P. Romero, M. T. Miranda, I. Montero, F. J. Sepúlveda, V. Valero-Amaro
Thermal comfort in educational buildings affects not only the well-being of students but also their academic performance. Over time, various methods have been developed to assess it. However, none of them takes into account the adaptation of students of different ages, which is an important issue. In recent years, the study of thermal comfort has become very important due to energy-saving measures and ventilation protocols to combat the spread of the SARS-CoV-2 coronavirus. Therefore, it is necessary to gather all the information to guide future research. Thus, this paper presents a comprehensive review of field studies on thermal comfort in classrooms at different educational levels. The focus is on those conducted during the global pandemic of COVID-19. It has been observed that students from climates with a higher degree of variation have shown a better adaptation. Children also tended to feel less affected by changing temperatures. High school and university students showed a greater range of dissatisfaction with heat than with cold. The adaptive approach is more suitable for recognising the comfort needs of all age groups. However, by using this approach together with the Fanger method, more reliable results have been reported. In most of the studies, comfort levels were found to be lower than those indicated by the standards, highlighting the need for guidelines adapted to the thermal comfort conditions of all students. Finally, the various natural ventilation measures to avoid COVID-19 infection have led to a decrease in comfort levels, especially in winter.
{"title":"Critical Review of the Literature on Thermal Comfort in Educational Buildings: Study of the Influence of the COVID-19 Pandemic","authors":"P. Romero, M. T. Miranda, I. Montero, F. J. Sepúlveda, V. Valero-Amaro","doi":"10.1155/2023/8347598","DOIUrl":"https://doi.org/10.1155/2023/8347598","url":null,"abstract":"Thermal comfort in educational buildings affects not only the well-being of students but also their academic performance. Over time, various methods have been developed to assess it. However, none of them takes into account the adaptation of students of different ages, which is an important issue. In recent years, the study of thermal comfort has become very important due to energy-saving measures and ventilation protocols to combat the spread of the SARS-CoV-2 coronavirus. Therefore, it is necessary to gather all the information to guide future research. Thus, this paper presents a comprehensive review of field studies on thermal comfort in classrooms at different educational levels. The focus is on those conducted during the global pandemic of COVID-19. It has been observed that students from climates with a higher degree of variation have shown a better adaptation. Children also tended to feel less affected by changing temperatures. High school and university students showed a greater range of dissatisfaction with heat than with cold. The adaptive approach is more suitable for recognising the comfort needs of all age groups. However, by using this approach together with the Fanger method, more reliable results have been reported. In most of the studies, comfort levels were found to be lower than those indicated by the standards, highlighting the need for guidelines adapted to the thermal comfort conditions of all students. Finally, the various natural ventilation measures to avoid COVID-19 infection have led to a decrease in comfort levels, especially in winter.","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135252250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Changqing Zhan, Liping Pan, Jiajing Wang, Mingrui Cui, Peiran Yu, Jie Liu, Xin Zhang, Zukun Wang, Lei Zhao, Junjie Liu, Yijun Song
Objective. The aim is to explore the effect and mechanism of indoor toluene exposure on orienting network. Methods. Twenty-two healthy adults were exposed to 0 ppb, 17.5 ppb, 35 ppb, and 70 ppb toluene for 4 hours, respectively. All subjects underwent attention network behavioral test, and their electroencephalographic activity was recorded simultaneously. The causal connection strengths of orienting network were calculated through direct transform function (DTF) methods. The DTF values of orienting networks among four groups were compared. Results. (1) The DTF values of parietal outflow (DTF_outflow) in 70 ppb toluene condition were higher than those of the 0 ppb, 17.5 ppb, and 35 ppb conditions, respectively. (2) The DTFCZ-FZ and DTFCZ-FP2 values of 70 ppb toluene condition were found to be lower as compared to 0 ppb condition. The DTFCZ-FP2 values of 70 ppb condition were lower as compared to those of the 17.5 ppb condition. Furthermore, DTFP3-FP2, DTFP4-FP1, and DTFP4-FZ values of 70 ppb condition were higher as compared to those of the 0 ppb condition. The DTFP3-FP2 values of 70 ppb condition were higher as compared to those of the 17.5 ppb condition. The DTFP4-FP1 values of the 70 ppb condition were higher as compared to those of the 17.5 and 35 ppb conditions. Conclusion. Even short-term exposure to indoor toluene at low concentrations significantly impacts orienting network.
{"title":"The Effect of Low-Level Indoor Exposure Toluene on Orienting Network","authors":"Changqing Zhan, Liping Pan, Jiajing Wang, Mingrui Cui, Peiran Yu, Jie Liu, Xin Zhang, Zukun Wang, Lei Zhao, Junjie Liu, Yijun Song","doi":"10.1155/2023/3836418","DOIUrl":"https://doi.org/10.1155/2023/3836418","url":null,"abstract":"Objective. The aim is to explore the effect and mechanism of indoor toluene exposure on orienting network. Methods. Twenty-two healthy adults were exposed to 0 ppb, 17.5 ppb, 35 ppb, and 70 ppb toluene for 4 hours, respectively. All subjects underwent attention network behavioral test, and their electroencephalographic activity was recorded simultaneously. The causal connection strengths of orienting network were calculated through direct transform function (DTF) methods. The DTF values of orienting networks among four groups were compared. Results. (1) The DTF values of parietal outflow (DTF_outflow) in 70 ppb toluene condition were higher than those of the 0 ppb, 17.5 ppb, and 35 ppb conditions, respectively. (2) The DTFCZ-FZ and DTFCZ-FP2 values of 70 ppb toluene condition were found to be lower as compared to 0 ppb condition. The DTFCZ-FP2 values of 70 ppb condition were lower as compared to those of the 17.5 ppb condition. Furthermore, DTFP3-FP2, DTFP4-FP1, and DTFP4-FZ values of 70 ppb condition were higher as compared to those of the 0 ppb condition. The DTFP3-FP2 values of 70 ppb condition were higher as compared to those of the 17.5 ppb condition. The DTFP4-FP1 values of the 70 ppb condition were higher as compared to those of the 17.5 and 35 ppb conditions. Conclusion. Even short-term exposure to indoor toluene at low concentrations significantly impacts orienting network.","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135346172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nitrous acid (HONO) is an emerging indoor pollutant that can exert adverse health effects. The chemical production of indoor HONO has been attributed to NO2 heterogeneous reactions, and the source strength has been extensively evaluated via laboratory and model simulation studies. Photolysis of surface nitrate has recently been proposed as an indoor HONO source based on correlation analysis between indoor HONO accumulation and visible light radiation. However, neither experimental validation of the proposed mechanism nor source strength characterization is currently available. In this work, we designed an outdoor photochemical chamber (OPC) to simulate indoor HONO accumulation and established an indoor photochemical model (ICM) to calculate the indoor HONO budget. Indoor HONO accumulation revealed a distinct diel variation with a daytime maximum. Only with this indoor HONO source, the ICM reproduced the indoor HONO budget determined in the OPC. The enhanced reactive cross section of surface nitrate in visible light accounted for the major portion of the HONO source budget (77.2%) and the distinct diel variation. Success with the ICM encouraged us to simulate the HONO budget in real indoor environments. The calculated HONO production rates from surface nitrate photolysis at noon ranged from 1.4 to 4.1 ppbv h-1 under different indoor scenarios. On a daily average, this indoor HONO source contributed 42.4–52.7% to the total chemical sources in the living room but only contributed 4.7% to that in the kitchen, where NO2 heterogeneous reactions dominated.
{"title":"Combining Chamber Experiments and Model Simulations to Evaluate an Indoor HONO Source with Surface Photochemical Properties","authors":"Youfeng Wang, Chong Zhang, Jianshu Wang, Yaru Wang, Yingjie Zhang, Weili Lin, Chunxiang Ye","doi":"10.1155/2023/3605937","DOIUrl":"https://doi.org/10.1155/2023/3605937","url":null,"abstract":"Nitrous acid (HONO) is an emerging indoor pollutant that can exert adverse health effects. The chemical production of indoor HONO has been attributed to NO2 heterogeneous reactions, and the source strength has been extensively evaluated via laboratory and model simulation studies. Photolysis of surface nitrate has recently been proposed as an indoor HONO source based on correlation analysis between indoor HONO accumulation and visible light radiation. However, neither experimental validation of the proposed mechanism nor source strength characterization is currently available. In this work, we designed an outdoor photochemical chamber (OPC) to simulate indoor HONO accumulation and established an indoor photochemical model (ICM) to calculate the indoor HONO budget. Indoor HONO accumulation revealed a distinct diel variation with a daytime maximum. Only with this indoor HONO source, the ICM reproduced the indoor HONO budget determined in the OPC. The enhanced reactive cross section of surface nitrate in visible light accounted for the major portion of the HONO source budget (77.2%) and the distinct diel variation. Success with the ICM encouraged us to simulate the HONO budget in real indoor environments. The calculated HONO production rates from surface nitrate photolysis at noon ranged from 1.4 to 4.1 ppbv h-1 under different indoor scenarios. On a daily average, this indoor HONO source contributed 42.4–52.7% to the total chemical sources in the living room but only contributed 4.7% to that in the kitchen, where NO2 heterogeneous reactions dominated.","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135345432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael J. Kado, Kelsi Perttula, Elizabeth M. Noth, David Moore, Patton Khuu Nguyen, Charles Perrino, Mark Nicas, S. Katharine Hammond
The objective of this study was to measure particulate matter (PM) total loss rates in three older (1940s, 1960s, and 1980s) elevators in California during two phases and three low-cost intervention modes. Tracer gas decay and <2 μm aerodynamic diameter nontoxic NaCl particles (PM2) were used to calculate PM2 loss rates. The NaCl particles were considered surrogates for smaller particles carrying SARS-CoV-2. Empirical PM2 loss rates were paired with modeled dynamic scenarios to estimate SARS-CoV-2-relevant PM2 removal. Mean loss rates (hr-1) ranged from 1.8 to 184. Compared to a closed-door, stationary elevator, the moving elevators had a fourfold increased mean loss rate (hr-1), while an air cleaner in a stationary elevator increased the mean loss rates sixfold. In a dynamic particle removal simulation of a ten-story elevator, PM was removed 1.38-fold faster with an air cleaner intervention during bottom and top floor stops only (express ride) and 1.12-fold faster with an air cleaner during every other floor stops. The increase in removal rates due to the air cleaner was modest due to the higher moving and open-door removal rates, except during stationary phase. The half-life of PM2 particles in a stationary elevator after all passengers have left can be 8-12 minutes following a single emission and 2-5 minutes with an air cleaner. The low particle removal rate in the stationary elevator requires an intervention so that the particle removal rate will be high to eliminate infectious aerosol. If codes permit, keeping the door open when the elevator is stationary is most effective; otherwise, an air cleaner in a stationary elevator should be used. While an air cleaner is commonly seen as a substantial improvement in reducing potential virus concentration in air, in the moving elevator scenarios, the effect is quite modest. This paper provides empirical particle loss rates inside elevators, the effectiveness of air cleaners in a dynamic elevator space, two approaches to control infectious agents while the elevator is stationary, and support for a precautionary approach towards elevator use amidst a pandemic.
{"title":"Elevator Ventilation and SARS-CoV-2-Relevant Particulate Matter Removal in Three Older California Elevators","authors":"Michael J. Kado, Kelsi Perttula, Elizabeth M. Noth, David Moore, Patton Khuu Nguyen, Charles Perrino, Mark Nicas, S. Katharine Hammond","doi":"10.1155/2023/7664472","DOIUrl":"https://doi.org/10.1155/2023/7664472","url":null,"abstract":"The objective of this study was to measure particulate matter (PM) total loss rates in three older (1940s, 1960s, and 1980s) elevators in California during two phases and three low-cost intervention modes. Tracer gas decay and <2 μm aerodynamic diameter nontoxic NaCl particles (PM2) were used to calculate PM2 loss rates. The NaCl particles were considered surrogates for smaller particles carrying SARS-CoV-2. Empirical PM2 loss rates were paired with modeled dynamic scenarios to estimate SARS-CoV-2-relevant PM2 removal. Mean loss rates (hr-1) ranged from 1.8 to 184. Compared to a closed-door, stationary elevator, the moving elevators had a fourfold increased mean loss rate (hr-1), while an air cleaner in a stationary elevator increased the mean loss rates sixfold. In a dynamic particle removal simulation of a ten-story elevator, PM was removed 1.38-fold faster with an air cleaner intervention during bottom and top floor stops only (express ride) and 1.12-fold faster with an air cleaner during every other floor stops. The increase in removal rates due to the air cleaner was modest due to the higher moving and open-door removal rates, except during stationary phase. The half-life of PM2 particles in a stationary elevator after all passengers have left can be 8-12 minutes following a single emission and 2-5 minutes with an air cleaner. The low particle removal rate in the stationary elevator requires an intervention so that the particle removal rate will be high to eliminate infectious aerosol. If codes permit, keeping the door open when the elevator is stationary is most effective; otherwise, an air cleaner in a stationary elevator should be used. While an air cleaner is commonly seen as a substantial improvement in reducing potential virus concentration in air, in the moving elevator scenarios, the effect is quite modest. This paper provides empirical particle loss rates inside elevators, the effectiveness of air cleaners in a dynamic elevator space, two approaches to control infectious agents while the elevator is stationary, and support for a precautionary approach towards elevator use amidst a pandemic.","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135059776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vivien Pohl, Alan Gilmer, Vivienne Byers, John Cassidy, Aoife Donnelly, Stig Hellebust, Eoin J. McGillicuddy, Eugene McGovern, David J. O’Connor
Air quality monitoring in Ireland is under the jurisdiction of the Environmental Protection Agency in compliance with the Gothenburg Protocol, EU/national legislation, and the National Clean Air Strategy. Secondary inorganic aerosols (SIAS) have been acknowledged as a key atmospheric pollutant, with serious public health impacts and no safe exposure threshold in place to date. Ammonia (NH3) emissions are linked to the secondary production of aerosols through atmospheric reactions occurring with acidic atmospheric components such as sulfuric, nitric, and hydrochloric acid. These reactions result in the formation of ammonium sulfate, ammonium nitrate and ammonium chloride, among others. Approximately 98% of NH3 emissions occurring in Ireland arise from agriculture, with minor contributions from transport and natural sources. A better understanding of NH3 emissions and SIA formation can be achieved through monitoring emissions at the source level. Additionally, mitigation strategies with a more thorough understanding of NH3 dynamics at the source level and consequential SIA formation allow for more efficient action. This project monitored ambient NH3 and SIA on two selected arable agricultural sites and a control site in a rural site close to Dublin on the east coast of Ireland to establish emission levels. Meteorological factors affecting emissions and SIA formation were also measured and cross-correlated to determine micro-meteorological effects. Monitoring at the agricultural sites observed ambient NH3 concentrations ranging from 0.52 µg m−3 to 1.70 µg m−3, with an average of 1.45 µg m−3. At the control site, ambient NH3 measured concentrations ranged from 0.05 µg m−3 to 1.76 µg m−3 with an average of 0.516 µg m−3. Aerosol NH4+ ranged from 0.03 µg m−3 to 1.05 µg m−3 with an average concentration of 0.27 µg m−3 at the agricultural site. The potential effects of meteorological conditions and the implications for the effects of these emissions are discussed, with recommendations to aid compliance with the National Emissions Ceiling and the National Clean Air Strategy (Directive 2001/81/EC).
根据《哥德堡议定书》、欧盟/国家立法和《国家清洁空气战略》,爱尔兰的空气质量监测由环境保护局管辖。二次无机气溶胶(SIAS)已被公认为一种关键的大气污染物,具有严重的公共卫生影响,迄今尚无安全接触阈值。氨(NH3)排放与通过与硫酸、硝酸和盐酸等酸性大气组分发生大气反应而产生的气溶胶的二次生成有关。这些反应产生硫酸铵、硝酸铵和氯化铵等。爱尔兰大约98%的NH3排放来自农业,交通和自然来源的贡献较小。通过监测源水平的排放,可以更好地了解NH3的排放和SIA的形成。此外,通过更全面地了解源级NH3动态和相应的SIA形成,可以采取更有效的减缓策略。该项目监测了两个选定的农业耕地和爱尔兰东海岸都柏林附近农村地区的一个控制地点的环境NH3和SIA,以确定排放水平。还测量了影响排放和SIA形成的气象因子,并相互关联以确定微气象效应。在农业站点监测到的环境NH3浓度范围为0.52µg m - 3至1.70µg m - 3,平均为1.45µg m - 3。在对照组,测得的环境NH3浓度范围为0.05µg m−3 ~ 1.76µg m−3,平均值为0.516µg m−3。气溶胶NH4+浓度范围为0.03 ~ 1.05µg m−3,平均浓度为0.27µg m−3。讨论了气象条件的潜在影响以及这些排放的影响,并提出了有助于遵守国家排放上限和国家清洁空气战略(指令2001/81/EC)的建议。
{"title":"Ammonia Cycling and Emerging Inorganic Secondary Aerosols from Arable Agriculture","authors":"Vivien Pohl, Alan Gilmer, Vivienne Byers, John Cassidy, Aoife Donnelly, Stig Hellebust, Eoin J. McGillicuddy, Eugene McGovern, David J. O’Connor","doi":"10.3390/air1030016","DOIUrl":"https://doi.org/10.3390/air1030016","url":null,"abstract":"Air quality monitoring in Ireland is under the jurisdiction of the Environmental Protection Agency in compliance with the Gothenburg Protocol, EU/national legislation, and the National Clean Air Strategy. Secondary inorganic aerosols (SIAS) have been acknowledged as a key atmospheric pollutant, with serious public health impacts and no safe exposure threshold in place to date. Ammonia (NH3) emissions are linked to the secondary production of aerosols through atmospheric reactions occurring with acidic atmospheric components such as sulfuric, nitric, and hydrochloric acid. These reactions result in the formation of ammonium sulfate, ammonium nitrate and ammonium chloride, among others. Approximately 98% of NH3 emissions occurring in Ireland arise from agriculture, with minor contributions from transport and natural sources. A better understanding of NH3 emissions and SIA formation can be achieved through monitoring emissions at the source level. Additionally, mitigation strategies with a more thorough understanding of NH3 dynamics at the source level and consequential SIA formation allow for more efficient action. This project monitored ambient NH3 and SIA on two selected arable agricultural sites and a control site in a rural site close to Dublin on the east coast of Ireland to establish emission levels. Meteorological factors affecting emissions and SIA formation were also measured and cross-correlated to determine micro-meteorological effects. Monitoring at the agricultural sites observed ambient NH3 concentrations ranging from 0.52 µg m−3 to 1.70 µg m−3, with an average of 1.45 µg m−3. At the control site, ambient NH3 measured concentrations ranged from 0.05 µg m−3 to 1.76 µg m−3 with an average of 0.516 µg m−3. Aerosol NH4+ ranged from 0.03 µg m−3 to 1.05 µg m−3 with an average concentration of 0.27 µg m−3 at the agricultural site. The potential effects of meteorological conditions and the implications for the effects of these emissions are discussed, with recommendations to aid compliance with the National Emissions Ceiling and the National Clean Air Strategy (Directive 2001/81/EC).","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135015588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High-efficiency particulate air (HEPA) and charcoal filters have been applied to ventilation systems to save energy and reduce pollutants. However, such filters only work for specific types of pollutants, and their performance is not always sustainable. This study compares the pollutant reduction performance of TiO2 photocatalytic filters with HEPA and charcoal filters in mock-up experiments with toluene as the pollutant, changing air volume, and varying ventilation frequencies. The results show that the HEPA filter was ineffective at reducing toluene, and the charcoal filter was found to have the fastest reduction rate until 180 min after the start of the experiment. However, after 180 min when the charcoal filter was saturated, its pollutant reduction performance rapidly declined, resulting in low persistence. Conversely, the TiO2 photocatalytic filter had a lower reduction rate than that of the charcoal filter but had a continuous pollutant reduction performance during 720 min. Comparing the pollutant reduction effect of the TiO2 photocatalyst filter and the charcoal filter with a reduced amount based on the experimental time, the TiO2 photocatalyst filter has a maximum pollutant reduction effect of about seven times and at least about two times. This study confirms that HEPA and charcoal filters reduce gas pollutants, and it was found that combining TiO2 photocatalysts with ventilation devices can improve indoor air quality in apartment buildings.
{"title":"Indoor Pollutant Reduction Performance of Different Mechanical Ventilation Filters in Apartment Buildings","authors":"Seong Eun Kim, Jin Chul Park, Yong Woo Song","doi":"10.1155/2023/8867880","DOIUrl":"https://doi.org/10.1155/2023/8867880","url":null,"abstract":"High-efficiency particulate air (HEPA) and charcoal filters have been applied to ventilation systems to save energy and reduce pollutants. However, such filters only work for specific types of pollutants, and their performance is not always sustainable. This study compares the pollutant reduction performance of TiO2 photocatalytic filters with HEPA and charcoal filters in mock-up experiments with toluene as the pollutant, changing air volume, and varying ventilation frequencies. The results show that the HEPA filter was ineffective at reducing toluene, and the charcoal filter was found to have the fastest reduction rate until 180 min after the start of the experiment. However, after 180 min when the charcoal filter was saturated, its pollutant reduction performance rapidly declined, resulting in low persistence. Conversely, the TiO2 photocatalytic filter had a lower reduction rate than that of the charcoal filter but had a continuous pollutant reduction performance during 720 min. Comparing the pollutant reduction effect of the TiO2 photocatalyst filter and the charcoal filter with a reduced amount based on the experimental time, the TiO2 photocatalyst filter has a maximum pollutant reduction effect of about seven times and at least about two times. This study confirms that HEPA and charcoal filters reduce gas pollutants, and it was found that combining TiO2 photocatalysts with ventilation devices can improve indoor air quality in apartment buildings.","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135395458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Indoor radon is a well-documented environmental factor as a second cause of lung cancer. Based on the chronological data on indoor radon concentration, lung cancer incidence, and the distribution of sex-age-specific population, the risk of lung cancer caused by indoor radon exposure in a total of 15 cities in China was assessed by using the risk model developed by the U.S. Environmental Protection Agency (EPA) in this study. The estimate revealed that both the excess relative risk (ERR) and lifetime relative risk (LRR) have obviously increased after 2010. The population attributable risk (PAR) in 2016 was estimated in a range from 6.66% to 22.42%, with a median of 15.33% for the 15 cities. The lung cancer incidence attributed to indoor radon in 2016 ranged from 3.96 to 15.07 per 10,000 population in males and 1.21 to 8.27 per 10,000 population in females. Across age and sex, the risk of lung cancer caused by indoor radon was found more pronounced in males and 40-45 age groups. The chronological variation of radon concentrations was considered in this study; the estimate of lung cancer caused by indoor radon in China is considered more reasonable than ever before.
{"title":"Risk Assessment of Lung Cancer Caused by Indoor Radon Exposure in China during 2006–2016: A Multicity, Longitudinal Analysis","authors":"Ziqi Qiang, Yupeng Yao, Zhiling Li, Dapeng Lin, Huan Li, Haidong Kan, Weihai Zhuo, Bo Chen","doi":"10.1155/2023/6943333","DOIUrl":"https://doi.org/10.1155/2023/6943333","url":null,"abstract":"Indoor radon is a well-documented environmental factor as a second cause of lung cancer. Based on the chronological data on indoor radon concentration, lung cancer incidence, and the distribution of sex-age-specific population, the risk of lung cancer caused by indoor radon exposure in a total of 15 cities in China was assessed by using the risk model developed by the U.S. Environmental Protection Agency (EPA) in this study. The estimate revealed that both the excess relative risk (ERR) and lifetime relative risk (LRR) have obviously increased after 2010. The population attributable risk (PAR) in 2016 was estimated in a range from 6.66% to 22.42%, with a median of 15.33% for the 15 cities. The lung cancer incidence attributed to indoor radon in 2016 ranged from 3.96 to 15.07 per 10,000 population in males and 1.21 to 8.27 per 10,000 population in females. Across age and sex, the risk of lung cancer caused by indoor radon was found more pronounced in males and 40-45 age groups. The chronological variation of radon concentrations was considered in this study; the estimate of lung cancer caused by indoor radon in China is considered more reasonable than ever before.","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134911406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Zeng, S. Fahad, Gang Wang, A. Nassani, Rima H. Binsaeed
With the rapid development of the real estate industry in China, urban air quality is inevitably affected. By using data of Chinese cities located in the Yangtze River Delta from 2009 to 2018, this paper is aim at examining the casual impact of house prices on air quality. By considering the endogenous problems, in this study, first, the birth rate of the previous six years and the area of state-owned land supply per capita in the previous year are taken as instrumental variables of house price. Second, the two-stage least squares method is used to assess the causal impact of house price on air quality. The findings of this study show that there is no significant relationship between urban house prices and air quality, and these results are obtained without considering the endogenous problem. While, after considering the endogenous problem, urban house prices showed a significant negative effect on overall air quality, especially for low administrative level cities. The increase in house prices has hindered the improvement of air quality mainly through the blind-scale expansion of real estate development investments and the inhibitory effect of innovation.
{"title":"Unleashing the Casual Impact of House Prices on Air Quality: Evidence from Chinese Cities","authors":"B. Zeng, S. Fahad, Gang Wang, A. Nassani, Rima H. Binsaeed","doi":"10.1155/2023/1338261","DOIUrl":"https://doi.org/10.1155/2023/1338261","url":null,"abstract":"With the rapid development of the real estate industry in China, urban air quality is inevitably affected. By using data of Chinese cities located in the Yangtze River Delta from 2009 to 2018, this paper is aim at examining the casual impact of house prices on air quality. By considering the endogenous problems, in this study, first, the birth rate of the previous six years and the area of state-owned land supply per capita in the previous year are taken as instrumental variables of house price. Second, the two-stage least squares method is used to assess the causal impact of house price on air quality. The findings of this study show that there is no significant relationship between urban house prices and air quality, and these results are obtained without considering the endogenous problem. While, after considering the endogenous problem, urban house prices showed a significant negative effect on overall air quality, especially for low administrative level cities. The increase in house prices has hindered the improvement of air quality mainly through the blind-scale expansion of real estate development investments and the inhibitory effect of innovation.","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83060415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Production and use of chlorophenols (CPs) are being phased out around the globe, but with considerable lag in some highly populated countries. The process could be incentivized by leading countries sharing their experiences on problems that occurred, including the built environment. We previously reported that Swedish industry and authorities promoted CPs, including pentachlorophenol (PCP), as wood preservatives in buildings for decades. Yet, Swedish indoor research did not recognize exposure to the hazardous CPs and their odor potent derivatives, the chloroanisoles (CAs), which smell like mold and still evolve from legacy preservatives in damp building structures. We hypothesized that the toxic CPs and odorous CAs could be key players for health and odor problems not only in Sweden but also in the neighboring Nordic countries. We found no reports in scientific medical literature of CPs being used in buildings in these countries. However, grey literature shows that CPs were indeed used, even during building booms, in house exteriors, constructions, and interiors, from the 1950s up to the late 1970s (Denmark) and even the 1990s (Finland and Norway). One application of CPs was in houses erected on dampness-prone house foundations, conditions ideal for formation of odorous CAs through microbial methylation. Furthermore, our searches suggest that these problematic chemicals played hitherto unrecognized key roles when indoor air research evolved. Thus, odor became an important aspect of the “sick building syndrome” in Denmark and an early warning sign of health risks in Finland, as asthma and allergy were attributed to “dampness and mold.” None of the countries addressed the possible links between odor and health effects and exposure to CAs and CPs. In conclusion, our results suggest that unrecognized indoor exposure to toxic CPs and odorous CAs has mislead Nordic indoor air research for decades.
{"title":"Evidence of Unrecognized Indoor Exposure to Toxic Chlorophenols and Odorous Chloroanisoles in Denmark, Finland, and Norway","authors":"J. Lorentzen, Lars-Erik Harderup, G. Johanson","doi":"10.1155/2023/2585089","DOIUrl":"https://doi.org/10.1155/2023/2585089","url":null,"abstract":"Production and use of chlorophenols (CPs) are being phased out around the globe, but with considerable lag in some highly populated countries. The process could be incentivized by leading countries sharing their experiences on problems that occurred, including the built environment. We previously reported that Swedish industry and authorities promoted CPs, including pentachlorophenol (PCP), as wood preservatives in buildings for decades. Yet, Swedish indoor research did not recognize exposure to the hazardous CPs and their odor potent derivatives, the chloroanisoles (CAs), which smell like mold and still evolve from legacy preservatives in damp building structures. We hypothesized that the toxic CPs and odorous CAs could be key players for health and odor problems not only in Sweden but also in the neighboring Nordic countries. We found no reports in scientific medical literature of CPs being used in buildings in these countries. However, grey literature shows that CPs were indeed used, even during building booms, in house exteriors, constructions, and interiors, from the 1950s up to the late 1970s (Denmark) and even the 1990s (Finland and Norway). One application of CPs was in houses erected on dampness-prone house foundations, conditions ideal for formation of odorous CAs through microbial methylation. Furthermore, our searches suggest that these problematic chemicals played hitherto unrecognized key roles when indoor air research evolved. Thus, odor became an important aspect of the “sick building syndrome” in Denmark and an early warning sign of health risks in Finland, as asthma and allergy were attributed to “dampness and mold.” None of the countries addressed the possible links between odor and health effects and exposure to CAs and CPs. In conclusion, our results suggest that unrecognized indoor exposure to toxic CPs and odorous CAs has mislead Nordic indoor air research for decades.","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82422102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicotine, the primary component of cigarette smoke, is not only addictive but also indirectly contributes to lung diseases by increasing heart rate and blood pressure upon inhalation. Therefore, managing nicotine content in cigarette smoke necessitates accurate quantitative analysis. Nicotine from cigarette smoke is collected using a Cambridge filter, subjected to solvent extraction, and analyzed using instrumental techniques. However, since nicotine is susceptible to light-induced oxidation, losses may occur during pretreatment, reducing result reliability. This study assesses nicotine loss under various lighting conditions and storage durations. Nicotine collected in Cambridge filters is exposed to dark, visible radiation, and UV radiation (254 nm) for different time intervals (0–48 h), and the nicotine content is analyzed and compared. In dark conditions, a 1.6% decline in nicotine concentration occurs after 48 h. With visible radiation, a 9% reduction is observed, while under UV exposure, the concentration decreases by 16.9%. The UV radiation-associated decrease in nicotine concentration is −0.335% h−1, exhibiting strong linearity ( R 2 = 0.9465 ). Consequently, significant nicotine loss in Cambridge filter-collected samples is influenced by storage duration and lighting conditions. This study’s findings can enhance the accuracy of nicotine quantification in cigarette smoke, thereby improving the understanding of nicotine’s harmful effects in cigarette smoke.
尼古丁是香烟烟雾的主要成分,不仅会使人上瘾,而且吸入后会增加心率和血压,从而间接导致肺部疾病。因此,控制香烟烟雾中的尼古丁含量需要精确的定量分析。香烟烟雾中的尼古丁使用剑桥过滤器收集,经过溶剂萃取,并使用仪器技术进行分析。然而,由于尼古丁易受光诱导氧化,在预处理过程中可能会发生损失,从而降低结果的可靠性。本研究评估了尼古丁在不同光照条件和储存时间下的损失。在不同的时间间隔(0-48 h)下,将Cambridge过滤嘴中收集的尼古丁分别暴露在暗光、可见光和254 nm的紫外线下,分析和比较尼古丁的含量。在黑暗条件下,48小时后尼古丁浓度下降1.6%。在可见光照射下,浓度下降9%,而在紫外线照射下,浓度下降16.9%。与紫外线辐射相关的尼古丁浓度下降为- 0.35% h - 1,呈强线性关系(r2 = 0.9465)。因此,剑桥过滤器收集的样品中尼古丁的显著损失受到储存时间和光照条件的影响。本研究的发现可以提高香烟烟雾中尼古丁定量的准确性,从而提高对香烟烟雾中尼古丁有害影响的认识。
{"title":"Assessment of Nicotine Degradation in Cigarette Smoke under Different Storage Conditions (Light and Duration)","authors":"Young-Ji An, Yong-Hyun Kim","doi":"10.1155/2023/8814709","DOIUrl":"https://doi.org/10.1155/2023/8814709","url":null,"abstract":"Nicotine, the primary component of cigarette smoke, is not only addictive but also indirectly contributes to lung diseases by increasing heart rate and blood pressure upon inhalation. Therefore, managing nicotine content in cigarette smoke necessitates accurate quantitative analysis. Nicotine from cigarette smoke is collected using a Cambridge filter, subjected to solvent extraction, and analyzed using instrumental techniques. However, since nicotine is susceptible to light-induced oxidation, losses may occur during pretreatment, reducing result reliability. This study assesses nicotine loss under various lighting conditions and storage durations. Nicotine collected in Cambridge filters is exposed to dark, visible radiation, and UV radiation (254 nm) for different time intervals (0–48 h), and the nicotine content is analyzed and compared. In dark conditions, a 1.6% decline in nicotine concentration occurs after 48 h. With visible radiation, a 9% reduction is observed, while under UV exposure, the concentration decreases by 16.9%. The UV radiation-associated decrease in nicotine concentration is −0.335% h−1, exhibiting strong linearity (\u0000 \u0000 \u0000 \u0000 R\u0000 \u0000 \u0000 2\u0000 \u0000 \u0000 =\u0000 0.9465\u0000 \u0000 ). Consequently, significant nicotine loss in Cambridge filter-collected samples is influenced by storage duration and lighting conditions. This study’s findings can enhance the accuracy of nicotine quantification in cigarette smoke, thereby improving the understanding of nicotine’s harmful effects in cigarette smoke.","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88814045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}