All-solid-state lithium metal batteries have reshaped emerging safe battery technologies. However, their low metal ion transport and unstable electrode electrolyte interface make their mass production a huge question. To bridge the emerging solid state and traditional liquid electrolytes, we focus on Quasi-Composite Polymer electrolytes (QCPE). Herein, we develop QCPE with active 3D alumino-silicate zeolitic ion conduction pathways embedded in a polymer matrix using two techniques- solution casting and electrospinning. Electrospun QCPE outperforms Solution cast QCPE by achieving high amorphous behavior. Prompt elimination of solvent during electrospinning decreases bulk resistance and increases its ionic conductivity. The Zeolitic pathway anchored by hydroxyl groups of PVA polymer acts as a highway for Li+ ions. It exhibits highly stable platting stripping vs Li+/Li for 450 hours with low overpotential, confirming the interfacial compatibility and dendrite-free cycling at lithium metal anode. Controlled lithium-ion nucleation regulated by evenly distributed zeolitic pathway is an interesting front of this work. To test QCPE's performance in Lithium metal battery (LMB), the electrospun QCPE is used to fabricate LMB with LiFePO4 cathode. This battery system delivered a high capacity of 155 mAh g−1 at 0.1 C. In addition to the high performance, electrospun QCPE production is scalable at an industrial scale.
Regulating the performance of hydrogel electrolytes by Hofmeister effect has attracted great interest. However, the Hofmeister effects of cations on the conductivity of hydrogel electrolytes are rarely reported. Here, hydrogel electrolytes (polySA) have been fabricated by random copolymerization of zwitterionic monomers in the presence of NH4Cl, NaCl and LiCl. The weak interaction between NH4+ with water and molecular chains makes polySA-NH4+ electrolyte have high conductivity at room temperatures, whereas the strong interaction between Li+ with water and molecular chains makes polySA-Li+ electrolyte possess good anti-freezing properties and high mechanical strength. The polySA-Li+ hydrogel electrolyte can have a conductivity of 9.63 mS cm−1 at −35 °C. Supercapacitors assembled with polySA-Li+ offers high specific capacitance of 52.25 F g−1 at 25 °C and 47.75 F g−1 at −35 °C. The capacitance retention is 94.64 % after 10 days at −35 °C. Our work shows that different properties of hydrogel electrolytes can be achieved by regulating Hofmeister effect, which provides a new way to prepare high-performance energy storage materials.