Pub Date : 2024-11-06DOI: 10.1109/TCAD.2024.3438999
Jeferson González-Gómez;Mohammed Bakr Sikal;Heba Khdr;Lars Bauer;Jörg Henkel
As the digital landscape continues to evolve, the security of computing systems has become a critical concern. Power-based covert channels (e.g., thermal covert channel s (TCCs)), a form of communication that exploits the system resources to transmit information in a hidden or unintended manner, have been recently studied as an effective mechanism to leak information between malicious entities via the modulation of CPU power. To this end, dynamic voltage and frequency scaling (DVFS) has been widely used as a countermeasure to mitigate TCCs by directly affecting the communication between the actors. Although this technique has proven effective in neutralizing such attacks, it introduces significant performance and energy penalties, that are particularly detrimental to energy-constrained embedded systems. In this article, we propose different system-informed countermeasures to power-based covert channels from the heuristic and machine learning (ML) domains. Our proposed techniques leverage task migration and DVFS to jointly mitigate the channels and maximize energy efficiency. Our extensive experimental evaluation on two commercial platforms: 1) the NVIDIA Jetson TX2 and 2) Jetson Orin shows that our approach significantly improves the overall energy efficiency of the system compared to the state-of-the-art solution while nullifying the attack at all times.
随着数字技术的不断发展,计算系统的安全性已成为人们关注的焦点。基于功率的隐蔽信道(如热隐蔽信道(TCC))是一种利用系统资源以隐蔽或无意方式传输信息的通信形式,最近已被研究为一种通过调制 CPU 功率在恶意实体之间泄露信息的有效机制。为此,动态电压和频率缩放(DVFS)已被广泛用作一种对策,通过直接影响行为体之间的通信来缓解 TCC。虽然这种技术已被证明能有效抵消此类攻击,但它会带来显著的性能和能耗损失,尤其不利于能源受限的嵌入式系统。在本文中,我们从启发式和机器学习(ML)领域针对基于功率的隐蔽信道提出了不同的系统信息对策。我们提出的技术利用任务迁移和 DVFS 来共同缓解通道问题,并最大限度地提高能效。我们在两个商用平台(1)NVIDIA Jetson TX2 和 2)Jetson Orin 上进行了广泛的实验评估,结果表明,与最先进的解决方案相比,我们的方法显著提高了系统的整体能效,同时在任何时候都能使攻击无效。
{"title":"Balancing Security and Efficiency: System-Informed Mitigation of Power-Based Covert Channels","authors":"Jeferson González-Gómez;Mohammed Bakr Sikal;Heba Khdr;Lars Bauer;Jörg Henkel","doi":"10.1109/TCAD.2024.3438999","DOIUrl":"https://doi.org/10.1109/TCAD.2024.3438999","url":null,"abstract":"As the digital landscape continues to evolve, the security of computing systems has become a critical concern. Power-based covert channels (e.g., thermal covert channel s (TCCs)), a form of communication that exploits the system resources to transmit information in a hidden or unintended manner, have been recently studied as an effective mechanism to leak information between malicious entities via the modulation of CPU power. To this end, dynamic voltage and frequency scaling (DVFS) has been widely used as a countermeasure to mitigate TCCs by directly affecting the communication between the actors. Although this technique has proven effective in neutralizing such attacks, it introduces significant performance and energy penalties, that are particularly detrimental to energy-constrained embedded systems. In this article, we propose different system-informed countermeasures to power-based covert channels from the heuristic and machine learning (ML) domains. Our proposed techniques leverage task migration and DVFS to jointly mitigate the channels and maximize energy efficiency. Our extensive experimental evaluation on two commercial platforms: 1) the NVIDIA Jetson TX2 and 2) Jetson Orin shows that our approach significantly improves the overall energy efficiency of the system compared to the state-of-the-art solution while nullifying the attack at all times.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"43 11","pages":"3395-3406"},"PeriodicalIF":2.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1109/TCAD.2024.3447216
Shanmukha Mangadahalli Siddaramu;Ali Nezhadi;Mahta Mayahinia;Seyedehmaryam Ghasemi;Mehdi B. Tahoori
The computation-in nonvolatile memory (NVM-CiM) approach addresses the growing computational demands and the memory-wall problem faced by traditional processor-centric architectures. Computation-in-memory (CiM) capitalizes on the parallel nature of memory arrays enabling effective computation through multirow memristor reading and sensing. In this context, the conventional design of memory decoders needs to be accordingly modified for efficient multirow activation and parallel data processing. This article presents the design and optimization of address decoders for NVM-CiM system architectures, employing a cross-layer co-optimization approach that integrates circuit and architecture design with application requirements. Our methodology starts at the circuit level, examining various decoder designs, including cascaded, hierarchical, latched, and hybrid models. An in-depth application-level characterization follows, utilizing an extended NVM-CiM-capable gem5 simulator to assess the impact of these decoders on the mapping of CiM-friendly applications and the resulting system performance, particularly in facilitating rapid and efficient activation of multirow memory configurations. This holistic analysis allows us to identify the bottlenecks and requirements from the application side and adjust the design of the decoder accordingly. Our analysis reveals that Hybrid Decoders significantly decrease latency and power consumption compared to other decoder designs within NVM-CiM systems. This highlights the crucial role of the decoder’s row selection flexibility, reducing additional system-level data movement even at the expense of its performance, can substantially improve the overall efficiency of NVM-CiM systems.
{"title":"Hardware and Software Co-Design for Optimized Decoding Schemes and Application Mapping in NVM Compute-in-Memory Architectures","authors":"Shanmukha Mangadahalli Siddaramu;Ali Nezhadi;Mahta Mayahinia;Seyedehmaryam Ghasemi;Mehdi B. Tahoori","doi":"10.1109/TCAD.2024.3447216","DOIUrl":"https://doi.org/10.1109/TCAD.2024.3447216","url":null,"abstract":"The computation-in nonvolatile memory (NVM-CiM) approach addresses the growing computational demands and the memory-wall problem faced by traditional processor-centric architectures. Computation-in-memory (CiM) capitalizes on the parallel nature of memory arrays enabling effective computation through multirow memristor reading and sensing. In this context, the conventional design of memory decoders needs to be accordingly modified for efficient multirow activation and parallel data processing. This article presents the design and optimization of address decoders for NVM-CiM system architectures, employing a cross-layer co-optimization approach that integrates circuit and architecture design with application requirements. Our methodology starts at the circuit level, examining various decoder designs, including cascaded, hierarchical, latched, and hybrid models. An in-depth application-level characterization follows, utilizing an extended NVM-CiM-capable gem5 simulator to assess the impact of these decoders on the mapping of CiM-friendly applications and the resulting system performance, particularly in facilitating rapid and efficient activation of multirow memory configurations. This holistic analysis allows us to identify the bottlenecks and requirements from the application side and adjust the design of the decoder accordingly. Our analysis reveals that Hybrid Decoders significantly decrease latency and power consumption compared to other decoder designs within NVM-CiM systems. This highlights the crucial role of the decoder’s row selection flexibility, reducing additional system-level data movement even at the expense of its performance, can substantially improve the overall efficiency of NVM-CiM systems.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"43 11","pages":"3744-3755"},"PeriodicalIF":2.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1109/TCAD.2024.3446711
Tao Hu;Menglong Cui;Mingsong Lv;Tao Yang;Yiyang Zhou;Qingxu Deng;Chun Jason Xue;Nan Guan
Electrophoretic displays (EPDs), also known as e-paper, offer a paper-like visual experience by reflecting ambient light, making them distinct from traditional LCD or LED displays. They are favored for their eye comfort, energy efficiency, and material flexibility, which make them appealing for a wide range of embedded devices, including eReaders, smartphones, tablets, and wearables. However, EPDs face a significant challenge: the necessity for a fast refresh rate (to maintain an acceptable display performance) introduces a pronounced ghosting effect. This effect results in noticeable color discrepancies between the displayed and source images, harming the user experience and hindering EPDs’ broader application in devices requiring dynamic content display. This article proposes a software-based solution to address the ghosting issue in EPDs. Our approach involves developing analytical models to predict the occurrence of ghosting effects and adjusting the source images to counteract the anticipated color deviations, which can reduce the perceivable ghosts on the display. Experimental evaluation conducted on real-world EPDs validates the effectiveness of our proposed approach in reducing the ghosting effect.
电泳显示器(EPD)又称电子纸,通过反射环境光提供类似纸张的视觉体验,使其有别于传统的 LCD 或 LED 显示器。它们因舒适的用眼、节能和材料的灵活性而备受青睐,这使它们对包括电子阅读器、智能手机、平板电脑和可穿戴设备在内的各种嵌入式设备具有吸引力。然而,EPD 面临着一个重大挑战:由于必须采用快速刷新率(以保持可接受的显示性能),因此会产生明显的重影效应。这种效应会导致显示图像与源图像之间出现明显的色彩差异,损害用户体验,阻碍 EPD 在需要动态内容显示的设备中的广泛应用。本文提出了一种基于软件的解决方案来解决 EPD 中的重影问题。我们的方法包括开发分析模型来预测重影效应的发生,并调整源图像以抵消预期的色彩偏差,从而减少显示屏上可感知的重影。在现实世界的环保型显示器上进行的实验评估验证了我们提出的方法在减少重影效应方面的有效性。
{"title":"Ghostbuster: A Software Approach for Reducing Ghosting Effect on Electrophoretic Displays","authors":"Tao Hu;Menglong Cui;Mingsong Lv;Tao Yang;Yiyang Zhou;Qingxu Deng;Chun Jason Xue;Nan Guan","doi":"10.1109/TCAD.2024.3446711","DOIUrl":"https://doi.org/10.1109/TCAD.2024.3446711","url":null,"abstract":"Electrophoretic displays (EPDs), also known as e-paper, offer a paper-like visual experience by reflecting ambient light, making them distinct from traditional LCD or LED displays. They are favored for their eye comfort, energy efficiency, and material flexibility, which make them appealing for a wide range of embedded devices, including eReaders, smartphones, tablets, and wearables. However, EPDs face a significant challenge: the necessity for a fast refresh rate (to maintain an acceptable display performance) introduces a pronounced ghosting effect. This effect results in noticeable color discrepancies between the displayed and source images, harming the user experience and hindering EPDs’ broader application in devices requiring dynamic content display. This article proposes a software-based solution to address the ghosting issue in EPDs. Our approach involves developing analytical models to predict the occurrence of ghosting effects and adjusting the source images to counteract the anticipated color deviations, which can reduce the perceivable ghosts on the display. Experimental evaluation conducted on real-world EPDs validates the effectiveness of our proposed approach in reducing the ghosting effect.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"43 11","pages":"3780-3791"},"PeriodicalIF":2.7,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Key-value stores (KVStores), such as LevelDB and Redis, have been widely used in real-world production environments. To guarantee data durability and availability, traditional KVStores suffer from high write latency, mainly caused by the long network and data-persisting time. To solve this problem, this article presents a novel data-persisting path for KVStores, allowing remote clients to persist data to the KVStore server with $mu s$