Pub Date : 2023-01-18DOI: 10.3390/instruments7010006
High-quality academic publishing is built on rigorous peer review [...]
高质量的学术出版建立在严格的同行评审基础上〔…〕
{"title":"Acknowledgment to the Reviewers of Instruments in 2022","authors":"","doi":"10.3390/instruments7010006","DOIUrl":"https://doi.org/10.3390/instruments7010006","url":null,"abstract":"High-quality academic publishing is built on rigorous peer review [...]","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45736530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-03DOI: 10.3390/instruments7010004
Motoki Ishikawa, Kakuta Ishida, R. Kanya, K. Yamanouchi
We developed an apparatus for measuring kinetic energy and two-dimensional angular distributions of femtosecond laser-assisted electron scattering (LAES) signals with a high detection efficiency, consisting of a photocathode-type ultrashort pulsed electron gun, a gas injection nozzle, an angle-resolved time-of-flight analyzer, and a time-and-position sensitive electron detector. We also established an analysis method for obtaining the kinetic energy and two-dimensional angular distributions of scattered electrons from raw data of their flight times and the detected positions at the detector recorded using the newly developed apparatus. From the measurement of the LAES processes of Ar atoms in a femtosecond near-infrared intense laser field, we obtained a two-dimensional angular distribution image of the LAES signals and showed that the detection efficiency of the LAES signals was raised by a factor of 40 compared with that achieved before in 2010.
{"title":"Angle-Resolved Time-of-Flight Electron Spectrometer Designed for Femtosecond Laser-Assisted Electron Scattering and Diffraction","authors":"Motoki Ishikawa, Kakuta Ishida, R. Kanya, K. Yamanouchi","doi":"10.3390/instruments7010004","DOIUrl":"https://doi.org/10.3390/instruments7010004","url":null,"abstract":"We developed an apparatus for measuring kinetic energy and two-dimensional angular distributions of femtosecond laser-assisted electron scattering (LAES) signals with a high detection efficiency, consisting of a photocathode-type ultrashort pulsed electron gun, a gas injection nozzle, an angle-resolved time-of-flight analyzer, and a time-and-position sensitive electron detector. We also established an analysis method for obtaining the kinetic energy and two-dimensional angular distributions of scattered electrons from raw data of their flight times and the detected positions at the detector recorded using the newly developed apparatus. From the measurement of the LAES processes of Ar atoms in a femtosecond near-infrared intense laser field, we obtained a two-dimensional angular distribution image of the LAES signals and showed that the detection efficiency of the LAES signals was raised by a factor of 40 compared with that achieved before in 2010.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47113622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-03DOI: 10.3390/instruments7010005
Dayong Tai, Zhixiong Wu, Ying Yang, Cunwei Lu
The measurement system proposed in this paper, using a measuring arm and line structured light, has a wide range of applications. To improve the scanning efficiency, the system outlined in this paper uses two single-line structured lights to form crosshair structured light, which we combine with a measuring arm to form a comprehensive scanning measurement system. The calibration method of Zhengyou Zhang and a calibration board are used to complete parameter calibration of the sensors and cameras, as well as hand–eye calibration of the measuring arm. For complex curved-surface objects, this system extracts the cross-line structured light optical center location, which suffers from ambiguity. Therefore, we introduce the use of periodic control of the two line structured light sources in order to resolve the light extraction polysemy. Our experimental results indicate that the proposed system can effectively satisfy the function of crosshair structured light scanning of large, complex surfaces.
{"title":"A Cross-Line Structured Light Scanning System Based on a Measuring Arm","authors":"Dayong Tai, Zhixiong Wu, Ying Yang, Cunwei Lu","doi":"10.3390/instruments7010005","DOIUrl":"https://doi.org/10.3390/instruments7010005","url":null,"abstract":"The measurement system proposed in this paper, using a measuring arm and line structured light, has a wide range of applications. To improve the scanning efficiency, the system outlined in this paper uses two single-line structured lights to form crosshair structured light, which we combine with a measuring arm to form a comprehensive scanning measurement system. The calibration method of Zhengyou Zhang and a calibration board are used to complete parameter calibration of the sensors and cameras, as well as hand–eye calibration of the measuring arm. For complex curved-surface objects, this system extracts the cross-line structured light optical center location, which suffers from ambiguity. Therefore, we introduce the use of periodic control of the two line structured light sources in order to resolve the light extraction polysemy. Our experimental results indicate that the proposed system can effectively satisfy the function of crosshair structured light scanning of large, complex surfaces.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135554730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-29DOI: 10.3390/instruments7010003
R. Mckenzie
The upgrade of the ATLAS hadronic tile-calorimeter (TileCal) Low-Voltage Power Supply (LVPS) falls under the high-luminosity LHC upgrade project. This article serves to provide an overview of the development of a burn-in test station for a Phase-II upgrade LVPS component known as a Brick. These Bricks are radiation hard transformer-coupled buck converters that function to step-down bulk 200 V DC power to the 10 V DC power required by the on-detector electronics. To ensure the high reliability of the Bricks, once installed within the TileCal, a burn-in test station has been designed and built. The Burn-in procedure subjects the Bricks to sub-optimal operating conditions that function to accelerate their aging as well as to stimulate failure mechanisms. This results in elements of the Brick that would fail prematurely within the TileCal failing within the burn-in station or to experience performance degradation that can be detected by followup testing effectively screening out the ’weak’ sub-population. The burn-in station is of a fully custom design in both its hardware and software. The development of the test station will be explored and the preliminary burn-in procedure to be employed will be presented. The commissioning of the burn-in station will be presented along with a summary and outlook of the project.
{"title":"A Burn-in Test Station for the ATLAS Phase-II Tile-Calorimeter Low-Voltage Power Supply Transformer-Coupled Buck Converters","authors":"R. Mckenzie","doi":"10.3390/instruments7010003","DOIUrl":"https://doi.org/10.3390/instruments7010003","url":null,"abstract":"The upgrade of the ATLAS hadronic tile-calorimeter (TileCal) Low-Voltage Power Supply (LVPS) falls under the high-luminosity LHC upgrade project. This article serves to provide an overview of the development of a burn-in test station for a Phase-II upgrade LVPS component known as a Brick. These Bricks are radiation hard transformer-coupled buck converters that function to step-down bulk 200 V DC power to the 10 V DC power required by the on-detector electronics. To ensure the high reliability of the Bricks, once installed within the TileCal, a burn-in test station has been designed and built. The Burn-in procedure subjects the Bricks to sub-optimal operating conditions that function to accelerate their aging as well as to stimulate failure mechanisms. This results in elements of the Brick that would fail prematurely within the TileCal failing within the burn-in station or to experience performance degradation that can be detected by followup testing effectively screening out the ’weak’ sub-population. The burn-in station is of a fully custom design in both its hardware and software. The development of the test station will be explored and the preliminary burn-in procedure to be employed will be presented. The commissioning of the burn-in station will be presented along with a summary and outlook of the project.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45989554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-27DOI: 10.3390/instruments7010002
M. d’Errico, F. Ambrosino, L. Cimmino, V. Masone, M. Mirra, G. Saracino, L. Roscilli
Muons are constantly produced in cosmic-rays and reach the Earth surface with a flux of about 160 particles per second per square meter. The abundance of muons with respect to other cosmic particles and their capability to cross dense materials with low absorption rate allow them to be exploited for large scale geological or human-made object imaging. Muon radiography is based on similar principles as X-ray radiography, measuring the surviving rate of muons escaping the target and relating it to the mass distribution inside the object. In the course of decades, after the first application in 1955, the methodology has been applied in several different fields. Muography allows us to measure the internal density distribution of the investigated object, or to simply highlight the presence of void regions by observing any excess of muons. Most of these applications require the detector to be installed below the rock being probed. In case that possible installation sites are not easily accessible by people, common instrumentation cannot be installed. A novel borehole cylindrical detector for muon radiography has been recently developed to deal with these conditions. It has been realized with a cylindrical geometry to fit typical borehole dimensions. Its design maximizes the geometrical acceptance, minimizing the dead spaces by the use of arc-shaped scintillators. The details of the construction and preliminary results of the first usage are described in this paper.
{"title":"Muon Radiography Investigations in Boreholes with a Newly Designed Cylindrical Detector","authors":"M. d’Errico, F. Ambrosino, L. Cimmino, V. Masone, M. Mirra, G. Saracino, L. Roscilli","doi":"10.3390/instruments7010002","DOIUrl":"https://doi.org/10.3390/instruments7010002","url":null,"abstract":"Muons are constantly produced in cosmic-rays and reach the Earth surface with a flux of about 160 particles per second per square meter. The abundance of muons with respect to other cosmic particles and their capability to cross dense materials with low absorption rate allow them to be exploited for large scale geological or human-made object imaging. Muon radiography is based on similar principles as X-ray radiography, measuring the surviving rate of muons escaping the target and relating it to the mass distribution inside the object. In the course of decades, after the first application in 1955, the methodology has been applied in several different fields. Muography allows us to measure the internal density distribution of the investigated object, or to simply highlight the presence of void regions by observing any excess of muons. Most of these applications require the detector to be installed below the rock being probed. In case that possible installation sites are not easily accessible by people, common instrumentation cannot be installed. A novel borehole cylindrical detector for muon radiography has been recently developed to deal with these conditions. It has been realized with a cylindrical geometry to fit typical borehole dimensions. Its design maximizes the geometrical acceptance, minimizing the dead spaces by the use of arc-shaped scintillators. The details of the construction and preliminary results of the first usage are described in this paper.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46598094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-23DOI: 10.3390/instruments7010001
A. Massara, S. Amaducci, L. Cosentino, F. Longhitano, C. Marchetta, Gaetano Elio Poma, Martina Ursino, P. Finocchiaro
Several methods to detect thermal neutrons make use of the naturally occurring 6Li isotope, as it has a rather high cross-section for neutron capture followed by a decay into an alpha particle and a triton. Due to the high chemical reactivity of lithium, the use of the stable isotopic salt 6LiF is generally preferred to the pure 6Li. The typical method for depositing thin layers of 6LiF on suitable substrates, therefore creating so-called neutron converters, is evaporation under vacuum. The evaporation technique, as well as a newly developed chemical deposition process, are described along with their benefits and drawbacks, and the results of neutron detection tests performed with the two types of converters coupled to silicon diodes show convenient performances.
{"title":"6LiF Converters for Neutron Detection: Production Procedures and Detector Tests","authors":"A. Massara, S. Amaducci, L. Cosentino, F. Longhitano, C. Marchetta, Gaetano Elio Poma, Martina Ursino, P. Finocchiaro","doi":"10.3390/instruments7010001","DOIUrl":"https://doi.org/10.3390/instruments7010001","url":null,"abstract":"Several methods to detect thermal neutrons make use of the naturally occurring 6Li isotope, as it has a rather high cross-section for neutron capture followed by a decay into an alpha particle and a triton. Due to the high chemical reactivity of lithium, the use of the stable isotopic salt 6LiF is generally preferred to the pure 6Li. The typical method for depositing thin layers of 6LiF on suitable substrates, therefore creating so-called neutron converters, is evaporation under vacuum. The evaporation technique, as well as a newly developed chemical deposition process, are described along with their benefits and drawbacks, and the results of neutron detection tests performed with the two types of converters coupled to silicon diodes show convenient performances.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47546725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-14DOI: 10.3390/instruments6040081
M. Proyavin, M. Morozkin, N. Ginzburg, Andrej N. Denisenko, M. Kamenskiy, V. Kotomina, V. Manuilov, A. Orlovskiy, I. Osharin, N. Peskov, A. Savilov, V. Zaslavsky
Novel additive technology of the Chemical Metallization of Photopolymer-based Structures (CMPS) is under active elaboration currently at the IAP RAS (Nizhny Novgorod). The use of this technology has made it possible to implement components of electron–optical and electrodynamic systems for high-power microwave vacuum tubes, such as a gyrotron and a relativistic Cherenkov maser, the design and experimental studies of which are described in this paper. Within the framework of the gyrotron developments, we carried out a simulation of the distribution of the heat load on the collector of high-power technological gyrotron taking into account secondary emission. The prospect of a significant reduction in the maximum power density of the deposited electron beam was shown. The experimental study of the gyrotron collector module manufactured using CMPS technology demonstrated high potential for its further implementation. Recent results of theoretical and experimental studies of a spatially extended Ka-band Cherenkov maser are presented. In this oscillator, the 2D-periodical slow-wave structure made by the proposed technology was applied and a narrow-band generation regime was observed with a sub-GW power level. The design and simulations of a novel selective electrodynamic system for a high-harmonic gyrotron with the planned application of the CMPS technology are discussed.
{"title":"Experimental Studies of Microwave Tubes with Components of Electron–Optical and Electrodynamic Systems Implemented Using Novel 3D Additive Technology","authors":"M. Proyavin, M. Morozkin, N. Ginzburg, Andrej N. Denisenko, M. Kamenskiy, V. Kotomina, V. Manuilov, A. Orlovskiy, I. Osharin, N. Peskov, A. Savilov, V. Zaslavsky","doi":"10.3390/instruments6040081","DOIUrl":"https://doi.org/10.3390/instruments6040081","url":null,"abstract":"Novel additive technology of the Chemical Metallization of Photopolymer-based Structures (CMPS) is under active elaboration currently at the IAP RAS (Nizhny Novgorod). The use of this technology has made it possible to implement components of electron–optical and electrodynamic systems for high-power microwave vacuum tubes, such as a gyrotron and a relativistic Cherenkov maser, the design and experimental studies of which are described in this paper. Within the framework of the gyrotron developments, we carried out a simulation of the distribution of the heat load on the collector of high-power technological gyrotron taking into account secondary emission. The prospect of a significant reduction in the maximum power density of the deposited electron beam was shown. The experimental study of the gyrotron collector module manufactured using CMPS technology demonstrated high potential for its further implementation. Recent results of theoretical and experimental studies of a spatially extended Ka-band Cherenkov maser are presented. In this oscillator, the 2D-periodical slow-wave structure made by the proposed technology was applied and a narrow-band generation regime was observed with a sub-GW power level. The design and simulations of a novel selective electrodynamic system for a high-harmonic gyrotron with the planned application of the CMPS technology are discussed.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44564351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-29DOI: 10.3390/instruments6040080
Isabelle Schilling, C. M. Bäcker, C. Bäumer, C. Behrends, M. Hötting, Jana Hohmann, K. Kröninger, B. Timmermann, J. Weingarten
The accurate measurement of the beam range in the frame of quality assurance (QA) is a requirement for clinical use of a proton therapy machine. Conventionally used detectors mostly estimate the range by measuring the depth dose distribution of the protons. In this paper, we use pixel detectors designed for individual particle tracking in the high-radiation environment of the ATLAS experiment at LHC. The detector measures the deposited energy in the sensor for individual protons. Due to the limited dynamic energy range of the readout chip, several ways to measure the proton energy or range are examined. A staircase phantom is placed on the detector to perform an energy calibration relative to the NIST PSTAR stopping power database. In addition, track length measurements are performed using the detector aligned parallel with the beam axis to investigate the Linear Energy Transfer (LET) per pixel along the trajectory of individual protons. In this proof-of-principle study, we show that this radiation hardness detector can successfully be used to determine the initial proton energy for protons impinging on the sensor with an energy below 44 MeV after the range shifters. It becomes clear that an improvement of the energy resolution of the readout chip is required for clinical use.
{"title":"Measuring the Beam Energy in Proton Therapy Facilities Using ATLAS IBL Pixel Detectors","authors":"Isabelle Schilling, C. M. Bäcker, C. Bäumer, C. Behrends, M. Hötting, Jana Hohmann, K. Kröninger, B. Timmermann, J. Weingarten","doi":"10.3390/instruments6040080","DOIUrl":"https://doi.org/10.3390/instruments6040080","url":null,"abstract":"The accurate measurement of the beam range in the frame of quality assurance (QA) is a requirement for clinical use of a proton therapy machine. Conventionally used detectors mostly estimate the range by measuring the depth dose distribution of the protons. In this paper, we use pixel detectors designed for individual particle tracking in the high-radiation environment of the ATLAS experiment at LHC. The detector measures the deposited energy in the sensor for individual protons. Due to the limited dynamic energy range of the readout chip, several ways to measure the proton energy or range are examined. A staircase phantom is placed on the detector to perform an energy calibration relative to the NIST PSTAR stopping power database. In addition, track length measurements are performed using the detector aligned parallel with the beam axis to investigate the Linear Energy Transfer (LET) per pixel along the trajectory of individual protons. In this proof-of-principle study, we show that this radiation hardness detector can successfully be used to determine the initial proton energy for protons impinging on the sensor with an energy below 44 MeV after the range shifters. It becomes clear that an improvement of the energy resolution of the readout chip is required for clinical use.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45811750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-27DOI: 10.3390/instruments6040079
Sebastian Valencia-Garzón, E. Reyes-Vera, J. Galvis-Arroyave, José P Montoya, N. Gómez-Cardona
A CO2 laser-based system was studied and implemented to produce asymmetric long period fiber gratings (LPFG) with a large attenuation peak, high reproducibility, and high stability. The first half of this study provides a mathematical uncertainty model of the CO2 laser-based approach that takes into account various mechanical and thermal effects that impact this production technique. This is the first time that metrological analysis and modeling are performed on the CO2 laser-based engraving technique. Following that, the engraved system’s quality was assessed using a microscopic approach to confirm mechanical characteristics such as grating period, engraved spot width, and penetration depth, demonstrating that, if the thermal and mechanical components of the overall system are correctly managed, it is feasible to have very low inaccuracy. Lastly, the LPFG performance as temperature and strain sensors was tested, and the findings show that they had good linearity in both circumstances. Thus, the temperature sensor had a maximal sensitivity of 58 pm/°C when measuring temperature changed from 20 to 97 °C, but the strain sensor had sensitivity of 43 pm/με when measuring strain variations from 5.59 to 25 με. As a result, the model and results presented in this paper can be utilized to create a platform for the metrological management of lengths involved in the process of manufacturing LPFGs, devices that are widely employed in the creation of sensors and communications devices.
{"title":"Metrological Characterization of a CO2 Laser-Based System for Inscribing Long-Period Gratings in Optical Fibers","authors":"Sebastian Valencia-Garzón, E. Reyes-Vera, J. Galvis-Arroyave, José P Montoya, N. Gómez-Cardona","doi":"10.3390/instruments6040079","DOIUrl":"https://doi.org/10.3390/instruments6040079","url":null,"abstract":"A CO2 laser-based system was studied and implemented to produce asymmetric long period fiber gratings (LPFG) with a large attenuation peak, high reproducibility, and high stability. The first half of this study provides a mathematical uncertainty model of the CO2 laser-based approach that takes into account various mechanical and thermal effects that impact this production technique. This is the first time that metrological analysis and modeling are performed on the CO2 laser-based engraving technique. Following that, the engraved system’s quality was assessed using a microscopic approach to confirm mechanical characteristics such as grating period, engraved spot width, and penetration depth, demonstrating that, if the thermal and mechanical components of the overall system are correctly managed, it is feasible to have very low inaccuracy. Lastly, the LPFG performance as temperature and strain sensors was tested, and the findings show that they had good linearity in both circumstances. Thus, the temperature sensor had a maximal sensitivity of 58 pm/°C when measuring temperature changed from 20 to 97 °C, but the strain sensor had sensitivity of 43 pm/με when measuring strain variations from 5.59 to 25 με. As a result, the model and results presented in this paper can be utilized to create a platform for the metrological management of lengths involved in the process of manufacturing LPFGs, devices that are widely employed in the creation of sensors and communications devices.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44826451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-22DOI: 10.3390/instruments6040078
Cristian Borja, C. Ávila, G. Roque, M. Sanchez
We report measurements of muon flux over the sky of the city of Bogotá at 4°35′56′′ north latitude, 74°04′51′′ west longitude, and an altitude of 2657 m above sea level, carried out with a hodoscope composed of four stations of plastic scintillators located equidistant over a distance of 4.8 m. Measurements were taken at different zenith (θ) angles within the range 1.5° ≤ θ ≤90°, the muon flux data is statistically consistent with a cos2θ dependence, with a χ2 per degree of freedom near unity. If instead, we fit to a cosnθ we obtain n = 2.145±0.046 with a lower χ2 per degree of freedom. Integrating the muon flux distribution as a function of the zenith angle over the solid angle of the upper Earth’s hemisphere allows an estimation of the atmospheric vertical muon rate at the altitude and latitude of Bogota obtaining a value of 255.1 ± 5.8m−2s−1. This estimate is consistent with an independent direct measurement of the vertical muon flux with all detectors stacked horizontally. These measurements play a key role in the further development of detectors, aimed to perform muon imaging of Monserrate Hill, located in Bogotá, where the detectors will be placed at similar locations to those used in the present study.
{"title":"Atmospheric Muon Flux Measurement near Earth’s Equatorial Line","authors":"Cristian Borja, C. Ávila, G. Roque, M. Sanchez","doi":"10.3390/instruments6040078","DOIUrl":"https://doi.org/10.3390/instruments6040078","url":null,"abstract":"We report measurements of muon flux over the sky of the city of Bogotá at 4°35′56′′ north latitude, 74°04′51′′ west longitude, and an altitude of 2657 m above sea level, carried out with a hodoscope composed of four stations of plastic scintillators located equidistant over a distance of 4.8 m. Measurements were taken at different zenith (θ) angles within the range 1.5° ≤ θ ≤90°, the muon flux data is statistically consistent with a cos2θ dependence, with a χ2 per degree of freedom near unity. If instead, we fit to a cosnθ we obtain n = 2.145±0.046 with a lower χ2 per degree of freedom. Integrating the muon flux distribution as a function of the zenith angle over the solid angle of the upper Earth’s hemisphere allows an estimation of the atmospheric vertical muon rate at the altitude and latitude of Bogota obtaining a value of 255.1 ± 5.8m−2s−1. This estimate is consistent with an independent direct measurement of the vertical muon flux with all detectors stacked horizontally. These measurements play a key role in the further development of detectors, aimed to perform muon imaging of Monserrate Hill, located in Bogotá, where the detectors will be placed at similar locations to those used in the present study.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48672316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}