Pub Date : 2023-04-01DOI: 10.1007/s12291-022-01067-3
Sakshi Batra, Asha G Nair, Kirtimaan Syal
SARS-CoV-2, an etiological agent of COVID-19, has been reported to inflict remarkably diverse manifestations in different subjects across the globe. Though patients with COVID-19 predominantly have fever, respiratory and constitutional symptoms, atypical presentations are becoming increasingly evident. COVID-19 may predispose to both venous and arterial thromboembolism due to excessive inflammation, hypoxia, immobilization, and diffuse intravascular coagulation in moderate to severe symptomatic cases. In this case report, we are reporting thromboembolic complications of COVID-19 in a mild symptomatic subject incidentally diagnosed with mesenteric venous occlusion with no abdominal symptoms. Early recognition of the abdominal symptoms, diagnosis, initiation of anticoagulants, and timely surgical intervention may improvise the outcome in a patient with COVID-19 infection-induced mesenteric thrombosis. Superior mesenteric artery and venous thrombosis may lead to subsequent ischemia necessitating emergency laparotomy. Thus, the usage of low-dose anticoagulants in all the patients of COVID-19 irrespective of the categorization into mild, moderate, and severe COVID-19 disease should be considered.
{"title":"An Unusual Presentation of Superior Mesenteric Venous Occlusion in Mild COVID-19.","authors":"Sakshi Batra, Asha G Nair, Kirtimaan Syal","doi":"10.1007/s12291-022-01067-3","DOIUrl":"https://doi.org/10.1007/s12291-022-01067-3","url":null,"abstract":"<p><p>SARS-CoV-2, an etiological agent of COVID-19, has been reported to inflict remarkably diverse manifestations in different subjects across the globe. Though patients with COVID-19 predominantly have fever, respiratory and constitutional symptoms, atypical presentations are becoming increasingly evident. COVID-19 may predispose to both venous and arterial thromboembolism due to excessive inflammation, hypoxia, immobilization, and diffuse intravascular coagulation in moderate to severe symptomatic cases. In this case report, we are reporting thromboembolic complications of COVID-19 in a mild symptomatic subject incidentally diagnosed with mesenteric venous occlusion with no abdominal symptoms. Early recognition of the abdominal symptoms, diagnosis, initiation of anticoagulants, and timely surgical intervention may improvise the outcome in a patient with COVID-19 infection-induced mesenteric thrombosis. Superior mesenteric artery and venous thrombosis may lead to subsequent ischemia necessitating emergency laparotomy. Thus, the usage of low-dose anticoagulants in all the patients of COVID-19 irrespective of the categorization into mild, moderate, and severe COVID-19 disease should be considered.</p>","PeriodicalId":13280,"journal":{"name":"Indian Journal of Clinical Biochemistry","volume":"38 2","pages":"275-278"},"PeriodicalIF":2.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9363859/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9265646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1007/s12291-022-01082-4
Sridhar Mishra, Devanshi B Dubey, Krachi Agarwal, Deval B Dubey, Shweta Verma, Nida Shabbir, Rashmi Kushwaha, D Himanshu Reddy, Uma Shankar Singh, Wahid Ali
Lymphocyte dysregulation in coronavirus disease-19 (COVID-19) is a major contributing factor linked to disease severity and mortality. Apoptosis results in the accumulation of cell-free DNA (cfDNA) in circulation. COVID-19 has a heterogeneous clinical course. The role of cfDNA levels was studied to assess the severity and outcome of COVID-19 patients and correlated with other laboratory parameters. The current case series included 100 patients with mild COVID-19 (MCOV-19) and 106 patients with severe COVID-19 (SCOV-19). Plasma cfDNA levels were quantified using SYBR green quantitative real-time PCR through amplification of the β-actin gene. CfDNA level was significantly higher in SCOV-19 at 706.7 ng/ml (522.6-1258) as compared to MCOV-19 at 219.8 ng/ml (167.7-299.6). The cfDNA levels were significantly higher in non-survivor than in survivors (p = 0.0001). CfDNA showed a significant correlation with NLR, ferritin, LDH, procalcitonin, and IL-6. The diagnostic sensitivity and specificity of cfDNA in the discrimination of SCOV-19 from MCOV-19 were 90.57% & 80%, respectively. CfDNA showed a sensitivity of 94.74% in the differentiation of non-survivors from survivors. CfDNA levels showed a significant positive correlation with other laboratory and inflammatory markers of COVID-19. CfDNA levels, NLR, and other parameters may be used to stratify and monitor COVID-19 patients and predict mortality. CfDNA may be used to predict COVID-19 severity with higher diagnostic sensitivity.
{"title":"Circulating Cell-Free DNA Level in Prediction of COVID-19 Severity and Mortality: Correlation of with Haematology and Serum Biochemical Parameters.","authors":"Sridhar Mishra, Devanshi B Dubey, Krachi Agarwal, Deval B Dubey, Shweta Verma, Nida Shabbir, Rashmi Kushwaha, D Himanshu Reddy, Uma Shankar Singh, Wahid Ali","doi":"10.1007/s12291-022-01082-4","DOIUrl":"https://doi.org/10.1007/s12291-022-01082-4","url":null,"abstract":"<p><p>Lymphocyte dysregulation in coronavirus disease-19 (COVID-19) is a major contributing factor linked to disease severity and mortality. Apoptosis results in the accumulation of cell-free DNA (cfDNA) in circulation. COVID-19 has a heterogeneous clinical course. The role of cfDNA levels was studied to assess the severity and outcome of COVID-19 patients and correlated with other laboratory parameters. The current case series included 100 patients with mild COVID-19 (MCOV-19) and 106 patients with severe COVID-19 (SCOV-19). Plasma cfDNA levels were quantified using SYBR green quantitative real-time PCR through amplification of the β-actin gene. CfDNA level was significantly higher in SCOV-19 at 706.7 ng/ml (522.6-1258) as compared to MCOV-19 at 219.8 ng/ml (167.7-299.6). The cfDNA levels were significantly higher in non-survivor than in survivors (<i>p</i> = 0.0001). CfDNA showed a significant correlation with NLR, ferritin, LDH, procalcitonin, and IL-6. The diagnostic sensitivity and specificity of cfDNA in the discrimination of SCOV-19 from MCOV-19 were 90.57% & 80%, respectively. CfDNA showed a sensitivity of 94.74% in the differentiation of non-survivors from survivors. CfDNA levels showed a significant positive correlation with other laboratory and inflammatory markers of COVID-19. CfDNA levels, NLR, and other parameters may be used to stratify and monitor COVID-19 patients and predict mortality. CfDNA may be used to predict COVID-19 severity with higher diagnostic sensitivity.</p>","PeriodicalId":13280,"journal":{"name":"Indian Journal of Clinical Biochemistry","volume":"38 2","pages":"172-181"},"PeriodicalIF":2.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392861/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9265652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1007/s12291-022-01081-5
Mitra Salehi, Shahin Amiri, Dariush Ilghari, Lawahidh Fadhil Ali Hasham, Hossein Piri
The respiratory symptoms of acute respiratory distress syndrome (ARDS) in the coronavirus disease 2019 (COVID-19) patients is associated with accumulation of pre-inflammatory molecules such as advanced glycation end-products (AGES), calprotectin, high mobility group box family-1 (HMGB1), cytokines, angiotensin converting enzyme 2 (ACE2), and other molecules in the alveolar space of lungs and plasma. The receptor for advanced glycation end products (RAGEs), which is mediated by the mitogen-activated protein kinase (MAPK), plays a critical role in the severity of chronic inflammatory diseases such as diabetes mellitus (DM) and ARDS. The RAGE gene is most expressed in the alveolar epithelial cells (AECs) of the pulmonary system. Several clinical trials are now being conducted to determine the possible association between the levels of soluble isoforms of RAGE (sRAGE and esRAGE) and the severity of the disease in patients with ARDS and acute lung injury (ALI). In the current article, we reviewed the most recent studies on the RAGE/ligands axis and sRAGE/esRAGE levels in acute respiratory illness, with a focus on COVID-19-associated ARDS (CARDS) patients. According to the research conducted so far, sRAGE/esRAGE measurements in patients with CARDS can be used as a powerful chemical indicator among other biomarkers for assessment of early pulmonary involvement. Furthermore, inhibiting RAGE/MAPK and Angiotensin II receptor type 1 (ATR1) in CARDS patients can be a powerful strategy for diminishing cytokine storm and severe respiratory symptoms.
{"title":"The Remarkable Roles of the Receptor for Advanced Glycation End Products (RAGE) and Its Soluble Isoforms in COVID-19: The Importance of RAGE Pathway in the Lung Injuries.","authors":"Mitra Salehi, Shahin Amiri, Dariush Ilghari, Lawahidh Fadhil Ali Hasham, Hossein Piri","doi":"10.1007/s12291-022-01081-5","DOIUrl":"https://doi.org/10.1007/s12291-022-01081-5","url":null,"abstract":"<p><p>The respiratory symptoms of acute respiratory distress syndrome (ARDS) in the coronavirus disease 2019 (COVID-19) patients is associated with accumulation of pre-inflammatory molecules such as advanced glycation end-products (AGES), calprotectin, high mobility group box family-1 (HMGB1), cytokines, angiotensin converting enzyme 2 (ACE2), and other molecules in the alveolar space of lungs and plasma. The receptor for advanced glycation end products (RAGEs), which is mediated by the mitogen-activated protein kinase (MAPK), plays a critical role in the severity of chronic inflammatory diseases such as diabetes mellitus (DM) and ARDS. The RAGE gene is most expressed in the alveolar epithelial cells (AECs) of the pulmonary system. Several clinical trials are now being conducted to determine the possible association between the levels of soluble isoforms of RAGE (sRAGE and esRAGE) and the severity of the disease in patients with ARDS and acute lung injury (ALI). In the current article, we reviewed the most recent studies on the RAGE/ligands axis and sRAGE/esRAGE levels in acute respiratory illness, with a focus on COVID-19-associated ARDS (CARDS) patients. According to the research conducted so far, sRAGE/esRAGE measurements in patients with CARDS can be used as a powerful chemical indicator among other biomarkers for assessment of early pulmonary involvement. Furthermore, inhibiting RAGE/MAPK and Angiotensin II receptor type 1 (ATR1) in CARDS patients can be a powerful strategy for diminishing cytokine storm and severe respiratory symptoms.</p>","PeriodicalId":13280,"journal":{"name":"Indian Journal of Clinical Biochemistry","volume":"38 2","pages":"159-171"},"PeriodicalIF":2.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9387879/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9271947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01Epub Date: 2022-06-14DOI: 10.1007/s12291-022-01045-9
Khushboo, Vivek Kumar Gupta, Bechan Sharma
Reserpine, a bioactive compound isolated from the roots of Rauwolfia serpentine, is known to deplete dopamine, a neurotransmitter. The clinical application of reserpine has been associated to manage hypertension, insanity, insomnia and schizophrenia. However, the usage of reserpine as a drug is restricted because of its ability of inducing excess free radicals production and oxidative stress resulting into damage to liver and other organs. Here, we have explored the antioxidative potential of extract of garlic prepared using ethanol (EEG) against reserpine-induced hepatic damage in the albino Wister rats.The animals were divided into four different groups containing 6 animals in each: (1) control + placebo, (2) control + EEG, (3) reserpine and (4) reserpine with EEG. The reserpine treatment resulted into sharp increase in the level of MDA and significant reduction in the activitiesof key antioxidative enzymes (SOD, GST, and CAT) in the rat liver. It also caused sharp perturbations in the levels of certain hepatic transaminases (ALT, AST) and glycolytic LDH. The histopathological results revealed hepatic necrosis, which could have occurred due to reserpine induced lipid peroxidation as well as reduction in the levels of antioxidant species.The administration of EEG, however, significantly ameliorated reserpine induced hepatotoxicity. These results reflected the ameliorative property of EEG, which was probably mediated via its antioxidant function as it contains several bioactive molecules with free radical quenching potential.This study suggestedthe prospective application of EEG as a supplement to combat the side effects of reserpine.
{"title":"Hepatoprotective Effect of Ethanolic Extract of Garlic Against Reserpine Induced Toxicity in Wistar Rats.","authors":"Khushboo, Vivek Kumar Gupta, Bechan Sharma","doi":"10.1007/s12291-022-01045-9","DOIUrl":"10.1007/s12291-022-01045-9","url":null,"abstract":"<p><p>Reserpine, a bioactive compound isolated from the roots of <i>Rauwolfia serpentine</i>, is known to deplete dopamine, a neurotransmitter. The clinical application of reserpine has been associated to manage hypertension, insanity, insomnia and schizophrenia. However, the usage of reserpine as a drug is restricted because of its ability of inducing excess free radicals production and oxidative stress resulting into damage to liver and other organs. Here, we have explored the antioxidative potential of extract of garlic prepared using ethanol (EEG) against reserpine-induced hepatic damage in the albino Wister rats.The animals were divided into four different groups containing 6 animals in each: (1) control + placebo, (2) control + EEG, (3) reserpine and (4) reserpine with EEG. The reserpine treatment resulted into sharp increase in the level of MDA and significant reduction in the activitiesof key antioxidative enzymes (SOD, GST, and CAT) in the rat liver. It also caused sharp perturbations in the levels of certain hepatic transaminases (ALT, AST) and glycolytic LDH. The histopathological results revealed hepatic necrosis, which could have occurred due to reserpine induced lipid peroxidation as well as reduction in the levels of antioxidant species.The administration of EEG, however, significantly ameliorated reserpine induced hepatotoxicity. These results reflected the ameliorative property of EEG, which was probably mediated via its antioxidant function as it contains several bioactive molecules with free radical quenching potential.This study suggestedthe prospective application of EEG as a supplement to combat the side effects of reserpine.</p>","PeriodicalId":13280,"journal":{"name":"Indian Journal of Clinical Biochemistry","volume":"38 2","pages":"251-261"},"PeriodicalIF":2.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070574/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9264590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01Epub Date: 2022-05-02DOI: 10.1007/s12291-022-01044-w
Bharti Jain, Savita Kulkarni
Drug-resistant (DR) tuberculosis (TB) is a global threat to health security and TB control programs. Since conventional drug susceptibility testing (DST) takes several weeks, we have developed a molecular method for the rapid identification of DR strains of Mycobacterium Tuberculosis (M.tb) utilizing DNA bio-chips. DNA bio-chips were prepared by immobilizing oligonucleotides (probes) on highly microporous polycarbonate track-etched membranes (PC-TEM) as novel support. Bio-chip was designed to contain 15 specific probes to detect mutations in three genes (rpoB, embB, and inhA). A sensitive and specific chemiluminescence based bio-chip assay was developed based on multiplex PCR followed by hybridization on bio-chip. Fifty culture isolates were used to evaluate the ability of in-house developed bio-chip to detect the mutations. Bio-chip analysis shows that 37.7% of samples show wild type sequences, 53.3% of samples were monoresistance showing resistance to either rifampicin (RMP), isoniazid (INH), or ethambutol (EMB). 4.4% of samples were polydrug resistant showing mutations in both the rpoB gene and embB gene while 4.4% of samples were multidrug-resistant (MDR), harboring mutations in the rpoB and inhA genes. The results were compared with DST and sequencing. Compared to sequencing, bio-chip assay shows a sensitivity of 96.5% and specificity of 100% for RMP resistance. For EMB and INH, the results were in complete agreement with sequencing. This study demonstrates the first-time use of PC-TEMs for developing DNA bio-chip for the detection of mutations associated with drug resistance in M.tb. Developed DNA bio-chip accurately detected different mutations present in culture isolates and thus provides detailed and reliable data for clinical diagnosis.
耐药性结核病(DR)是对健康安全和结核病控制计划的全球性威胁。由于传统的药敏试验(DST)需要数周时间,我们开发了一种利用 DNA 生物芯片快速鉴定 DR 型结核分枝杆菌(M.tb)菌株的分子方法。DNA 生物芯片的制备方法是将寡核苷酸(探针)固定在高微孔聚碳酸酯跟踪蚀刻膜(PC-TEM)上,以此作为新型支持物。生物芯片设计包含 15 个特异性探针,用于检测三个基因(rpoB、embB 和 inhA)的突变。在生物芯片上进行多重 PCR 杂交后,开发了一种基于化学发光的灵敏而特异的生物芯片检测方法。利用 50 个培养分离物来评估内部开发的生物芯片检测突变的能力。生物芯片分析表明,37.7%的样本显示出野生型序列,53.3%的样本显示出对利福平(RMP)、异烟肼(INH)或乙胺丁醇(EMB)的单耐药性。4.4%的样本具有多药耐药性,表现为rpoB基因和embB基因都发生了突变;4.4%的样本具有多药耐药性(MDR),rpoB基因和inhA基因都发生了突变。这些结果与 DST 和测序结果进行了比较。与测序法相比,生物芯片检测法对 RMP 耐药性的灵敏度为 96.5%,特异性为 100%。对于 EMB 和 INH,结果与测序完全一致。这项研究首次证明了 PC-TEMs 可用于开发 DNA 生物芯片,以检测与 M.tb 耐药性相关的突变。所开发的 DNA 生物芯片能准确检测出培养分离物中存在的不同突变,从而为临床诊断提供详细可靠的数据。
{"title":"Development of DNA Bio-chip for Detection of Mutations of <i>rpoB, embB</i> and <i>inhA</i> Genes in Drug-Resistant <i>Mycobacterium Tuberculosis</i>.","authors":"Bharti Jain, Savita Kulkarni","doi":"10.1007/s12291-022-01044-w","DOIUrl":"10.1007/s12291-022-01044-w","url":null,"abstract":"<p><p>Drug-resistant (DR) tuberculosis (TB) is a global threat to health security and TB control programs. Since conventional drug susceptibility testing (DST) takes several weeks, we have developed a molecular method for the rapid identification of DR strains of <i>Mycobacterium Tuberculosis (M.tb)</i> utilizing DNA bio-chips. DNA bio-chips were prepared by immobilizing oligonucleotides (probes) on highly microporous polycarbonate track-etched membranes (PC-TEM) as novel support. Bio-chip was designed to contain 15 specific probes to detect mutations in three genes (<i>rpoB, embB, and inhA</i>). A sensitive and specific chemiluminescence based bio-chip assay was developed based on multiplex PCR followed by hybridization on bio-chip. Fifty culture isolates were used to evaluate the ability of in-house developed bio-chip to detect the mutations. Bio-chip analysis shows that 37.7% of samples show wild type sequences, 53.3% of samples were monoresistance showing resistance to either rifampicin (RMP), isoniazid (INH), or ethambutol (EMB). 4.4% of samples were polydrug resistant showing mutations in both the <i>rpoB</i> gene and <i>embB</i> gene while 4.4% of samples were multidrug-resistant (MDR), harboring mutations in the <i>rpoB</i> and <i>inhA</i> genes. The results were compared with DST and sequencing. Compared to sequencing, bio-chip assay shows a sensitivity of 96.5% and specificity of 100% for RMP resistance. For EMB and INH, the results were in complete agreement with sequencing. This study demonstrates the first-time use of PC-TEMs for developing DNA bio-chip for the detection of mutations associated with drug resistance in <i>M.tb</i>. Developed DNA bio-chip accurately detected different mutations present in culture isolates and thus provides detailed and reliable data for clinical diagnosis.</p>","PeriodicalId":13280,"journal":{"name":"Indian Journal of Clinical Biochemistry","volume":"38 2","pages":"242-250"},"PeriodicalIF":2.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070561/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9264591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This was a prospective observational study, conducted at a tertiary care health centre in Rajasthan. A total of 68 women with PCOS (Rotterdam criteria) attending OPD at Department of Obstetrics and Gynecology qualified as per inclusion and exclusion criteria were included in the study. Each participant was examined for anthropometric and biochemical parameters. The largest phenotypic group was phenotype A, (41.17%); followed by B (26.47%); C (20.58%), and D (P + O) phenotypes (11.76%). Hyperandrogenic phenotypes (A, B, C), had significantly higher prevalence of deranged serum glucose (fasting and postprandial), lipid profile and serum TSH than normoandrogenic phenotype D. BMI was strongly correlated with anthropometric (p < 0.001) and biochemical parameters (p < 0.05) in phenotype A among four phenotypes of PCOS. Phenotype A was the most common form of PCOS and a strong correlation of BMI with waist circumference (WC), dyslipidemia and Sub-clinical hypothyroidism (SCH) was observed in women of this phenotype of PCOS. These results indicate that phenotype A is at increased risk of CVD and diabetes and phenotype D has least metabolic risks.
{"title":"Correlation of Body Mass Index with Anthropometric and Biochemical Parameters Among Polycystic Ovary Syndrome Phenotypes.","authors":"Tanuja Mehra, Sonali Sharma, Tasneem Zahra, Sapna Jangir, Barkha Gupta","doi":"10.1007/s12291-022-01042-y","DOIUrl":"10.1007/s12291-022-01042-y","url":null,"abstract":"<p><p>This was a prospective observational study, conducted at a tertiary care health centre in Rajasthan. A total of 68 women with PCOS (Rotterdam criteria) attending OPD at Department of Obstetrics and Gynecology qualified as per inclusion and exclusion criteria were included in the study. Each participant was examined for anthropometric and biochemical parameters. The largest phenotypic group was phenotype A, (41.17%); followed by B (26.47%); C (20.58%), and D (P + O) phenotypes (11.76%). Hyperandrogenic phenotypes (A, B, C), had significantly higher prevalence of deranged serum glucose (fasting and postprandial), lipid profile and serum TSH than normoandrogenic phenotype D. BMI was strongly correlated with anthropometric (<i>p</i> < 0.001) and biochemical parameters (<i>p</i> < 0.05) in phenotype A among four phenotypes of PCOS. Phenotype A was the most common form of PCOS and a strong correlation of BMI with waist circumference (WC), dyslipidemia and Sub-clinical hypothyroidism (SCH) was observed in women of this phenotype of PCOS. These results indicate that phenotype A is at increased risk of CVD and diabetes and phenotype D has least metabolic risks.</p>","PeriodicalId":13280,"journal":{"name":"Indian Journal of Clinical Biochemistry","volume":"38 2","pages":"231-241"},"PeriodicalIF":2.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070586/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9264593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1007/s12291-023-01127-2
Priyanka Tiwari, Nitika Singh, Bechan Sharma
Arthritis is a clinical condition, which mainly affects the structure and function joints. During this condition the joints gets swelled and stiffed resulting into development of pain and morbidity. Corticosteroids are frequently prescribed to manage various clinical conditions including the chronic inflammatory diseases such as arthritis. The steroidal drug also causes certain adverse effects depending on the dose, the route of administration and duration of treatment. However, a systematic investigation on the biochemical consequences of steroids as a therapeutic has not been carried out. In the present study we analyzed certain parameters associated to oxidative stress, liver function and energy metabolism has been done in the blood plasma of the arthritis patients who were using steroidal drugs (methylprednisolone and deflazacort) up to 168 days for the treatment of the disease. The results indicated increase in level of MDA and decrease in the activities of SOD, CAT and LDH. The activities of AST and ALT were found to be significantly enhanced over the increase in the treatment period. These results suggested that corticosteroids may induce lipid peroxidation, oxidative stress and liver toxicity in the arthritis patients in the dose and duration dependent manner. The use of antioxidants as supplements to the anti-arthritis agents could play a role in suppressing the oxidative stress mediated adverse effects. However, extensive research is required to explore for safer medication devoid of steroids to cure arthritis.
{"title":"Long Term Treatment of Corticostreroids May Cause Hepatotoxicity and Oxidative Damage: A Case Controlled Study.","authors":"Priyanka Tiwari, Nitika Singh, Bechan Sharma","doi":"10.1007/s12291-023-01127-2","DOIUrl":"10.1007/s12291-023-01127-2","url":null,"abstract":"<p><p>Arthritis is a clinical condition, which mainly affects the structure and function joints. During this condition the joints gets swelled and stiffed resulting into development of pain and morbidity. Corticosteroids are frequently prescribed to manage various clinical conditions including the chronic inflammatory diseases such as arthritis. The steroidal drug also causes certain adverse effects depending on the dose, the route of administration and duration of treatment. However, a systematic investigation on the biochemical consequences of steroids as a therapeutic has not been carried out. In the present study we analyzed certain parameters associated to oxidative stress, liver function and energy metabolism has been done in the blood plasma of the arthritis patients who were using steroidal drugs (methylprednisolone and deflazacort) up to 168 days for the treatment of the disease. The results indicated increase in level of MDA and decrease in the activities of SOD, CAT and LDH. The activities of AST and ALT were found to be significantly enhanced over the increase in the treatment period. These results suggested that corticosteroids may induce lipid peroxidation, oxidative stress and liver toxicity in the arthritis patients in the dose and duration dependent manner. The use of antioxidants as supplements to the anti-arthritis agents could play a role in suppressing the oxidative stress mediated adverse effects. However, extensive research is required to explore for safer medication devoid of steroids to cure arthritis.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":13280,"journal":{"name":"Indian Journal of Clinical Biochemistry","volume":" ","pages":"1-9"},"PeriodicalIF":2.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10066027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9713021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MicroRNAs (miRNAs) are small endogenous, non-coding RNA molecules that can modulate the expression of their target genes. Since its discovery, an enormous breakthrough has been established regarding its biogenesis and pathophysiological action, which has revolutionized the field of molecular biology. In addition, recent studies have identified the existence of stable extracellular/circulating miRNAs tissues and in biological fluids like blood where they are safeguarded from endogenous ribonuclease activity. Type 2 diabetes mellitus (T2DM) has emerged as a prime health issue worldwide. Incidence has increased considerably over the past decade. There are various tests that have been employed to diagnose T2DM. But for early detection and development, the establishment of biomarkers are of paramount importance. Contemporary evidence also validates the signature of a set of this epigenetic factor miRNA in the development of various diseases, including T2DM. This article reviews the contemporary corroboration associating miRNAs and T2DM and emphasizes the potential role of miRNA as a circulatory biomarker that could alert the growing prevalence of T2DM. Also, it acknowledges the valuable compendium of information regarding biogenesis and functional role of circulating miRNA in insulin resistance which is intimately linked to T2DM.
Supplementary information: The online version contains supplementary material available at 10.1007/s12291-022-01069-1.
{"title":"A comprehensive overview on Micro RNA signature in type 2 diabetes Mellitus and its complications.","authors":"Sanjukta Mishra, Jyotirmayee Bahinipati, RajLaxmi Sarangi, Soumya Ranjan Mohapatra, Swarnalata Das, Amaresh Mishra","doi":"10.1007/s12291-022-01069-1","DOIUrl":"https://doi.org/10.1007/s12291-022-01069-1","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are small endogenous, non-coding RNA molecules that can modulate the expression of their target genes. Since its discovery, an enormous breakthrough has been established regarding its biogenesis and pathophysiological action, which has revolutionized the field of molecular biology. In addition, recent studies have identified the existence of stable extracellular/circulating miRNAs tissues and in biological fluids like blood where they are safeguarded from endogenous ribonuclease activity. Type 2 diabetes mellitus (T2DM) has emerged as a prime health issue worldwide. Incidence has increased considerably over the past decade. There are various tests that have been employed to diagnose T2DM. But for early detection and development, the establishment of biomarkers are of paramount importance. Contemporary evidence also validates the signature of a set of this epigenetic factor miRNA in the development of various diseases, including T2DM. This article reviews the contemporary corroboration associating miRNAs and T2DM and emphasizes the potential role of miRNA as a circulatory biomarker that could alert the growing prevalence of T2DM. Also, it acknowledges the valuable compendium of information regarding biogenesis and functional role of circulating miRNA in insulin resistance which is intimately linked to T2DM.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12291-022-01069-1.</p>","PeriodicalId":13280,"journal":{"name":"Indian Journal of Clinical Biochemistry","volume":"38 2","pages":"151-158"},"PeriodicalIF":2.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441834/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9259277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Serum hyperviscosity is a rare laboratory finding. Amongst several causes of serum hyperviscosity, malignant disorders are quite common. Monoclonal gammopathy is a family of disorders in which monoclonal gammopathy of unknown significance (MGUS) and smoldering myeloma are the asymptomatic variants whereas multiple myeloma is the malignant variant showing different signs and symptoms related to bone lesions, renal failure and anemia. Initially during sample preparation, pipetting of a serum sample was found to be cumbersome. This sample during routine analysis in the automated analyser flagged repeated alarms for clot detection indicating a possibility of a hyper viscous sample. Serum was subjected to fibrinogen and D- dimer test. The D-Dimer levels were found to be normal and fibrinogen levels were mildly elevated. Routine biochemistry investigations were normal except grossly reversed A/G ratio. Due to gross reversal of A/G ratio, the possibility of Multiple myeloma was entertained. Physician's were alerted on telephone. Serum was sent for electrophoresis which showeda M spike. Bone marrow aspirate showed 13% plasma cells. Considering the above lab results the diagnosis of monoclonal gammopathy of smoldering type was considered. The sample was traced to a 77 years old male, who presented to Medicine OPD with the chief complaints of generalised weakness for two months without any history of fever. On physical examination pallor was evident but there was no icterus, cyanosis, clubbing, lymphadenopathy or edema. On haematological evaluation patient was found to be anemic. Careful tracking of hyperviscous patient's serum followed up by thorough investigation led us to the final conclusion that the case mentioned is a rare case of Smoldering type of multiple myeloma.
{"title":"Smouldering Myeloma: Chasing a Hyperviscous Sample.","authors":"Amandeep Birdi, Arun Sinha, Mithu Banerjee, Maithili Karpaga SelviN","doi":"10.1007/s12291-021-00990-1","DOIUrl":"10.1007/s12291-021-00990-1","url":null,"abstract":"<p><p>Serum hyperviscosity is a rare laboratory finding. Amongst several causes of serum hyperviscosity, malignant disorders are quite common. Monoclonal gammopathy is a family of disorders in which monoclonal gammopathy of unknown significance (MGUS) and smoldering myeloma are the asymptomatic variants whereas multiple myeloma is the malignant variant showing different signs and symptoms related to bone lesions, renal failure and anemia. Initially during sample preparation, pipetting of a serum sample was found to be cumbersome. This sample during routine analysis in the automated analyser flagged repeated alarms for clot detection indicating a possibility of a hyper viscous sample. Serum was subjected to fibrinogen and D- dimer test. The D-Dimer levels were found to be normal and fibrinogen levels were mildly elevated. Routine biochemistry investigations were normal except grossly reversed A/G ratio. Due to gross reversal of A/G ratio, the possibility of Multiple myeloma was entertained. Physician's were alerted on telephone. Serum was sent for electrophoresis which showeda M spike. Bone marrow aspirate showed 13% plasma cells. Considering the above lab results the diagnosis of monoclonal gammopathy of smoldering type was considered. The sample was traced to a 77 years old male, who presented to Medicine OPD with the chief complaints of generalised weakness for two months without any history of fever. On physical examination pallor was evident but there was no icterus, cyanosis, clubbing, lymphadenopathy or edema. On haematological evaluation patient was found to be anemic. <b>C</b>areful tracking of hyperviscous patient's serum followed up by thorough investigation led us to the final conclusion that the case mentioned is a rare case of Smoldering type of multiple myeloma.</p>","PeriodicalId":13280,"journal":{"name":"Indian Journal of Clinical Biochemistry","volume":"38 2","pages":"279-283"},"PeriodicalIF":2.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070547/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9264592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}