Pub Date : 2023-09-16DOI: 10.3390/instruments7030028
Elisa Maria Gandolfo, José Roberto Brandao Oliveira, Luigi Campajola, Dimitra Pierroutsakou, Alfonso Boiano, Clementina Agodi, Francesco Cappuzzello, Diana Carbone, Manuela Cavallaro, Irene Ciraldo, Daniela Calvo, Franck Delaunay, Canel Eke, Fabio Longhitano, Nilberto Medina, Mauricio Moralles, Diego Sartirana, Vijay Raj Sharma, Alessandro Spatafora, Dennis Toufen, Paolo Finocchiaro
The G-NUMEN array is the future gamma spectrometer of the NUMEN experiment (nuclear matrix element for neutrinoless double beta decay), to be installed around the object point of the MAGNEX magnetic spectrometer at the INFN-LNS laboratory. This project aims to explore double-charge exchange (DCE) reactions in order to obtain crucial information about neutrinoless double beta decay (0νββ). The primary objective of the G-NUMEN array is to detect the gamma rays emitted from the de-excitation of the excited states that are populated via DCE reactions with a good energy resolution and detection efficiency, amidst a background composed of the transitions from competing reaction channels with far higher cross sections. To achieve this, G-NUMEN signals will be processed in coincidence with those generated by the detection of reaction ejectiles by the MAGNEX focal plane detector (FPD). Under the expected experimental conditions, G-NUMEN detectors will operate at high counting rates, of the order of hundreds of kHz per detector, while maintaining excellent energy and timing resolutions. The complete array will consist of over 100 LaBr3(Ce) scintillators. Initial tests were conducted on the first detectors of the array, allowing for the determination of their performance at high rates.
{"title":"Response of G-NUMEN LaBr3(Ce) Detectors to High Counting Rates","authors":"Elisa Maria Gandolfo, José Roberto Brandao Oliveira, Luigi Campajola, Dimitra Pierroutsakou, Alfonso Boiano, Clementina Agodi, Francesco Cappuzzello, Diana Carbone, Manuela Cavallaro, Irene Ciraldo, Daniela Calvo, Franck Delaunay, Canel Eke, Fabio Longhitano, Nilberto Medina, Mauricio Moralles, Diego Sartirana, Vijay Raj Sharma, Alessandro Spatafora, Dennis Toufen, Paolo Finocchiaro","doi":"10.3390/instruments7030028","DOIUrl":"https://doi.org/10.3390/instruments7030028","url":null,"abstract":"The G-NUMEN array is the future gamma spectrometer of the NUMEN experiment (nuclear matrix element for neutrinoless double beta decay), to be installed around the object point of the MAGNEX magnetic spectrometer at the INFN-LNS laboratory. This project aims to explore double-charge exchange (DCE) reactions in order to obtain crucial information about neutrinoless double beta decay (0νββ). The primary objective of the G-NUMEN array is to detect the gamma rays emitted from the de-excitation of the excited states that are populated via DCE reactions with a good energy resolution and detection efficiency, amidst a background composed of the transitions from competing reaction channels with far higher cross sections. To achieve this, G-NUMEN signals will be processed in coincidence with those generated by the detection of reaction ejectiles by the MAGNEX focal plane detector (FPD). Under the expected experimental conditions, G-NUMEN detectors will operate at high counting rates, of the order of hundreds of kHz per detector, while maintaining excellent energy and timing resolutions. The complete array will consist of over 100 LaBr3(Ce) scintillators. Initial tests were conducted on the first detectors of the array, allowing for the determination of their performance at high rates.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135308416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-15DOI: 10.3390/instruments7030027
Nikita A. Bylinskiy, Yuriy K. Kalynov, Valentina E. Kotomina, Nikolay Yu. Peskov, Mikhail D. Proyavin, Andrei V. Savilov, Dmitry D. Sobolev, Alexander A. Vikharev, Vladislav Yu. Zaslavsky
A novel concept of a frequency-tuned sub-terahertz gyrotron based on a combination of an irregular low-frequency resonator and an external reflector has been proposed recently. A simulation was carried out for a fundamental-cyclotron-harmonic gyrotron that demonstrates the possibility of achieving high (10–30%) efficiencies in a wide (~10%) frequency range. A possible solution to the problem of narrow-band frequency-tunable external reflectors in the form of so-called modified planar Bragg structures is discussed. The manufacturing of such structures on the basis of a novel additive technology based on photopolymer 3D printing, as well as the results of “cold” experiments of the manufactured samples, are described in the paper.
{"title":"Planar Bragg Reflectors for Frequency-Tunable Sub-Terahertz Gyrotrons","authors":"Nikita A. Bylinskiy, Yuriy K. Kalynov, Valentina E. Kotomina, Nikolay Yu. Peskov, Mikhail D. Proyavin, Andrei V. Savilov, Dmitry D. Sobolev, Alexander A. Vikharev, Vladislav Yu. Zaslavsky","doi":"10.3390/instruments7030027","DOIUrl":"https://doi.org/10.3390/instruments7030027","url":null,"abstract":"A novel concept of a frequency-tuned sub-terahertz gyrotron based on a combination of an irregular low-frequency resonator and an external reflector has been proposed recently. A simulation was carried out for a fundamental-cyclotron-harmonic gyrotron that demonstrates the possibility of achieving high (10–30%) efficiencies in a wide (~10%) frequency range. A possible solution to the problem of narrow-band frequency-tunable external reflectors in the form of so-called modified planar Bragg structures is discussed. The manufacturing of such structures on the basis of a novel additive technology based on photopolymer 3D printing, as well as the results of “cold” experiments of the manufactured samples, are described in the paper.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135397103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A novel solid-state neutron and gamma radiation monitor-dosimeter based on biopolymer polylactic acid (PLA) is presented. The resulting detector (PLAD) technology takes advantage of property changes of the renewable PLA resin when subject to ionizing nuclear radiation. A simple yet rapid and accurate (±10%) low-cost (<$0.01/detector) mass loss upon dissolution (MLD) technique was successfully developed; MLD is based on a simple mass balance for discerning neutron and/or gamma doses using small (40 mg, ~4 mm diameter) ultra-low-cost (<$0.01) resin beads via dissolution in acetone. The GammaCellTM Co-60 irradiator, and the PUR-1 12 kW fission nuclear research reactor were utilized, respectively. Irradiation absorbed doses ranged from 1 to 100 kGy. Acetone bath temperature was varied from ~40 °C to ~54 °C. Results revealed a strong dependence of MLD on acetone bath temperature between neutron and gamma photon dose components; this allowed for the unique ability of PLAD to potentially perform as both a neutron-cum-gamma or as a gamma or neutron radiation dosimeter and intensity level detector. A linear trend is found for combined neutron and gamma radiation doses from 0 to 40 kGy when dissolution is conducted above 50 °C. The important potential ability to distinguish neutron from gamma radiation fields was scoped and found to be feasible by determining MLD at 45 °C. The potential was studied for simultaneous use as an in-core neutron and gamma monitor of an operating 3 GWt light-water reactor (LWR). Scoping tests were conducted with the pre-irradiated (@ 20 °C) PLAD resin beads followed by heating to in-core LWR coolant (300 °C) conditions for ~30 s corresponding to the time to reach ~40 kGy total doses in a typical 3 GWt LWR. MLD results were unaffected, indicating the exciting and unique potential for in situ (low-cost, accurate and rapid) simultaneous mapping of neutron and gamma radiation fluxes, related dosimetry, and fission power level monitoring.
{"title":"A Novel, Rapid Response Renewable Biopolymer Neutron and Gamma Radiation Solid-State Detector for Dosimetry and Nuclear Reactor Flux-Power Mapping","authors":"Wen Jiang, True Miller, Troy Barlow, Nathan Boyle, Rusi P. Taleyarkhan","doi":"10.3390/instruments7030026","DOIUrl":"https://doi.org/10.3390/instruments7030026","url":null,"abstract":"A novel solid-state neutron and gamma radiation monitor-dosimeter based on biopolymer polylactic acid (PLA) is presented. The resulting detector (PLAD) technology takes advantage of property changes of the renewable PLA resin when subject to ionizing nuclear radiation. A simple yet rapid and accurate (±10%) low-cost (<$0.01/detector) mass loss upon dissolution (MLD) technique was successfully developed; MLD is based on a simple mass balance for discerning neutron and/or gamma doses using small (40 mg, ~4 mm diameter) ultra-low-cost (<$0.01) resin beads via dissolution in acetone. The GammaCellTM Co-60 irradiator, and the PUR-1 12 kW fission nuclear research reactor were utilized, respectively. Irradiation absorbed doses ranged from 1 to 100 kGy. Acetone bath temperature was varied from ~40 °C to ~54 °C. Results revealed a strong dependence of MLD on acetone bath temperature between neutron and gamma photon dose components; this allowed for the unique ability of PLAD to potentially perform as both a neutron-cum-gamma or as a gamma or neutron radiation dosimeter and intensity level detector. A linear trend is found for combined neutron and gamma radiation doses from 0 to 40 kGy when dissolution is conducted above 50 °C. The important potential ability to distinguish neutron from gamma radiation fields was scoped and found to be feasible by determining MLD at 45 °C. The potential was studied for simultaneous use as an in-core neutron and gamma monitor of an operating 3 GWt light-water reactor (LWR). Scoping tests were conducted with the pre-irradiated (@ 20 °C) PLAD resin beads followed by heating to in-core LWR coolant (300 °C) conditions for ~30 s corresponding to the time to reach ~40 kGy total doses in a typical 3 GWt LWR. MLD results were unaffected, indicating the exciting and unique potential for in situ (low-cost, accurate and rapid) simultaneous mapping of neutron and gamma radiation fluxes, related dosimetry, and fission power level monitoring.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135878877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-02DOI: 10.3390/instruments7040043
M. Arratia, Bruce Bagby, Peter Carney, Jiajun Huang, R. Milton, S. Paul, S. Preins, Miguel Rodriguez, Weibin Zhang
We recently proposed a high-granularity calorimeter insert for the Electron-Ion Collider (EIC) that uses plastic scintillator tiles read out by SiPMs. Among its features are an ASIC-away-from-SiPM strategy for reducing cooling requirements and minimizing space use, along with employing 3D-printed frames to reduce optical crosstalk and dead areas. To evaluate these features, we built a 40-channel prototype and tested it using a 4 GeV positron beam at Jefferson Laboratory. The measured energy spectra and 3D shower shapes are well described by simulations, confirming the effectiveness of the design, construction techniques, and calibration strategy. This constitutes the first use of SiPM-on-tile technology in an EIC detector design.
{"title":"Beam Test of the First Prototype of SiPM-on-Tile Calorimeter Insert for the EIC Using 4 GeV Positrons at Jefferson Laboratory","authors":"M. Arratia, Bruce Bagby, Peter Carney, Jiajun Huang, R. Milton, S. Paul, S. Preins, Miguel Rodriguez, Weibin Zhang","doi":"10.3390/instruments7040043","DOIUrl":"https://doi.org/10.3390/instruments7040043","url":null,"abstract":"We recently proposed a high-granularity calorimeter insert for the Electron-Ion Collider (EIC) that uses plastic scintillator tiles read out by SiPMs. Among its features are an ASIC-away-from-SiPM strategy for reducing cooling requirements and minimizing space use, along with employing 3D-printed frames to reduce optical crosstalk and dead areas. To evaluate these features, we built a 40-channel prototype and tested it using a 4 GeV positron beam at Jefferson Laboratory. The measured energy spectra and 3D shower shapes are well described by simulations, confirming the effectiveness of the design, construction techniques, and calibration strategy. This constitutes the first use of SiPM-on-tile technology in an EIC detector design.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139343237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-28DOI: 10.3390/instruments7030024
Eldred Lee, K. D. Larkin, Xin Yue, Zhehui Wang, E. Fossum, Jifeng Liu
This article experimentally investigates the inception of an innovative hard X-ray photon energy attenuation layer (PAL) to advance high-energy X-ray detection (20–50 keV). A bi-layer design with a thin film high-Z PAL on the top and Si image sensor on the bottom has previously demon-strated quantum yield enhancement via computational methods by the principle of photon energy down conversion (PEDC), where high-energy X-ray photon energies are attenuated via inelastic scattering down to ≤10 keV, which is suitable for efficient photoelectric absorption by Si. Quantum yield enhancement has been experimentally confirmed via a preliminary demonstration using PAL-integrated Si-based CMOS image sensors (Si CIS). Furthermore, substituting the high-Z PAL with a lower-Z material—Sn—and alternatively coupling it with a conventional scintillator ma-terial—Lutetium-yttrium oxyorthosilicate (LYSO)—have been compared to demonstrate the most prominent efficacy of monolithic integration of high-Z PAL on Si CIS to detect hard X-rays, paving the way for next-generation high-energy X-ray detection methods.
{"title":"Design of Monolithic Bi-Layer High-Z PAL-Si Hard X-ray CMOS Image Sensors for Quantum Efficiency Enhancement","authors":"Eldred Lee, K. D. Larkin, Xin Yue, Zhehui Wang, E. Fossum, Jifeng Liu","doi":"10.3390/instruments7030024","DOIUrl":"https://doi.org/10.3390/instruments7030024","url":null,"abstract":"This article experimentally investigates the inception of an innovative hard X-ray photon energy attenuation layer (PAL) to advance high-energy X-ray detection (20–50 keV). A bi-layer design with a thin film high-Z PAL on the top and Si image sensor on the bottom has previously demon-strated quantum yield enhancement via computational methods by the principle of photon energy down conversion (PEDC), where high-energy X-ray photon energies are attenuated via inelastic scattering down to ≤10 keV, which is suitable for efficient photoelectric absorption by Si. Quantum yield enhancement has been experimentally confirmed via a preliminary demonstration using PAL-integrated Si-based CMOS image sensors (Si CIS). Furthermore, substituting the high-Z PAL with a lower-Z material—Sn—and alternatively coupling it with a conventional scintillator ma-terial—Lutetium-yttrium oxyorthosilicate (LYSO)—have been compared to demonstrate the most prominent efficacy of monolithic integration of high-Z PAL on Si CIS to detect hard X-rays, paving the way for next-generation high-energy X-ray detection methods.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48780908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-07DOI: 10.3390/instruments7030022
H. Hähnel, A. Ateş, Benjamin Dedić, U. Ratzinger
Additive manufacturing (AM) of metals has the potential to provide significant benefits for the construction of future particle accelerators. The combination of low cost manufacturing of complex geometries in combination with efficiency gains from improved linac design enabled by AM may be one way towards future cost-effective green accelerator facilities. As a proof of concept, we present a high-efficiency Zeff=280 MΩ/m, 433.632 MHz IH-DTL cavity based on an AM design. In this case, the complex internal drift tube structures with internal cooling channels have been produced from 1.4404 stainless steel and from pure copper using AM. The prototype cavity, as well as stainless steel AM parts have been electroplated with copper. We present results from successful vacuum tests, low level RF measurements of the cavity, as well as the status of preparations for high-power RF tests with a 30 kW pulsed power amplifier.
{"title":"Additive Manufacturing of an IH-Type Linac Structure from Stainless Steel and Pure Copper","authors":"H. Hähnel, A. Ateş, Benjamin Dedić, U. Ratzinger","doi":"10.3390/instruments7030022","DOIUrl":"https://doi.org/10.3390/instruments7030022","url":null,"abstract":"Additive manufacturing (AM) of metals has the potential to provide significant benefits for the construction of future particle accelerators. The combination of low cost manufacturing of complex geometries in combination with efficiency gains from improved linac design enabled by AM may be one way towards future cost-effective green accelerator facilities. As a proof of concept, we present a high-efficiency Zeff=280 MΩ/m, 433.632 MHz IH-DTL cavity based on an AM design. In this case, the complex internal drift tube structures with internal cooling channels have been produced from 1.4404 stainless steel and from pure copper using AM. The prototype cavity, as well as stainless steel AM parts have been electroplated with copper. We present results from successful vacuum tests, low level RF measurements of the cavity, as well as the status of preparations for high-power RF tests with a 30 kW pulsed power amplifier.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45088877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.3390/instruments7030023
Garrett Mathesen, Charlotte Wehner, Julian Merrick, B. Shirley, R. Agustsson, R. Berry, Amirari Diego, E. Nanni
Additive manufacturing is a versatile technique that shows promise in providing quick and dynamic manufacturing for complex engineering problems. Research has been ongoing into the use of additive manufacturing for potential applications in radiofrequency (RF) component technologies. Here, we present a method for developing an effective prototype load produced from 316L stainless steel on a direct metal laser sintering machine. The model was tested using simulation software to verify the validity of the design. The load structure was manufactured by an online digital manufacturing company, showing the viability of using easily accessible tools to manufacture RF structures. The produced load was able to produce an S11 value of −22.8 dB at a C-band frequency of 5.712 GHz while under a vacuum. In a high-power test, the load was able to terminate a peak power of 8.1 MW. The discussion includes future applications of the present method and how it will help to improve the implementation of future accelerator concepts.
{"title":"Utilization of Additive Manufacturing for the Rapid Prototyping of C-Band Radiofrequency Loads","authors":"Garrett Mathesen, Charlotte Wehner, Julian Merrick, B. Shirley, R. Agustsson, R. Berry, Amirari Diego, E. Nanni","doi":"10.3390/instruments7030023","DOIUrl":"https://doi.org/10.3390/instruments7030023","url":null,"abstract":"Additive manufacturing is a versatile technique that shows promise in providing quick and dynamic manufacturing for complex engineering problems. Research has been ongoing into the use of additive manufacturing for potential applications in radiofrequency (RF) component technologies. Here, we present a method for developing an effective prototype load produced from 316L stainless steel on a direct metal laser sintering machine. The model was tested using simulation software to verify the validity of the design. The load structure was manufactured by an online digital manufacturing company, showing the viability of using easily accessible tools to manufacture RF structures. The produced load was able to produce an S11 value of −22.8 dB at a C-band frequency of 5.712 GHz while under a vacuum. In a high-power test, the load was able to terminate a peak power of 8.1 MW. The discussion includes future applications of the present method and how it will help to improve the implementation of future accelerator concepts.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41987149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-19DOI: 10.3390/instruments7030021
Erkan Danaci, Yusuf Bayrak, Anil Çetinkaya, Murat Arslan, H. Sakarya, A. K. Doğan, Gulsun Tunay
Radio Frequency (RF) power sensor calibration is one of the essential measurements in RF and microwave metrology. For a reliable and accurate power sensor calibration, there are various methods, such as the substitution method, the direct comparison transfer method (DCTM), and the vector network analyzer (VNA)-based calibration method (VBCM). The VBCM is a method that is derived from the DCTM. It is a preferred method since the VNA has a better measurement capability and has fewer connection requirements for measurement devices. In this study, the milestones and potential application errors of the VBCM are given by considering the connection mistakes, measurement faults, calculation errors, and control software coding problems. At the end of the power sensor calibration measurements with the VBCM, the model function components and the uncertainty calculation examples according to the GUM Bayesian method are also presented in this study. In addition, the advantages and disadvantages of the VBCM compared to the former methods are discussed in this study.
{"title":"Analysis of Vector-Network-Analyzer-Based Power Sensor Calibration Method Application","authors":"Erkan Danaci, Yusuf Bayrak, Anil Çetinkaya, Murat Arslan, H. Sakarya, A. K. Doğan, Gulsun Tunay","doi":"10.3390/instruments7030021","DOIUrl":"https://doi.org/10.3390/instruments7030021","url":null,"abstract":"Radio Frequency (RF) power sensor calibration is one of the essential measurements in RF and microwave metrology. For a reliable and accurate power sensor calibration, there are various methods, such as the substitution method, the direct comparison transfer method (DCTM), and the vector network analyzer (VNA)-based calibration method (VBCM). The VBCM is a method that is derived from the DCTM. It is a preferred method since the VNA has a better measurement capability and has fewer connection requirements for measurement devices. In this study, the milestones and potential application errors of the VBCM are given by considering the connection mistakes, measurement faults, calculation errors, and control software coding problems. At the end of the power sensor calibration measurements with the VBCM, the model function components and the uncertainty calculation examples according to the GUM Bayesian method are also presented in this study. In addition, the advantages and disadvantages of the VBCM compared to the former methods are discussed in this study.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46208685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-19DOI: 10.3390/instruments7030020
G. Gugliandolo, A. Alimenti, M. Latino, G. Crupi, K. Torokhtii, Enrico Silva, N. Donato
Microwave transducers are widely used for sensing applications in areas such as gas sensing and microfluidics. Inkjet printing technology has been proposed as a promising method for fabricating such devices due to its capability to produce complex patterns and geometries with high precision. In this work, the temperature-dependent electrical properties of an inkjet-printed single-port interdigitated capacitor (IDC) were investigated at cryogenic temperatures down to 20 K. The IDC was designed and fabricated using inkjet printing technology, while its reflection coefficient was measured using a vector network analyzer in a cryogenic measurement setup and then transformed into the corresponding admittance. The resonant frequency and quality factor (Q-factor) of the IDC were extracted as functions of the temperature and their sensitivity was evaluated. The results showed that the resonant frequency shifted to higher frequencies as the temperature was reduced, while the Q-factor increased as the temperature decreased. The trends and observations in the temperature-dependent electrical properties of the IDC are discussed and analyzed in this paper, and are expected to be useful in future advancement of the design and optimization of inkjet-printed microwave transducers for sensing applications and cryogenic electronics.
{"title":"Inkjet-Printed Interdigitated Capacitors for Sensing Applications: Temperature-Dependent Electrical Characterization at Cryogenic Temperatures down to 20 K","authors":"G. Gugliandolo, A. Alimenti, M. Latino, G. Crupi, K. Torokhtii, Enrico Silva, N. Donato","doi":"10.3390/instruments7030020","DOIUrl":"https://doi.org/10.3390/instruments7030020","url":null,"abstract":"Microwave transducers are widely used for sensing applications in areas such as gas sensing and microfluidics. Inkjet printing technology has been proposed as a promising method for fabricating such devices due to its capability to produce complex patterns and geometries with high precision. In this work, the temperature-dependent electrical properties of an inkjet-printed single-port interdigitated capacitor (IDC) were investigated at cryogenic temperatures down to 20 K. The IDC was designed and fabricated using inkjet printing technology, while its reflection coefficient was measured using a vector network analyzer in a cryogenic measurement setup and then transformed into the corresponding admittance. The resonant frequency and quality factor (Q-factor) of the IDC were extracted as functions of the temperature and their sensitivity was evaluated. The results showed that the resonant frequency shifted to higher frequencies as the temperature was reduced, while the Q-factor increased as the temperature decreased. The trends and observations in the temperature-dependent electrical properties of the IDC are discussed and analyzed in this paper, and are expected to be useful in future advancement of the design and optimization of inkjet-printed microwave transducers for sensing applications and cryogenic electronics.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41488450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-07DOI: 10.3390/instruments7030019
F. Treffert, C. Curry, T. Ditmire, G. Glenn, H. Quevedo, Markus Roth, C. Schoenwaelder, M. Zimmer, S. Glenzer, M. Gauthier
In the original publication [...]
在原始出版物中[…]
{"title":"Correction: Treffert et al. Towards High-Repetition-Rate Fast Neutron Sources Using Novel Enabling Technologies. Instruments 2021, 5, 38","authors":"F. Treffert, C. Curry, T. Ditmire, G. Glenn, H. Quevedo, Markus Roth, C. Schoenwaelder, M. Zimmer, S. Glenzer, M. Gauthier","doi":"10.3390/instruments7030019","DOIUrl":"https://doi.org/10.3390/instruments7030019","url":null,"abstract":"In the original publication [...]","PeriodicalId":13582,"journal":{"name":"Instruments","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44300086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}