<sup>−1</sup>. In this work, various multi-cationic and -anionic substituted argyrodite SEs are electrochemically tested via cyclic voltammetry and impedance spectroscopy, as well as under operating conditions in SSB cells with layered Ni-rich oxide cathode and indium-lithium anode. Cation substitution is found to negatively affect the electrochemical stability, while anion substitution (introducing Cl<sup>−</sup>/Br<sup>−</sup> and increasing halide content) has a beneficial effect on the cyclability, especially at high current rates.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 7","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400112","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140668685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanlu Zheng, Yu Zhong, Changdong Gu, Xiuli Wang, Prof. Jiangping Tu
Carbonate-based electrolytes generally suffer from low Coulombic efficiency and poor cycling stability in lithium metal batteries. In this work, localized high concentration electrolytes (LHCEs) based on dimethyl carbonate (DMC) with varying diluent additions are designed. LHCEs demonstrate higher Li+ transference numbers and a greater proportion of contact ion pairs (CIPs) and ion pair aggregates (AGGs) in the solvation structures, facilitating the formation of anion-derived solid electrolyte interphase (SEI). Furthermore, LHCEs enhance the Coulombic efficiency of Li||Cu cells and improve the anodic stability against lithium. One of these LHCEs, prepared with appropriate diluent addition, exhibits excellent capacity retention in Li||NCM622 cells at 0.5 C after 150 cycles, thus presenting promising possibilities for the development of high energy density lithium metal batteries.
{"title":"Anion-Derived Solid Electrolyte Interphase Enabled by Diluent Modulated Dimethyl Carbonate-Based Localized High Concentration Electrolytes for Lithium Metal Batteries","authors":"Hanlu Zheng, Yu Zhong, Changdong Gu, Xiuli Wang, Prof. Jiangping Tu","doi":"10.1002/batt.202400238","DOIUrl":"10.1002/batt.202400238","url":null,"abstract":"<p>Carbonate-based electrolytes generally suffer from low Coulombic efficiency and poor cycling stability in lithium metal batteries. In this work, localized high concentration electrolytes (LHCEs) based on dimethyl carbonate (DMC) with varying diluent additions are designed. LHCEs demonstrate higher Li<sup>+</sup> transference numbers and a greater proportion of contact ion pairs (CIPs) and ion pair aggregates (AGGs) in the solvation structures, facilitating the formation of anion-derived solid electrolyte interphase (SEI). Furthermore, LHCEs enhance the Coulombic efficiency of Li||Cu cells and improve the anodic stability against lithium. One of these LHCEs, prepared with appropriate diluent addition, exhibits excellent capacity retention in Li||NCM622 cells at 0.5 C after 150 cycles, thus presenting promising possibilities for the development of high energy density lithium metal batteries.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 11","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140635508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinyi Ma, Xiaoyue He, Lai Yu, Nazir Ahmad, Zongzhi Tao, Zi Xuan Jiang, Jia Cheng Liang, Prof. Suyuan Zeng, Prof. Liang Shi, Prof. Genqiang Zhang
Metal sulfides materials are promising anode candidates for Na+ storage due to their low cost and high theoretical capacity, while the complex phase transition and inevitable volume expansion during cycling restrain their practical applications. Herein, a simple one-pot manipulation strategy was designed to construct Co9S8 nanoparticles strongly encapsulated in carbon nanotubes (Co9S8@C/NTs) composite structure with enhanced structural stability and reaction kinetics, resulting in greatly improved Na+ storage performance. Specifically, the obtained Co9S8@C/NTs could exhibit a remarkable capacity of 500 mAh g−1 at 0.5 A g−1 after 100 cycles and exceptional cycling stability over 600 cycles with 88 % capacity retention at 1 A g−1. Furthermore, the theoretical calculations combined with systematic characterizations confirm that the strong interaction between Co9S8 and the carbon matrix could greatly enhance the Na+ adsorption ability and facilitate the electron transfer dynamics for superior Na+ storage capability. More importantly, the full cell device can deliver an outstanding energy density of 144.32 Wh kg−1 and a decent cycling life with 82 % capacity retention of almost 100 cycles at 0.1 A g−1. This work could provide more valuable insights for designing advanced metal sulfide nanocomposites and demonstrate fascinating prospects for commercial application.
金属硫化物材料因其低成本和高理论容量而成为具有潜力的 Na+ 储存阳极候选材料,但其复杂的相变和循环过程中不可避免的体积膨胀限制了其实际应用。本文设计了一种简单的一锅操作策略,构建了Co9S8纳米颗粒强包覆碳纳米管(Co9S8@C/NTs)复合结构,增强了结构稳定性和反应动力学,从而大大提高了Na+存储性能。具体而言,所获得的 Co9S8@C/NTs 在 0.5 A g-1 条件下循环 100 次后,容量可达 500 mAh g-1;在 1 A g-1 条件下循环 600 次后,容量保持率为 88%,具有优异的循环稳定性。此外,理论计算结合系统表征证实,Co9S8 与碳基质之间的强相互作用可大大提高 Na+ 的吸附能力,并促进电子传递动力学,从而实现卓越的 Na+ 储存能力。更重要的是,这种全电池器件的能量密度高达 144.32 Wh kg-1,循环寿命长,在 0.1 A g-1 的条件下可循环 100 次,容量保持率高达 82%。这项工作可为设计先进的金属硫化物纳米复合材料提供更多灵感,并展示出令人着迷的商业应用前景。
{"title":"Enhancing Ion Adsorption Capability through the Strong Interaction in Co9S8-Carbon Hybrids Achieves Superior Sodium Ion Storage","authors":"Xinyi Ma, Xiaoyue He, Lai Yu, Nazir Ahmad, Zongzhi Tao, Zi Xuan Jiang, Jia Cheng Liang, Prof. Suyuan Zeng, Prof. Liang Shi, Prof. Genqiang Zhang","doi":"10.1002/batt.202400170","DOIUrl":"10.1002/batt.202400170","url":null,"abstract":"<p>Metal sulfides materials are promising anode candidates for Na<sup>+</sup> storage due to their low cost and high theoretical capacity, while the complex phase transition and inevitable volume expansion during cycling restrain their practical applications. Herein, a simple one-pot manipulation strategy was designed to construct Co<sub>9</sub>S<sub>8</sub> nanoparticles strongly encapsulated in carbon nanotubes (Co<sub>9</sub>S<sub>8</sub>@C/NTs) composite structure with enhanced structural stability and reaction kinetics, resulting in greatly improved Na<sup>+</sup> storage performance. Specifically, the obtained Co<sub>9</sub>S<sub>8</sub>@C/NTs could exhibit a remarkable capacity of 500 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup> after 100 cycles and exceptional cycling stability over 600 cycles with 88 % capacity retention at 1 A g<sup>−1</sup>. Furthermore, the theoretical calculations combined with systematic characterizations confirm that the strong interaction between Co<sub>9</sub>S<sub>8</sub> and the carbon matrix could greatly enhance the Na<sup>+</sup> adsorption ability and facilitate the electron transfer dynamics for superior Na<sup>+</sup> storage capability. More importantly, the full cell device can deliver an outstanding energy density of 144.32 Wh kg<sup>−1</sup> and a decent cycling life with 82 % capacity retention of almost 100 cycles at 0.1 A g<sup>−1</sup>. This work could provide more valuable insights for designing advanced metal sulfide nanocomposites and demonstrate fascinating prospects for commercial application.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 9","pages":""},"PeriodicalIF":5.1,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140678733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabian Alexander Kreth, Lukas Köps, Scott W. Donne, Andrea Balducci
Invited for this month's cover picture is the Balducci's group who works on the development of innovative electrolytes and materials for safer, high-performance supercapacitors and batteries, and on advanced real-time characterization techniques to improve the understanding of aging and charge storage processes in electrochemical devices. The front cover illustrates a supercapacitor evaluated with the screening technique presented in this report. It highlights different electrolyte compositions, indicated by chemical compounds above the setup. This approach provides insights into how capacitance, energy, power, entropy, and enthalpy respond to changes in temperature and voltage. Read the full text of the Research Article at 10.1002/batt.202300581.
{"title":"Operando Temperature Dynamic Investigation of Electric Double-Layer Capacitors Containing Organic Electrolytes","authors":"Fabian Alexander Kreth, Lukas Köps, Scott W. Donne, Andrea Balducci","doi":"10.1002/batt.202400242","DOIUrl":"10.1002/batt.202400242","url":null,"abstract":"<p>Invited for this month's cover picture is the Balducci's group who works on the development of innovative electrolytes and materials for safer, high-performance supercapacitors and batteries, and on advanced real-time characterization techniques to improve the understanding of aging and charge storage processes in electrochemical devices. The front cover illustrates a supercapacitor evaluated with the screening technique presented in this report. It highlights different electrolyte compositions, indicated by chemical compounds above the setup. This approach provides insights into how capacitance, energy, power, entropy, and enthalpy respond to changes in temperature and voltage. Read the full text of the Research Article at 10.1002/batt.202300581.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 5","pages":""},"PeriodicalIF":5.7,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400242","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saul Said Montiel Guerrero, Yasin Emre Durmus, Hermann Tempel, Christian Roth, Hans Kungl, Stefan van Waasen, Yair Ein-Eli, Rüdiger-A. Eichel
The Cover Feature illustrates the silicon-air batteries, powered by silicon, as a groundbreaking solution for energizing transient electronics. By incorporating partial self-destruction mechanisms, they enhance data security and impose a controlled device lifespan. After being used as the energetic fuel, silicon can turn into silica sand, completing its life cycle. This innovative application seamlessly integrates energy storage and electronics, offering practical advancements in technology and data security. More information can be found in the Research Article by Y. E. Durmus and co-workers.