As energy-intensive entities, data centers are associated with significant environmental impacts, making their sustainability a subject of growing interest in recent years. In this article, we revisit data center sustainability and propose a forward-looking vision for improving data center sustainability. We argue that data center sustainability encompasses more than just energy efficiency and must be evaluated and optimized through a multi-faceted approach. To this end, we first present an overview of the sustainability metrics from five aspects. After that, we demonstrate the sustainability status of the latest data centers utilizing publicly available data center sustainability ratings. Furthermore, we examine the evolution of data center sustainability standards in Singapore to highlight several trending features. Based on the analysis, we identify several key elements of sustainable data centers. We then propose the Cognitive Digital Twin (CDT) architecture, which incorporates a digital twin engine for system-wide simulation and a decision engine for optimal control to improve data center sustainability. A case study is performed to optimize the chiller plant efficiency of a production data center in Singapore. The results demonstrate that the CDT can improve chiller plant energy efficiency by 5%, indicating around 140 metric tons of annual carbon emission savings.
{"title":"Data Center Sustainability: Revisits and Outlooks","authors":"Zhiwei Cao;Xin Zhou;Xiangyu Wu;Zhaomeng Zhu;Tracy Liu;Jeffery Neng;Yonggang Wen","doi":"10.1109/TSUSC.2023.3281583","DOIUrl":"10.1109/TSUSC.2023.3281583","url":null,"abstract":"As energy-intensive entities, data centers are associated with significant environmental impacts, making their sustainability a subject of growing interest in recent years. In this article, we revisit data center sustainability and propose a forward-looking vision for improving data center sustainability. We argue that data center sustainability encompasses more than just energy efficiency and must be evaluated and optimized through a multi-faceted approach. To this end, we first present an overview of the sustainability metrics from five aspects. After that, we demonstrate the sustainability status of the latest data centers utilizing publicly available data center sustainability ratings. Furthermore, we examine the evolution of data center sustainability standards in Singapore to highlight several trending features. Based on the analysis, we identify several key elements of sustainable data centers. We then propose the Cognitive Digital Twin (CDT) architecture, which incorporates a digital twin engine for system-wide simulation and a decision engine for optimal control to improve data center sustainability. A case study is performed to optimize the chiller plant efficiency of a production data center in Singapore. The results demonstrate that the CDT can improve chiller plant energy efficiency by 5%, indicating around 140 metric tons of annual carbon emission savings.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 3","pages":"236-248"},"PeriodicalIF":3.9,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88809223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.1109/TSUSC.2023.3263510
Xinghao Yang;Yongshun Gong;Weifeng Liu;James Bailey;Dacheng Tao;Wei Liu
Deep learning models are known immensely brittle to adversarial text examples. Existing text adversarial attack strategies can be roughly divided into character-level, word-level, and sentence-level attacks. Despite the success brought by recent text attack methods, how to induce misclassification with minimal text modifications while keeping the lexical correctness, syntactic soundness, and semantic consistency is still a challenge. In this paper, we devise a Bigram and Unigram-based adaptive Semantic Preservation Optimization (BU-SPO) approach which attacks text documents not only at a unigram word level but also at a bigram level to avoid generating meaningless sentences. We also present a hybrid attack strategy that collects substitution words from both synonyms and sememe candidates, to enrich the potential candidate set. Besides, a Semantic Preservation Optimization (SPO) method is devised to determine the word substitution priority and reduce the perturbation cost. Furthermore, we constrain the SPO with a semantic Filter (dubbed SPOF) to improve the semantic similarity. To estimate the effectiveness of our proposed methods, BU-SPO and BU-SPOF, we attack four victim deep learning models trained on three text datasets. Experimental results demonstrate that our approaches accomplish the highest semantics consistency and attack success rates by making minimal word modifications compared with competitive methods.
{"title":"Semantic-Preserving Adversarial Text Attacks","authors":"Xinghao Yang;Yongshun Gong;Weifeng Liu;James Bailey;Dacheng Tao;Wei Liu","doi":"10.1109/TSUSC.2023.3263510","DOIUrl":"https://doi.org/10.1109/TSUSC.2023.3263510","url":null,"abstract":"Deep learning models are known immensely brittle to adversarial text examples. Existing text adversarial attack strategies can be roughly divided into character-level, word-level, and sentence-level attacks. Despite the success brought by recent text attack methods, how to induce misclassification with minimal text modifications while keeping the lexical correctness, syntactic soundness, and semantic consistency is still a challenge. In this paper, we devise a Bigram and Unigram-based adaptive Semantic Preservation Optimization (BU-SPO) approach which attacks text documents not only at a unigram word level but also at a bigram level to avoid generating meaningless sentences. We also present a hybrid attack strategy that collects substitution words from both synonyms and sememe candidates, to enrich the potential candidate set. Besides, a Semantic Preservation Optimization (SPO) method is devised to determine the word substitution priority and reduce the perturbation cost. Furthermore, we constrain the SPO with a semantic Filter (dubbed SPOF) to improve the semantic similarity. To estimate the effectiveness of our proposed methods, BU-SPO and BU-SPOF, we attack four victim deep learning models trained on three text datasets. Experimental results demonstrate that our approaches accomplish the highest semantics consistency and attack success rates by making minimal word modifications compared with competitive methods.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"8 4","pages":"583-595"},"PeriodicalIF":3.9,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138558208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-30DOI: 10.1109/TSUSC.2023.3263232
Bo Yin;Weilong Zeng;Peng Zhang;Xuetao Wei
The data query service is urgently required in sustainable-storage blockchain, where full nodes store the entire transaction data while light nodes only store block headers. Queries invariably seek data with multiple attributes. However, no existing method provides a unified authenticated data structure (ADS) to support complex query operators (e.g., range queries and data object queries) on multiattribute blockchain data. In this paper, we propose a framework EAQ that effectively supports both fast data queries on multiple attributes and authentication of the query result. We propose a new ADS, called the MR $^{Bloom}$