Aberration correction in the analytical transmission electron microscope is most closely associated with improvements in high-resolution imaging. In this paper, the combination of that technology with new system designs, which optimize both electron optics and x-ray detection, is shown to provide more than a tenfold increase in performance over the last 25 years.
It is known that 2D materials can exhibit a nonflat topography, which gives rise to an inherent strain. Since local curvature and strain influence mechanical, optical, and electrical properties, but are often difficult to distinguish from each other, a robust measurement technique is needed. In this study, a novel method is introduced, which is capable of obtaining quantitative strain and topography information of 2D materials with nanometer resolution. Relying on scanning nanobeam electron diffraction (NBED), it is possible to disentangle strain from the local sample slope. Using the positions of the diffraction spots of a specimen at two different tilts to reconstruct the locations and orientations of the reciprocal lattice rods, the local strain and slope can be simultaneously retrieved. We demonstrate the differences to strain measurements from a single NBED map in theory, simulation, and experiment. MoS2 monolayers with different shapes are used as simulation test structures. The slope and height information are recovered, as well as tensile and angular strain which have an absolute difference of less than 0.2% and 0.2° from the theoretical values. An experimental proof of concept using a freely suspended WSe2 monolayer together with a discussion of the accuracy of the method is provided.
Osteoporosis is caused by enhanced bone resorption and relatively reduced bone formation. There is an unmet need to develop new agents with both antiresorptive and anabolic effects to treat osteoporosis, although drugs with either effect alone are available. A small molecular compound, plumbagin, was reported to inhibit receptor activator of nuclear factor kappa-B ligand-induced osteoclast (OC) differentiation by inhibiting IκBα phosphorylation-mediated canonical NF-κB activation. However, the key transcriptional factor RelA/p65 in canonical NF-κB pathway functions to promote OC precursor survival but not terminal OC differentiation. Here, we found that plumbagin inhibited the activity of NF-κB inducing kinase, the key molecule that controls noncanonical NF-κB signaling, in an ATP/ADP-based kinase assay. Consistent with this, plumbagin inhibited processing of NF-κB2 p100 to p52 in the progenitor cells of both OCs and osteoblasts (OBs). Interestingly, plumbagin not only inhibited OC but also stimulated OB differentiation in vitro. Importantly, plumbagin prevented trabecular bone loss in ovariectomized mice. This was associated with decreased OC surfaces on trabecular surface and increased parameters of OBs, including OB surface on trabecular surface, bone formation rate, and level of serum osteocalcin, compared to vehicle-treated mice. In summary, we conclude that plumbagin is a NF-κB-inducing kinase inhibitor with dual anabolic and antiresorptive effects on bone and could represent a new class of agent for the prevention and treatment of osteoporosis.