首页 > 最新文献

IEEE/ACM Transactions on Computational Biology and Bioinformatics最新文献

英文 中文
MMD-DTA: A multi-modal deep learning framework for drug-target binding affinity and binding region prediction. MMD-DTA:用于药物与目标结合亲和力和结合区域预测的多模态深度学习框架。
IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-29 DOI: 10.1109/TCBB.2024.3451985
Qi Zhang, Yuxiao Wei, Bo Liao, Liwei Liu, Shengli Zhang

The prediction of drug-target affinity (DTA) plays a crucial role in drug development and the identification of potential drug targets. In recent years, computer-assisted DTA prediction has emerged as a significant approach in this field. In this study, we propose a multi-modal deep learning framework called MMD-DTA for predicting drug-target binding affinity and binding regions. The model can predict DTA while simultaneously learning the binding regions of drug-target interactions through unsupervised learning. To achieve this, MMD-DTA first uses graph neural networks and target structural feature extraction network to extract multi-modal information from the sequences and structures of drugs and targets. It then utilizes the feature interaction and fusion modules to generate interaction descriptors for predicting DTA and interaction strength for binding region prediction. Our experimental results demonstrate that MMD-DTA outperforms existing models based on key evaluation metrics. Furthermore, external validation results indicate that MMD-DTA enhances the generalization capability of the model by integrating sequence and structural information of drugs and targets. The model trained on the benchmark dataset can effectively generalize to independent virtual screening tasks. The visualization of drug-target binding region prediction showcases the interpretability of MMD-DTA, providing valuable insights into the functional regions of drug molecules that interact with proteins.

药物-靶点亲和力(DTA)预测在药物开发和潜在药物靶点鉴定中起着至关重要的作用。近年来,计算机辅助 DTA 预测已成为该领域的一种重要方法。在本研究中,我们提出了一种名为 MMD-DTA 的多模态深度学习框架,用于预测药物与靶点的结合亲和力和结合区域。该模型可以在预测 DTA 的同时,通过无监督学习学习药物-靶点相互作用的结合区域。为此,MMD-DTA 首先使用图神经网络和靶标结构特征提取网络,从药物和靶标的序列和结构中提取多模态信息。然后,它利用特征交互和融合模块生成用于预测 DTA 的交互描述符和用于预测结合区域的交互强度。我们的实验结果表明,基于关键评价指标,MMD-DTA 优于现有模型。此外,外部验证结果表明,MMD-DTA 通过整合药物和靶标的序列和结构信息,增强了模型的泛化能力。在基准数据集上训练的模型可以有效地泛化到独立的虚拟筛选任务中。药物-靶点结合区域预测的可视化展示了 MMD-DTA 的可解释性,为了解药物分子与蛋白质相互作用的功能区域提供了宝贵的见解。
{"title":"MMD-DTA: A multi-modal deep learning framework for drug-target binding affinity and binding region prediction.","authors":"Qi Zhang, Yuxiao Wei, Bo Liao, Liwei Liu, Shengli Zhang","doi":"10.1109/TCBB.2024.3451985","DOIUrl":"https://doi.org/10.1109/TCBB.2024.3451985","url":null,"abstract":"<p><p>The prediction of drug-target affinity (DTA) plays a crucial role in drug development and the identification of potential drug targets. In recent years, computer-assisted DTA prediction has emerged as a significant approach in this field. In this study, we propose a multi-modal deep learning framework called MMD-DTA for predicting drug-target binding affinity and binding regions. The model can predict DTA while simultaneously learning the binding regions of drug-target interactions through unsupervised learning. To achieve this, MMD-DTA first uses graph neural networks and target structural feature extraction network to extract multi-modal information from the sequences and structures of drugs and targets. It then utilizes the feature interaction and fusion modules to generate interaction descriptors for predicting DTA and interaction strength for binding region prediction. Our experimental results demonstrate that MMD-DTA outperforms existing models based on key evaluation metrics. Furthermore, external validation results indicate that MMD-DTA enhances the generalization capability of the model by integrating sequence and structural information of drugs and targets. The model trained on the benchmark dataset can effectively generalize to independent virtual screening tasks. The visualization of drug-target binding region prediction showcases the interpretability of MMD-DTA, providing valuable insights into the functional regions of drug molecules that interact with proteins.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142106991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Validation of a Comprehensive Analysis of the Competing Endogenous circRNA/miRNA/mRNA Network for the Identification of Immune-Related Targets in Esophageal Squamous Cell Carcinoma. 开发并验证用于识别食管鳞状细胞癌免疫相关靶点的竞争性内源性 circRNA/miRNA/mRNA 网络综合分析方法
IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-29 DOI: 10.1109/TCBB.2024.3443854
Chu-Ting Yu, Bo Tian, Qian-Qian Meng, Zhe-Ran Chen, Ya-Nan Pang, Xun Zhang, Yan Bian, Si-Wei Zhou, Mei-Juan Hao, Ye Gao, Lei Xin, Han Lin, Wei Wang, Luo-Wei Wang

Immunotherapy for esophageal squamous cell carcinoma (ESCC) exhibits notable variability in efficacy. Concurrently, recent research emphasizes circRNAs' impact on the ESCC tumor microenvironment. To further explore the relationship, we leveraged circRNA, microRNA, and mRNA sequence datasets to construct a comprehensive immune-related circRNA-microRNA-mRNA network, revealing competing endogenous RNA (ceRNA) roles in ESCC. The network comprises 16 circular RNAs, 13 microRNAs, and 1,560 mRNAs. Weighted gene co-expression analysis identified immune-related modules, notably cancer-associated fibroblast (CAF) and myeloid-derived suppressor cell modules, correlating significantly with immune and stemness scores. Among them, the CAF module plays a crucial role in extracellular matrix function and effectively discriminates ESCC patients. Four hub collagen family genes within CAF correlated robustly with CAF, macrophage infiltration, and T-cell exclusion. In-house sequencing and RT-qPCR validated their elevated expression. We also identified CAF module-targeting drugs as potential ESCC treatments. In summary, we established an immune-related circRNA-miRNA-mRNA network that not only illuminates ceRNA functionality but also highlights circRNAs' involvement in the CAF through collagen gene targeting. These findings hold promise to predict ESCC immune landscapes and therapy responses, ultimately aiding in more personalized and effective clinical decision-making.

食管鳞状细胞癌(ESCC)的免疫疗法在疗效上表现出明显的差异性。同时,最近的研究强调了 circRNA 对 ESCC 肿瘤微环境的影响。为了进一步探索这种关系,我们利用循环RNA、microRNA和mRNA序列数据集构建了一个全面的免疫相关循环RNA-microRNA-mRNA网络,揭示了内源性RNA(ceRNA)在ESCC中的竞争性作用。该网络包括16个环状RNA、13个microRNA和1,560个mRNA。加权基因共表达分析确定了免疫相关模块,特别是癌症相关成纤维细胞(CAF)和髓源抑制细胞模块,它们与免疫和干性评分显著相关。其中,CAF 模块在细胞外基质功能中起着关键作用,能有效区分 ESCC 患者。CAF中的四个枢纽胶原家族基因与CAF、巨噬细胞浸润和T细胞排斥密切相关。内部测序和 RT-qPCR 验证了它们的表达升高。我们还发现了可用于治疗 ESCC 的 CAF 模块靶向药物。总之,我们建立了一个与免疫相关的 circRNA-miRNA-mRNA 网络,它不仅阐明了 ceRNA 的功能,还强调了 circRNA 通过胶原基因靶向参与 CAF。这些发现有望预测 ESCC 的免疫景观和治疗反应,最终帮助做出更个性化、更有效的临床决策。
{"title":"Development and Validation of a Comprehensive Analysis of the Competing Endogenous circRNA/miRNA/mRNA Network for the Identification of Immune-Related Targets in Esophageal Squamous Cell Carcinoma.","authors":"Chu-Ting Yu, Bo Tian, Qian-Qian Meng, Zhe-Ran Chen, Ya-Nan Pang, Xun Zhang, Yan Bian, Si-Wei Zhou, Mei-Juan Hao, Ye Gao, Lei Xin, Han Lin, Wei Wang, Luo-Wei Wang","doi":"10.1109/TCBB.2024.3443854","DOIUrl":"https://doi.org/10.1109/TCBB.2024.3443854","url":null,"abstract":"<p><p>Immunotherapy for esophageal squamous cell carcinoma (ESCC) exhibits notable variability in efficacy. Concurrently, recent research emphasizes circRNAs' impact on the ESCC tumor microenvironment. To further explore the relationship, we leveraged circRNA, microRNA, and mRNA sequence datasets to construct a comprehensive immune-related circRNA-microRNA-mRNA network, revealing competing endogenous RNA (ceRNA) roles in ESCC. The network comprises 16 circular RNAs, 13 microRNAs, and 1,560 mRNAs. Weighted gene co-expression analysis identified immune-related modules, notably cancer-associated fibroblast (CAF) and myeloid-derived suppressor cell modules, correlating significantly with immune and stemness scores. Among them, the CAF module plays a crucial role in extracellular matrix function and effectively discriminates ESCC patients. Four hub collagen family genes within CAF correlated robustly with CAF, macrophage infiltration, and T-cell exclusion. In-house sequencing and RT-qPCR validated their elevated expression. We also identified CAF module-targeting drugs as potential ESCC treatments. In summary, we established an immune-related circRNA-miRNA-mRNA network that not only illuminates ceRNA functionality but also highlights circRNAs' involvement in the CAF through collagen gene targeting. These findings hold promise to predict ESCC immune landscapes and therapy responses, ultimately aiding in more personalized and effective clinical decision-making.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142106989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contrasting Multi-Source Temporal Knowledge Graphs for Biomedical Hypothesis Generation. 用于生物医学假设生成的多源时态知识图谱对比。
IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-28 DOI: 10.1109/TCBB.2024.3451051
Huiwei Zhou, Wenchu Li, Weihong Yao, Yingyu Lin, Lei Du

Hypothesis Generation (HG) aims to expedite biomedical researches by generating novel hypotheses from existing scientific literature. Most existing studies focused on modeling static snapshots of the corpus, neglecting the temporal evolution of scientific terms. Despite recent efforts to learn term evolution from Knowledge Bases (KBs) for HG, the temporal information from multi-source KBs is still overlooked, which contains important, up-to-date knowledge. In this paper, an innovative Temporal Contrastive Learning (TCL) framework is introduced to uncover latent associations between entities by jointly modeling their co-evolution across multi-source temporal KBs. Specifically, we first construct a temporal relation graph based on PubMed papers and a biomedical relation database (such as Comparative Toxicogenomics Database (CTD)). Then the constructed temporal relation graph and a temporal concept graph (such as Medical Subject Headings (MeSH)) are used to train two GCN-based recurrent networks for learning the entity temporal evolutional embeddings, respectively. Finally, a cross-view temporal prediction task is designed for learning knowledge enriched temporal embeddings by contrasting the temporal embeddings learned from the two Temporal Knowledge Graphs (TKGs). Findings from experiments conducted on three real-world biomedical term relationship datasets demonstrate that the proposed approach is clearly superior to approaches based on single TKG, achieving the state-of-the-art performance.

假设生成(HG)旨在通过从现有科学文献中生成新的假设来加快生物医学研究。现有的大多数研究侧重于对语料库的静态快照进行建模,而忽视了科学术语的时间演变。尽管近年来人们努力从知识库(KBs)中学习术语演变,但来自多源知识库的时间信息仍被忽视,而这些信息包含重要的最新知识。本文引入了一个创新的时态对比学习(TCL)框架,通过对实体在多源时态知识库中的共同演变进行联合建模,发现实体之间的潜在关联。具体来说,我们首先基于 PubMed 论文和生物医学关系数据库(如比较毒物基因组学数据库 (CTD))构建时态关系图。然后,利用构建的时态关系图和时态概念图(如医学主题词表(MeSH))分别训练两个基于 GCN 的递归网络,以学习实体的时态演化嵌入。最后,通过对比从两个时态知识图谱(TKG)中学习到的时态嵌入,设计了一个跨视图时态预测任务,用于学习知识丰富的时态嵌入。在三个真实世界生物医学术语关系数据集上进行的实验结果表明,所提出的方法明显优于基于单一 TKG 的方法,达到了最先进的性能。
{"title":"Contrasting Multi-Source Temporal Knowledge Graphs for Biomedical Hypothesis Generation.","authors":"Huiwei Zhou, Wenchu Li, Weihong Yao, Yingyu Lin, Lei Du","doi":"10.1109/TCBB.2024.3451051","DOIUrl":"https://doi.org/10.1109/TCBB.2024.3451051","url":null,"abstract":"<p><p>Hypothesis Generation (HG) aims to expedite biomedical researches by generating novel hypotheses from existing scientific literature. Most existing studies focused on modeling static snapshots of the corpus, neglecting the temporal evolution of scientific terms. Despite recent efforts to learn term evolution from Knowledge Bases (KBs) for HG, the temporal information from multi-source KBs is still overlooked, which contains important, up-to-date knowledge. In this paper, an innovative Temporal Contrastive Learning (TCL) framework is introduced to uncover latent associations between entities by jointly modeling their co-evolution across multi-source temporal KBs. Specifically, we first construct a temporal relation graph based on PubMed papers and a biomedical relation database (such as Comparative Toxicogenomics Database (CTD)). Then the constructed temporal relation graph and a temporal concept graph (such as Medical Subject Headings (MeSH)) are used to train two GCN-based recurrent networks for learning the entity temporal evolutional embeddings, respectively. Finally, a cross-view temporal prediction task is designed for learning knowledge enriched temporal embeddings by contrasting the temporal embeddings learned from the two Temporal Knowledge Graphs (TKGs). Findings from experiments conducted on three real-world biomedical term relationship datasets demonstrate that the proposed approach is clearly superior to approaches based on single TKG, achieving the state-of-the-art performance.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142086095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compact Class-conditional Attribute Category Clustering: Amino Acid Grouping for Enhanced HIV-1 Protease Cleavage Classification. 紧凑型类条件属性类别聚类:用于增强 HIV-1 蛋白酶裂解分类的氨基酸分组。
IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-23 DOI: 10.1109/TCBB.2024.3448617
Jose A Saez, J Fernando Vera

Categorical attributes are common in many classification tasks, presenting certain challenges as the number of categories grows. This situation can affect data handling, negatively impacting the building time of models, their complexity and, ultimately, their classification performance. In order to mitigate these issues, this research proposes a novel preprocessing technique for grouping attribute categories in classification datasets. This approach combines the exact representation of the association between categorical values in a Euclidean space, clustering methods and attribute quality metrics to group similar attribute categories based on their contribution to the classification task. To estimate its effectiveness, the proposal is evaluated within the context of HIV-1 protease cleavage site prediction, where each attribute represents an amino acid that can take multiple possible values. The results obtained on HIV-1 real-world datasets show a significant reduction in the number of categories per attribute, with an average reduction percentage ranging from 74% to 81%. This reduction leads to simplified data representations and improved classification performances compared to not preprocessing. Specifically, improvements of up to 0.07 in accuracy and 0.19 in geometric mean are observed across different datasets and classification algorithms. Additionally, extensive simulations on synthetic datasets with varied characteristics are carried out, providing consistent and reliable results that validate the robustness of the proposal. These findings highlight the capability of the developed method to enhance cleavage prediction, which could potentially contribute to understanding viral processes and developing targeted therapeutic strategies.

分类属性在许多分类任务中都很常见,随着分类数量的增加,会带来一定的挑战。这种情况会影响数据处理,对模型的构建时间、复杂性以及最终的分类性能产生负面影响。为了缓解这些问题,本研究提出了一种新颖的预处理技术,用于对分类数据集中的属性类别进行分组。这种方法结合了欧几里得空间中分类值之间关联的精确表示、聚类方法和属性质量度量,根据相似属性类别对分类任务的贡献对其进行分组。为了评估其有效性,我们在 HIV-1 蛋白酶裂解位点预测的背景下对该建议进行了评估,其中每个属性代表一个氨基酸,可以有多种可能的值。在 HIV-1 真实世界数据集上获得的结果显示,每个属性的类别数量显著减少,平均减少比例为 74% 至 81%。与不进行预处理相比,这种减少导致了数据表示的简化和分类性能的提高。具体来说,不同数据集和分类算法的准确率和几何平均数分别提高了 0.07 和 0.19。此外,还在具有不同特征的合成数据集上进行了大量模拟,得出了一致可靠的结果,验证了该建议的稳健性。这些发现凸显了所开发的方法在增强裂解预测方面的能力,这可能有助于理解病毒过程和开发有针对性的治疗策略。
{"title":"Compact Class-conditional Attribute Category Clustering: Amino Acid Grouping for Enhanced HIV-1 Protease Cleavage Classification.","authors":"Jose A Saez, J Fernando Vera","doi":"10.1109/TCBB.2024.3448617","DOIUrl":"10.1109/TCBB.2024.3448617","url":null,"abstract":"<p><p>Categorical attributes are common in many classification tasks, presenting certain challenges as the number of categories grows. This situation can affect data handling, negatively impacting the building time of models, their complexity and, ultimately, their classification performance. In order to mitigate these issues, this research proposes a novel preprocessing technique for grouping attribute categories in classification datasets. This approach combines the exact representation of the association between categorical values in a Euclidean space, clustering methods and attribute quality metrics to group similar attribute categories based on their contribution to the classification task. To estimate its effectiveness, the proposal is evaluated within the context of HIV-1 protease cleavage site prediction, where each attribute represents an amino acid that can take multiple possible values. The results obtained on HIV-1 real-world datasets show a significant reduction in the number of categories per attribute, with an average reduction percentage ranging from 74% to 81%. This reduction leads to simplified data representations and improved classification performances compared to not preprocessing. Specifically, improvements of up to 0.07 in accuracy and 0.19 in geometric mean are observed across different datasets and classification algorithms. Additionally, extensive simulations on synthetic datasets with varied characteristics are carried out, providing consistent and reliable results that validate the robustness of the proposal. These findings highlight the capability of the developed method to enhance cleavage prediction, which could potentially contribute to understanding viral processes and developing targeted therapeutic strategies.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142043936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NeoMS: Mass Spectrometry-based Method for Uncovering Mutated MHC-I Neoantigens. NeoMS:基于质谱的发现变异 MHC-I 新抗原的方法。
IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-22 DOI: 10.1109/TCBB.2024.3447746
Shaokai Wang, Ming Zhu, Bin Ma

Major Histocompatibility Complex (MHC) molecules play a critical role in the immune system by presenting peptides on the cell surface for recognition by T-cells. Tumor cells often produce MHC peptides with amino acid mutations, known as neoantigens, which evade T-cell recognition, leading to rapid tumor growth. In immunotherapies such as TCR-T and CAR-T, identifying these mutated MHC peptide sequences is crucial. Current mass spectrometry-based peptide identification methods primarily rely on database searching, which fails to detect mutated peptides not present in human databases. In this paper, we propose a novel workflow called NeoMS, designed to efficiently identify both non-mutated and mutated MHC-I peptides from mass spectrometry data. NeoMS utilizes a tagging algorithm to generate an expanded sequence database that includes potential mutated proteins for each sample. Furthermore, it employs a machine learning-based scoring function for each peptide-spectrum match (PSM) to maximize search sensitivity. Finally, a rigorous target-decoy approach is implemented to control the false discovery rates (FDR) of the peptides with and without mutations separately. Experimental results for regular peptides demonstrate that NeoMS outperforms four benchmark methods. For mutated peptides, NeoMS successfully identifies hundreds of high-quality mutated peptides in a melanoma-associated sample, with their validity confirmed by further studies.

主要组织相容性复合物(MHC)分子在免疫系统中发挥着关键作用,它在细胞表面呈现肽,供 T 细胞识别。肿瘤细胞通常会产生氨基酸突变的 MHC 多肽,即所谓的新抗原,它们会逃避 T 细胞的识别,导致肿瘤快速生长。在 TCR-T 和 CAR-T 等免疫疗法中,识别这些突变的 MHC 肽序列至关重要。目前基于质谱的多肽识别方法主要依赖于数据库搜索,但这种方法无法检测到人类数据库中不存在的突变多肽。在本文中,我们提出了一种名为 NeoMS 的新型工作流程,旨在从质谱数据中有效识别非突变和突变 MHC-I 肽。NeoMS 利用标记算法生成一个扩展序列数据库,其中包括每个样本的潜在突变蛋白质。此外,它还对每个肽谱匹配(PSM)采用基于机器学习的评分函数,以最大限度地提高搜索灵敏度。最后,它采用了一种严格的目标诱饵方法,分别控制有突变和无突变肽段的错误发现率(FDR)。针对常规多肽的实验结果表明,NeoMS优于四种基准方法。对于突变肽,NeoMS在黑色素瘤相关样本中成功鉴定出了数百个高质量的突变肽,其有效性得到了进一步研究的证实。
{"title":"NeoMS: Mass Spectrometry-based Method for Uncovering Mutated MHC-I Neoantigens.","authors":"Shaokai Wang, Ming Zhu, Bin Ma","doi":"10.1109/TCBB.2024.3447746","DOIUrl":"https://doi.org/10.1109/TCBB.2024.3447746","url":null,"abstract":"<p><p>Major Histocompatibility Complex (MHC) molecules play a critical role in the immune system by presenting peptides on the cell surface for recognition by T-cells. Tumor cells often produce MHC peptides with amino acid mutations, known as neoantigens, which evade T-cell recognition, leading to rapid tumor growth. In immunotherapies such as TCR-T and CAR-T, identifying these mutated MHC peptide sequences is crucial. Current mass spectrometry-based peptide identification methods primarily rely on database searching, which fails to detect mutated peptides not present in human databases. In this paper, we propose a novel workflow called NeoMS, designed to efficiently identify both non-mutated and mutated MHC-I peptides from mass spectrometry data. NeoMS utilizes a tagging algorithm to generate an expanded sequence database that includes potential mutated proteins for each sample. Furthermore, it employs a machine learning-based scoring function for each peptide-spectrum match (PSM) to maximize search sensitivity. Finally, a rigorous target-decoy approach is implemented to control the false discovery rates (FDR) of the peptides with and without mutations separately. Experimental results for regular peptides demonstrate that NeoMS outperforms four benchmark methods. For mutated peptides, NeoMS successfully identifies hundreds of high-quality mutated peptides in a melanoma-associated sample, with their validity confirmed by further studies.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Method for Inferring Polymers Based on Linear Regression and Integer Programming. 基于线性回归和整数编程的聚合物推断方法。
IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-22 DOI: 10.1109/TCBB.2024.3447780
Ryota Ido, Shengjuan Cao, Jianshen Zhu, Naveed Ahmed Azam, Kazuya Haraguchi, Liang Zhao, Hiroshi Nagamochi, Tatsuya Akutsu

A novel framework has recently been proposed for designing the molecular structure of chemical compounds with a desired chemical property using both artificial neural networks and mixed integer linear programming. In this paper, we design a new method for inferring a polymer based on the framework. For this, we introduce a new way of representing a polymer as a form of monomer and define new descriptors that feature the structure of polymers. We also use linear regression as a building block of constructing a prediction function in the framework. The results of our computational experiments reveal a set of chemical properties on polymers to which a prediction function constructed with linear regression performs well. We also observe that the proposed method can infer polymers with up to 50 nonhydrogen atoms in a monomer form.

最近有人提出了一种新的框架,利用人工神经网络和混合整数线性规划设计具有所需化学特性的化合物分子结构。在本文中,我们根据该框架设计了一种推断聚合物的新方法。为此,我们引入了一种将聚合物表示为单体形式的新方法,并定义了具有聚合物结构特征的新描述符。我们还将线性回归作为构建该框架预测函数的基础模块。我们的计算实验结果揭示了聚合物的一系列化学特性,用线性回归构建的预测函数对这些特性表现良好。我们还发现,所提出的方法可以推断出单体中含有多达 50 个非氢原子的聚合物。
{"title":"A Method for Inferring Polymers Based on Linear Regression and Integer Programming.","authors":"Ryota Ido, Shengjuan Cao, Jianshen Zhu, Naveed Ahmed Azam, Kazuya Haraguchi, Liang Zhao, Hiroshi Nagamochi, Tatsuya Akutsu","doi":"10.1109/TCBB.2024.3447780","DOIUrl":"10.1109/TCBB.2024.3447780","url":null,"abstract":"<p><p>A novel framework has recently been proposed for designing the molecular structure of chemical compounds with a desired chemical property using both artificial neural networks and mixed integer linear programming. In this paper, we design a new method for inferring a polymer based on the framework. For this, we introduce a new way of representing a polymer as a form of monomer and define new descriptors that feature the structure of polymers. We also use linear regression as a building block of constructing a prediction function in the framework. The results of our computational experiments reveal a set of chemical properties on polymers to which a prediction function constructed with linear regression performs well. We also observe that the proposed method can infer polymers with up to 50 nonhydrogen atoms in a monomer form.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KGRACDA: A Model Based on Knowledge Graph from Recursion and Attention Aggregation for CircRNA-disease Association Prediction. KGRACDA:基于知识图谱的递归和注意力聚合的 CircRNA-疾病关联预测模型
IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-21 DOI: 10.1109/TCBB.2024.3447110
Ying Wang, Maoyuan Ma, Yanxin Xie, Qinke Peng, Hongqiang Lyu, Hequan Sun, Laiyi Fu

CircRNA is closely related to human disease, so it is important to predict circRNA-disease association (CDA). However, the traditional biological detection methods have high difficulty and low accuracy, and computational methods represented by deep learning ignore the ability of the model to explicitly extract local depth information of the CDA. We propose a model based on knowledge graph from recursion and attention aggregation for circRNA-disease association prediction (KGRACDA). This model combines explicit structural features and implicit embedding information of graphs, optimizing graph embedding vectors. First, we built large-scale, multi-source heterogeneous datasets and construct a knowledge graph of multiple RNAs and diseases. After that, we use a recursive method to build multi-hop subgraphs and optimize graph attention mechanism by gating mechanism, mining local depth information. At the same time, the model uses multi-head attention mechanism to balance global and local depth features of graphs, and generate CDA prediction scores. KGRACDA surpasses other methods by capturing local and global depth information related to CDA. We update an interactive web platform HNRBase v2.0, which visualizes circRNA data, and allows users to download data and predict CDA using model.

循环RNA与人类疾病密切相关,因此预测循环RNA与疾病的关联(CDA)非常重要。然而,传统的生物检测方法难度高、准确率低,以深度学习为代表的计算方法忽视了模型显式提取CDA局部深度信息的能力。我们提出了一种基于知识图谱的循环RNA-疾病关联预测模型(KGRACDA)。该模型结合了图的显式结构特征和隐式嵌入信息,优化了图嵌入向量。首先,我们建立了大规模、多源异构数据集,并构建了多个 RNA 和疾病的知识图谱。之后,我们使用递归方法构建多跳子图,并通过门控机制优化图关注机制,挖掘局部深度信息。同时,该模型采用多头关注机制来平衡图的全局和局部深度特征,并生成 CDA 预测分数。KGRACDA 通过捕捉与 CDA 相关的局部和全局深度信息,超越了其他方法。我们更新了交互式网络平台 HNRBase v2.0,该平台将 circRNA 数据可视化,用户可以下载数据并利用模型预测 CDA。
{"title":"KGRACDA: A Model Based on Knowledge Graph from Recursion and Attention Aggregation for CircRNA-disease Association Prediction.","authors":"Ying Wang, Maoyuan Ma, Yanxin Xie, Qinke Peng, Hongqiang Lyu, Hequan Sun, Laiyi Fu","doi":"10.1109/TCBB.2024.3447110","DOIUrl":"https://doi.org/10.1109/TCBB.2024.3447110","url":null,"abstract":"<p><p>CircRNA is closely related to human disease, so it is important to predict circRNA-disease association (CDA). However, the traditional biological detection methods have high difficulty and low accuracy, and computational methods represented by deep learning ignore the ability of the model to explicitly extract local depth information of the CDA. We propose a model based on knowledge graph from recursion and attention aggregation for circRNA-disease association prediction (KGRACDA). This model combines explicit structural features and implicit embedding information of graphs, optimizing graph embedding vectors. First, we built large-scale, multi-source heterogeneous datasets and construct a knowledge graph of multiple RNAs and diseases. After that, we use a recursive method to build multi-hop subgraphs and optimize graph attention mechanism by gating mechanism, mining local depth information. At the same time, the model uses multi-head attention mechanism to balance global and local depth features of graphs, and generate CDA prediction scores. KGRACDA surpasses other methods by capturing local and global depth information related to CDA. We update an interactive web platform HNRBase v2.0, which visualizes circRNA data, and allows users to download data and predict CDA using model.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parallel convolutional contrastive learning method for enzyme function prediction. 用于酶功能预测的并行卷积对比学习方法。
IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-21 DOI: 10.1109/TCBB.2024.3447037
Xindi Yu, Shusen Zhou, Mujun Zang, Qingjun Wang, Chanjuan Liu, Tong Liu

The function labeling of enzymes has a wide range of application value in the medical field, industrial biology and other fields. Scientists define enzyme categories by enzyme commission (EC) numbers. At present, although there are some tools for enzyme function prediction, their effects have not reached the application level. To improve the precision of enzyme function prediction, we propose a parallel convolutional contrastive learning (PCCL) method to predict enzyme functions. First, we use the advanced protein language model ESM-2 to preprocess the protein sequences. Second, PCCL combines convolutional neural networks (CNNs) and contrastive learning to improve the prediction precision of multifunctional enzymes. Contrastive learning can make the model better deal with the problem of class imbalance. Finally, the deep learning framework is mainly composed of three parallel CNNs for fully extracting sample features. we compare PCCL with state-of-art enzyme function prediction methods based on three evaluation metrics. The performance of our model improves on both two test sets. Especially on the smaller test set, PCCL improves the AUC by 2.57%. The source code can be downloaded from https://github.com/biomg/PCCL.

酶的功能标记在医学领域、工业生物学和其他领域具有广泛的应用价值。科学家通过酶委员会(EC)编号来定义酶的类别。目前,虽然已有一些酶功能预测工具,但其效果尚未达到应用水平。为了提高酶功能预测的精度,我们提出了一种并行卷积对比学习(PCCL)方法来预测酶功能。首先,我们使用先进的蛋白质语言模型 ESM-2 对蛋白质序列进行预处理。其次,PCCL 将卷积神经网络(CNN)和对比学习相结合,提高了多功能酶的预测精度。对比学习可以使模型更好地处理类不平衡问题。最后,深度学习框架主要由三个并行的 CNN 组成,用于全面提取样本特征。我们基于三个评估指标将 PCCL 与最先进的酶功能预测方法进行了比较。我们的模型在两个测试集上的性能都有所提高。特别是在较小的测试集上,PCCL 的 AUC 提高了 2.57%。源代码可从 https://github.com/biomg/PCCL 下载。
{"title":"Parallel convolutional contrastive learning method for enzyme function prediction.","authors":"Xindi Yu, Shusen Zhou, Mujun Zang, Qingjun Wang, Chanjuan Liu, Tong Liu","doi":"10.1109/TCBB.2024.3447037","DOIUrl":"https://doi.org/10.1109/TCBB.2024.3447037","url":null,"abstract":"<p><p>The function labeling of enzymes has a wide range of application value in the medical field, industrial biology and other fields. Scientists define enzyme categories by enzyme commission (EC) numbers. At present, although there are some tools for enzyme function prediction, their effects have not reached the application level. To improve the precision of enzyme function prediction, we propose a parallel convolutional contrastive learning (PCCL) method to predict enzyme functions. First, we use the advanced protein language model ESM-2 to preprocess the protein sequences. Second, PCCL combines convolutional neural networks (CNNs) and contrastive learning to improve the prediction precision of multifunctional enzymes. Contrastive learning can make the model better deal with the problem of class imbalance. Finally, the deep learning framework is mainly composed of three parallel CNNs for fully extracting sample features. we compare PCCL with state-of-art enzyme function prediction methods based on three evaluation metrics. The performance of our model improves on both two test sets. Especially on the smaller test set, PCCL improves the AUC by 2.57%. The source code can be downloaded from https://github.com/biomg/PCCL.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating K+ Entities into Coreference Resolution on Biomedical Texts. 将 K+ 实体整合到生物医学文本的核心参照解析中。
IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-21 DOI: 10.1109/TCBB.2024.3447273
Yufei Li, Xiaoyong Ma, Xiangyu Zhou, Penghzhen Cheng, Kai He, Tieliang Gong, Chen Li

Biomedical Coreference Resolution focuses on identifying the coreferences in biomedical texts, which normally consists of two parts: (i) mention detection to identify textual representation of biological entities and (ii) finding their coreference links. Recently, a popular approach to enhance the task is to embed knowledge base into deep neural networks. However, the way in which these methods integrate knowledge leads to the shortcoming that such knowledge may play a larger role in mention detection than coreference resolution. Specifically, they tend to integrate knowledge prior to mention detection, as part of the embeddings. Besides, they primarily focus on mention-dependent knowledge (KBase), i.e., knowledge entities directly related to mentions, while ignores the correlated knowledge (K+) between mentions in the mention-pair. For mentions with significant differences in word form, this may limit their ability to extract potential correlations between those mentions. Thus, this paper develops a novel model to integrate both KBase and K+ entities and achieves the state-of-the-art performance on BioNLP and CRAFT-CR datasets. Empirical studies on mention detection with different length reveals the effectiveness of the KBase entities. The evaluation on cross-sentence and match/mismatch coreference further demonstrate the superiority of the K+ entities in extracting background potential correlation between mentions.

生物医学核心参照解析的重点是识别生物医学文本中的核心参照,通常包括两部分:(i) 提及检测,以识别生物实体的文本表示;(ii) 寻找其核心参照链接。最近,一种增强任务的流行方法是将知识库嵌入深度神经网络。然而,这些方法整合知识的方式导致了一个缺陷,即这些知识在提及检测中的作用可能大于核心参照解析。具体来说,这些方法倾向于在提及检测之前整合知识,将其作为嵌入的一部分。此外,它们主要关注与提及相关的知识(KBase),即与提及直接相关的知识实体,而忽略了提及对中提及之间的相关知识(K+)。对于词形差异较大的提及,这可能会限制其提取这些提及之间潜在关联的能力。因此,本文开发了一种整合 KBase 和 K+ 实体的新型模型,并在 BioNLP 和 CRAFT-CR 数据集上取得了最先进的性能。对不同长度的提及检测进行的实证研究揭示了 KBase 实体的有效性。对跨句子和匹配/不匹配核心参照的评估进一步证明了 K+ 实体在提取提及之间背景潜在相关性方面的优越性。
{"title":"Integrating K+ Entities into Coreference Resolution on Biomedical Texts.","authors":"Yufei Li, Xiaoyong Ma, Xiangyu Zhou, Penghzhen Cheng, Kai He, Tieliang Gong, Chen Li","doi":"10.1109/TCBB.2024.3447273","DOIUrl":"https://doi.org/10.1109/TCBB.2024.3447273","url":null,"abstract":"<p><p>Biomedical Coreference Resolution focuses on identifying the coreferences in biomedical texts, which normally consists of two parts: (i) mention detection to identify textual representation of biological entities and (ii) finding their coreference links. Recently, a popular approach to enhance the task is to embed knowledge base into deep neural networks. However, the way in which these methods integrate knowledge leads to the shortcoming that such knowledge may play a larger role in mention detection than coreference resolution. Specifically, they tend to integrate knowledge prior to mention detection, as part of the embeddings. Besides, they primarily focus on mention-dependent knowledge (KBase), i.e., knowledge entities directly related to mentions, while ignores the correlated knowledge (K+) between mentions in the mention-pair. For mentions with significant differences in word form, this may limit their ability to extract potential correlations between those mentions. Thus, this paper develops a novel model to integrate both KBase and K+ entities and achieves the state-of-the-art performance on BioNLP and CRAFT-CR datasets. Empirical studies on mention detection with different length reveals the effectiveness of the KBase entities. The evaluation on cross-sentence and match/mismatch coreference further demonstrate the superiority of the K+ entities in extracting background potential correlation between mentions.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142017375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AirLift: A Fast and Comprehensive Technique for Remapping Alignments between Reference Genomes. AirLift:快速、全面的参考基因组间重配技术。
IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-08-19 DOI: 10.1109/TCBB.2024.3433378
Jeremie S Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Nastaran Hajinazar, Mohammed Alser, Can Alkan, Onur Mutlu

AirLift is the first read remapping tool that enables users to quickly and comprehensively map a read set, that had been previously mapped to one reference genome, to another similar reference. Users can then quickly run a downstream analysis of read sets for each latest reference release. Compared to the state-of-the-art method for remapping reads (i.e., full mapping), AirLift reduces the overall execution time to remap read sets between two reference genome versions by up to 27.4×. We validate our remapping results with GATK and find that AirLift provides high accuracy in identifying ground truth SNP/INDEL variants.

AirLift 是第一款读数重映射工具,用户可以将以前映射到一个参考基因组的读数集快速、全面地映射到另一个类似的参考基因组。然后,用户可以针对每个最新发布的参考文献快速运行读数集下游分析。与最先进的读数重映射方法(即完全映射)相比,AirLift 将两个参考基因组版本之间的读数集重映射的总体执行时间缩短了 27.4 倍。我们用 GATK 验证了我们的重映射结果,发现 AirLift 在识别地面实况 SNP/INDEL 变异方面具有很高的准确性。
{"title":"AirLift: A Fast and Comprehensive Technique for Remapping Alignments between Reference Genomes.","authors":"Jeremie S Kim, Can Firtina, Meryem Banu Cavlak, Damla Senol Cali, Nastaran Hajinazar, Mohammed Alser, Can Alkan, Onur Mutlu","doi":"10.1109/TCBB.2024.3433378","DOIUrl":"https://doi.org/10.1109/TCBB.2024.3433378","url":null,"abstract":"<p><p>AirLift is the first read remapping tool that enables users to quickly and comprehensively map a read set, that had been previously mapped to one reference genome, to another similar reference. Users can then quickly run a downstream analysis of read sets for each latest reference release. Compared to the state-of-the-art method for remapping reads (i.e., full mapping), AirLift reduces the overall execution time to remap read sets between two reference genome versions by up to 27.4×. We validate our remapping results with GATK and find that AirLift provides high accuracy in identifying ground truth SNP/INDEL variants.</p>","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"PP ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142004162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE/ACM Transactions on Computational Biology and Bioinformatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1