Pub Date : 2024-11-15DOI: 10.1007/s11263-024-02291-5
Yifan Lu, Jiayi Ma
This paper studies graph clustering with application to feature matching and proposes an effective method, termed as GC-LAC, that can establish reliable feature correspondences and simultaneously discover all potential visual patterns. In particular, we regard each putative match as a node and encode the geometric relationships into edges where a visual pattern sharing similar motion behaviors corresponds to a strongly connected subgraph. In this setting, it is natural to formulate the feature matching task as a graph clustering problem. To construct a geometric meaningful graph, based on the best practices, we adopt a local affine strategy. By investigating the motion coherence prior, we further propose an efficient and deterministic geometric solver (MCDG) to extract the local geometric information that helps construct the graph. The graph is sparse and general for various image transformations. Subsequently, a novel robust graph clustering algorithm (D2SCAN) is introduced, which defines the notion of density-reachable on the graph by replicator dynamics optimization. Extensive experiments focusing on both the local and the whole of our GC-LAC with various practical vision tasks including relative pose estimation, homography and fundamental matrix estimation, loop-closure detection, and multimodel fitting, demonstrate that our GC-LAC is more competitive than current state-of-the-art methods, in terms of generality, efficiency, and effectiveness. The source code for this work is publicly available at: https://github.com/YifanLu2000/GCLAC.
{"title":"Feature Matching via Graph Clustering with Local Affine Consensus","authors":"Yifan Lu, Jiayi Ma","doi":"10.1007/s11263-024-02291-5","DOIUrl":"https://doi.org/10.1007/s11263-024-02291-5","url":null,"abstract":"<p>This paper studies graph clustering with application to feature matching and proposes an effective method, termed as GC-LAC, that can establish reliable feature correspondences and simultaneously discover all potential visual patterns. In particular, we regard each putative match as a node and encode the geometric relationships into edges where a visual pattern sharing similar motion behaviors corresponds to a strongly connected subgraph. In this setting, it is natural to formulate the feature matching task as a graph clustering problem. To construct a geometric meaningful graph, based on the best practices, we adopt a local affine strategy. By investigating the motion coherence prior, we further propose an efficient and deterministic geometric solver (MCDG) to extract the local geometric information that helps construct the graph. The graph is sparse and general for various image transformations. Subsequently, a novel robust graph clustering algorithm (D2SCAN) is introduced, which defines the notion of density-reachable on the graph by replicator dynamics optimization. Extensive experiments focusing on both the local and the whole of our GC-LAC with various practical vision tasks including relative pose estimation, homography and fundamental matrix estimation, loop-closure detection, and multimodel fitting, demonstrate that our GC-LAC is more competitive than current state-of-the-art methods, in terms of generality, efficiency, and effectiveness. The source code for this work is publicly available at: https://github.com/YifanLu2000/GCLAC.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"75 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-13DOI: 10.1007/s11263-024-02234-0
Garvita Allabadi, Ana Lucic, Yu-Xiong Wang, Vikram Adve
This paper tackles the limitation of a closed-world object detection model that was trained on one species. The expectation for this model is that it will not generalize well to recognize the instances of new species if they were present in the incoming data stream. We propose a novel object detection framework for this open-world setting that is suitable for applications that monitor wildlife, ocean life, livestock, plant phenotype and crops that typically feature one species in the image. Our method leverages labeled samples from one species in combination with a novelty detection method and Segment Anything Model, a vision foundation model, to (1) identify the presence of new species in unlabeled images, (2) localize their instances, and (3) retrain the initial model with the localized novel class instances. The resulting integrated system assimilates and learns from unlabeled samples of the new classes while not “forgetting” the original species the model was trained on. We demonstrate our findings on two different domains, (1) wildlife detection and (2) plant detection. Our method achieves an AP of 56.2 (for 4 novel species) to 61.6 (for 1 novel species) for wildlife domain, without relying on any ground truth data in the background.
{"title":"Learning to Detect Novel Species with SAM in the Wild","authors":"Garvita Allabadi, Ana Lucic, Yu-Xiong Wang, Vikram Adve","doi":"10.1007/s11263-024-02234-0","DOIUrl":"https://doi.org/10.1007/s11263-024-02234-0","url":null,"abstract":"<p>This paper tackles the limitation of a closed-world object detection model that was trained on one species. The expectation for this model is that it will not generalize well to recognize the instances of new species if they were present in the incoming data stream. We propose a novel object detection framework for this open-world setting that is suitable for applications that monitor wildlife, ocean life, livestock, plant phenotype and crops that typically feature one species in the image. Our method leverages labeled samples from one species in combination with a novelty detection method and Segment Anything Model, a vision foundation model, to (1) identify the presence of new species in unlabeled images, (2) localize their instances, and (3) <i>retrain</i> the initial model with the localized novel class instances. The resulting integrated system <i>assimilates</i> and <i>learns</i> from unlabeled samples of the new classes while not “forgetting” the original species the model was trained on. We demonstrate our findings on two different domains, (1) wildlife detection and (2) plant detection. Our method achieves an AP of 56.2 (for 4 novel species) to 61.6 (for 1 novel species) for wildlife domain, without relying on any ground truth data in the background.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"80 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-11DOI: 10.1007/s11263-024-02283-5
Abdullah Hamdi, Faisal AlZahrani, Silvio Giancola, Bernard Ghanem
Multi-view projection techniques have shown themselves to be highly effective in achieving top-performing results in the recognition of 3D shapes. These methods involve learning how to combine information from multiple view-points. However, the camera view-points from which these views are obtained are often fixed for all shapes. To overcome the static nature of current multi-view techniques, we propose learning these view-points. Specifically, we introduce the Multi-View Transformation Network (MVTN), which uses differentiable rendering to determine optimal view-points for 3D shape recognition. As a result, MVTN can be trained end-to-end with any multi-view network for 3D shape classification. We integrate MVTN into a novel adaptive multi-view pipeline that is capable of rendering both 3D meshes and point clouds. Our approach demonstrates state-of-the-art performance in 3D classification and shape retrieval on several benchmarks (ModelNet40, ScanObjectNN, ShapeNet Core55). Further analysis indicates that our approach exhibits improved robustness to occlusion compared to other methods. We also investigate additional aspects of MVTN, such as 2D pretraining and its use for segmentation. To support further research in this area, we have released MVTorch, a PyTorch library for 3D understanding and generation using multi-view projections.
{"title":"MVTN: Learning Multi-view Transformations for 3D Understanding","authors":"Abdullah Hamdi, Faisal AlZahrani, Silvio Giancola, Bernard Ghanem","doi":"10.1007/s11263-024-02283-5","DOIUrl":"https://doi.org/10.1007/s11263-024-02283-5","url":null,"abstract":"<p>Multi-view projection techniques have shown themselves to be highly effective in achieving top-performing results in the recognition of 3D shapes. These methods involve learning how to combine information from multiple view-points. However, the camera view-points from which these views are obtained are often fixed for all shapes. To overcome the static nature of current multi-view techniques, we propose learning these view-points. Specifically, we introduce the Multi-View Transformation Network (MVTN), which uses differentiable rendering to determine optimal view-points for 3D shape recognition. As a result, MVTN can be trained end-to-end with any multi-view network for 3D shape classification. We integrate MVTN into a novel adaptive multi-view pipeline that is capable of rendering both 3D meshes and point clouds. Our approach demonstrates state-of-the-art performance in 3D classification and shape retrieval on several benchmarks (ModelNet40, ScanObjectNN, ShapeNet Core55). Further analysis indicates that our approach exhibits improved robustness to occlusion compared to other methods. We also investigate additional aspects of MVTN, such as 2D pretraining and its use for segmentation. To support further research in this area, we have released MVTorch, a PyTorch library for 3D understanding and generation using multi-view projections.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"38 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-09DOI: 10.1007/s11263-024-02276-4
Yukang Zhang, Yan Yan, Yang Lu, Hanzi Wang
Visible-infrared person re-identification (VIReID) has attracted increasing attention due to the requirements for 24-hour intelligent surveillance systems. In this task, one of the major challenges is the modality discrepancy between the visible (VIS) and infrared (NIR) images. Most conventional methods try to design complex networks or generative models to mitigate the cross-modality discrepancy while ignoring the fact that the modality gaps differ between the different VIS and NIR images. Different from existing methods, in this paper, we propose an Adaptive Middle-modality Alignment Learning (AMML) method, which can effectively reduce the modality discrepancy via an adaptive middle modality learning strategy at both image level and feature level. The proposed AMML method enjoys several merits. First, we propose an Adaptive Middle-modality Generator (AMG) module to reduce the modality discrepancy between the VIS and NIR images from the image level, which can effectively project the VIS and NIR images into a unified middle modality image (UMMI) space to adaptively generate middle-modality (M-modality) images. Second, we propose a feature-level Adaptive Distribution Alignment (ADA) loss to force the distribution of the VIS features and NIR features adaptively align with the distribution of M-modality features. Moreover, we also propose a novel Center-based Diverse Distribution Learning (CDDL) loss, which can effectively learn diverse cross-modality knowledge from different modalities while reducing the modality discrepancy between the VIS and NIR modalities. Extensive experiments on three challenging VIReID datasets show the superiority of the proposed AMML method over the other state-of-the-art methods. More remarkably, our method achieves 77.8% in terms of Rank-1 and 74.8% in terms of mAP on the SYSU-MM01 dataset for all search mode, and 86.6% in terms of Rank-1 and 88.3% in terms of mAP on the SYSU-MM01 dataset for indoor search mode. The code is released at: https://github.com/ZYK100/MMN.
{"title":"Adaptive Middle Modality Alignment Learning for Visible-Infrared Person Re-identification","authors":"Yukang Zhang, Yan Yan, Yang Lu, Hanzi Wang","doi":"10.1007/s11263-024-02276-4","DOIUrl":"https://doi.org/10.1007/s11263-024-02276-4","url":null,"abstract":"<p>Visible-infrared person re-identification (VIReID) has attracted increasing attention due to the requirements for 24-hour intelligent surveillance systems. In this task, one of the major challenges is the modality discrepancy between the visible (VIS) and infrared (NIR) images. Most conventional methods try to design complex networks or generative models to mitigate the cross-modality discrepancy while ignoring the fact that the modality gaps differ between the different VIS and NIR images. Different from existing methods, in this paper, we propose an Adaptive Middle-modality Alignment Learning (AMML) method, which can effectively reduce the modality discrepancy via an adaptive middle modality learning strategy at both image level and feature level. The proposed AMML method enjoys several merits. First, we propose an Adaptive Middle-modality Generator (AMG) module to reduce the modality discrepancy between the VIS and NIR images from the image level, which can effectively project the VIS and NIR images into a unified middle modality image (UMMI) space to adaptively generate middle-modality (M-modality) images. Second, we propose a feature-level Adaptive Distribution Alignment (ADA) loss to force the distribution of the VIS features and NIR features adaptively align with the distribution of M-modality features. Moreover, we also propose a novel Center-based Diverse Distribution Learning (CDDL) loss, which can effectively learn diverse cross-modality knowledge from different modalities while reducing the modality discrepancy between the VIS and NIR modalities. Extensive experiments on three challenging VIReID datasets show the superiority of the proposed AMML method over the other state-of-the-art methods. More remarkably, our method achieves 77.8% in terms of Rank-1 and 74.8% in terms of mAP on the SYSU-MM01 dataset for all search mode, and 86.6% in terms of Rank-1 and 88.3% in terms of mAP on the SYSU-MM01 dataset for indoor search mode. The code is released at: https://github.com/ZYK100/MMN.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"24 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the realm of cryptography, the implementation of error correction in biometric data offers many benefits, including secure data storage and key derivation. Deep learning-based decoders have emerged as a catalyst for improved error correction when decoding noisy biometric data. Although these decoders exhibit competence in approximating precise solutions, we expose the potential inadequacy of their security assurances through a minimum entropy analysis. This limitation curtails their applicability in secure biometric contexts, as the inherent complexities of their non-linear neural network architectures pose challenges in modeling the solution distribution precisely. To address this limitation, we introduce U-Sketch, a universal approach for error correction in biometrics, which converts arbitrary input random biometric source distributions into independent and identically distributed (i.i.d.) data while maintaining the pairwise distance of the data post-transformation. This method ensures interpretability within the decoder, facilitating transparent entropy analysis and a substantiated security claim. Moreover, U-Sketch employs Maximum Likelihood Decoding, which provides optimal error tolerance and a precise security guarantee.
{"title":"Rethinking Contemporary Deep Learning Techniques for Error Correction in Biometric Data","authors":"YenLung Lai, XingBo Dong, Zhe Jin, Wei Jia, Massimo Tistarelli, XueJun Li","doi":"10.1007/s11263-024-02280-8","DOIUrl":"https://doi.org/10.1007/s11263-024-02280-8","url":null,"abstract":"<p>In the realm of cryptography, the implementation of error correction in biometric data offers many benefits, including secure data storage and key derivation. Deep learning-based decoders have emerged as a catalyst for improved error correction when decoding noisy biometric data. Although these decoders exhibit competence in approximating precise solutions, we expose the potential inadequacy of their security assurances through a minimum entropy analysis. This limitation curtails their applicability in secure biometric contexts, as the inherent complexities of their non-linear neural network architectures pose challenges in modeling the solution distribution precisely. To address this limitation, we introduce U-Sketch, a universal approach for error correction in biometrics, which converts arbitrary input random biometric source distributions into independent and identically distributed (i.i.d.) data while maintaining the pairwise distance of the data post-transformation. This method ensures interpretability within the decoder, facilitating transparent entropy analysis and a substantiated security claim. Moreover, U-Sketch employs Maximum Likelihood Decoding, which provides optimal error tolerance and a precise security guarantee.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"48 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1007/s11263-024-02273-7
Yunhua Zhang, Hazel Doughty, Cees G. M. Snoek
This paper strives to recognize activities in the dark, as well as in the day. We first establish that state-of-the-art activity recognizers are effective during the day, but not trustworthy in the dark. The main causes are the limited availability of labeled dark videos to learn from, as well as the distribution shift towards the lower color contrast at test-time. To compensate for the lack of labeled dark videos, we introduce a pseudo-supervised learning scheme, which utilizes easy to obtain unlabeled and task-irrelevant dark videos to improve an activity recognizer in low light. As the lower color contrast results in visual information loss, we further propose to incorporate the complementary activity information within audio, which is invariant to illumination. Since the usefulness of audio and visual features differs depending on the amount of illumination, we introduce our ‘darkness-adaptive’ audio-visual recognizer. Experiments on EPIC-Kitchens, Kinetics-Sound, and Charades demonstrate our proposals are superior to image enhancement, domain adaptation and alternative audio-visual fusion methods, and can even improve robustness to local darkness caused by occlusions. Project page: https://xiaobai1217.github.io/Day2Dark/.
{"title":"Day2Dark: Pseudo-Supervised Activity Recognition Beyond Silent Daylight","authors":"Yunhua Zhang, Hazel Doughty, Cees G. M. Snoek","doi":"10.1007/s11263-024-02273-7","DOIUrl":"https://doi.org/10.1007/s11263-024-02273-7","url":null,"abstract":"<p>This paper strives to recognize activities in the dark, as well as in the day. We first establish that state-of-the-art activity recognizers are effective during the day, but not trustworthy in the dark. The main causes are the limited availability of labeled dark videos to learn from, as well as the distribution shift towards the lower color contrast at test-time. To compensate for the lack of labeled dark videos, we introduce a pseudo-supervised learning scheme, which utilizes easy to obtain unlabeled and task-irrelevant dark videos to improve an activity recognizer in low light. As the lower color contrast results in visual information loss, we further propose to incorporate the complementary activity information within audio, which is invariant to illumination. Since the usefulness of audio and visual features differs depending on the amount of illumination, we introduce our ‘darkness-adaptive’ audio-visual recognizer. Experiments on EPIC-Kitchens, Kinetics-Sound, and Charades demonstrate our proposals are superior to image enhancement, domain adaptation and alternative audio-visual fusion methods, and can even improve robustness to local darkness caused by occlusions. Project page: https://xiaobai1217.github.io/Day2Dark/.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"68 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142588590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1007/s11263-024-02272-8
Tianyao He, Huabin Liu, Zelin Ni, Yuxi Li, Xiao Ma, Cheng Zhong, Yang Zhang, Yingxue Wang, Weiyao Lin
Video Correlation Learning (VCL) delineates a high-level research domain that centers on analyzing the semantic and temporal correspondences between videos through a comparative paradigm. Recently, instructional video-related tasks have drawn increasing attention due to their promising potential. Compared with general videos, instructional videos possess more complex procedure information, making correlation learning quite challenging. To obtain procedural knowledge, current methods rely heavily on fine-grained step-level annotations, which are costly and non-scalable. To improve VCL on instructional videos, we introduce a weakly supervised framework named Collaborative Procedure Alignment (CPA). To be specific, our framework comprises two core components: the collaborative step mining (CSM) module and the frame-to-step alignment (FSA) module. Free of the necessity for step-level annotations, the CSM module can properly conduct temporal step segmentation and pseudo-step learning by exploring the inner procedure correspondences between paired videos. Subsequently, the FSA module efficiently yields the probability of aligning one video’s frame-level features with another video’s pseudo-step labels, which can act as a reliable correlation degree for paired videos. The two modules are inherently interconnected and can mutually enhance each other to extract the step-level knowledge and measure the video correlation distances accurately. Our framework provides an effective tool for instructional video correlation learning. We instantiate our framework on four representative tasks, including sequence verification, few-shot action recognition, temporal action segmentation, and action quality assessment. Furthermore, we extend our framework to more innovative functions to further exhibit its potential. Extensive and in-depth experiments validate CPA’s strong correlation learning capability on instructional videos. The implementation can be found at https://github.com/hotelll/Collaborative_Procedure_Alignment.
{"title":"Achieving Procedure-Aware Instructional Video Correlation Learning Under Weak Supervision from a Collaborative Perspective","authors":"Tianyao He, Huabin Liu, Zelin Ni, Yuxi Li, Xiao Ma, Cheng Zhong, Yang Zhang, Yingxue Wang, Weiyao Lin","doi":"10.1007/s11263-024-02272-8","DOIUrl":"https://doi.org/10.1007/s11263-024-02272-8","url":null,"abstract":"<p>Video Correlation Learning (VCL) delineates a high-level research domain that centers on analyzing the semantic and temporal correspondences between videos through a comparative paradigm. Recently, instructional video-related tasks have drawn increasing attention due to their promising potential. Compared with general videos, instructional videos possess more complex procedure information, making correlation learning quite challenging. To obtain procedural knowledge, current methods rely heavily on fine-grained step-level annotations, which are costly and non-scalable. To improve VCL on instructional videos, we introduce a weakly supervised framework named Collaborative Procedure Alignment (CPA). To be specific, our framework comprises two core components: the collaborative step mining (CSM) module and the frame-to-step alignment (FSA) module. Free of the necessity for step-level annotations, the CSM module can properly conduct temporal step segmentation and pseudo-step learning by exploring the inner procedure correspondences between paired videos. Subsequently, the FSA module efficiently yields the probability of aligning one video’s frame-level features with another video’s pseudo-step labels, which can act as a reliable correlation degree for paired videos. The two modules are inherently interconnected and can mutually enhance each other to extract the step-level knowledge and measure the video correlation distances accurately. Our framework provides an effective tool for instructional video correlation learning. We instantiate our framework on four representative tasks, including sequence verification, few-shot action recognition, temporal action segmentation, and action quality assessment. Furthermore, we extend our framework to more innovative functions to further exhibit its potential. Extensive and in-depth experiments validate CPA’s strong correlation learning capability on instructional videos. The implementation can be found at https://github.com/hotelll/Collaborative_Procedure_Alignment.\u0000</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"109 4 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1007/s11263-024-02281-7
Qing Guo, Hua Qi, Jingyang Sun, Felix Juefei-Xu, Lei Ma, Di Lin, Wei Feng, Song Wang
Deraining is a significant and fundamental computer vision task, aiming to remove the rain streaks and accumulations in an image or video. Existing deraining methods usually make heuristic assumptions of the rain model, which compels them to employ complex optimization or iterative refinement for high recovery quality. However, this leads to time-consuming methods and affects the effectiveness of addressing rain patterns, deviating from the assumptions. This paper proposes a simple yet efficient deraining method by formulating deraining as a predictive filtering problem without complex rain model assumptions. Specifically, we identify spatially-variant predictive filtering (SPFilt) that adaptively predicts proper kernels via a deep network to filter different individual pixels. Since the filtering can be implemented via well-accelerated convolution, our method can be significantly efficient. We further propose the EfDeRain+ that contains three main contributions to address residual rain traces, multi-scale, and diverse rain patterns without harming efficiency. First, we propose the uncertainty-aware cascaded predictive filtering (UC-PFilt) that can identify the difficulties of reconstructing clean pixels via predicted kernels and remove the residual rain traces effectively. Second, we design the weight-sharing multi-scale dilated filtering (WS-MS-DFilt) to handle multi-scale rain streaks without harming the efficiency. Third, to eliminate the gap across diverse rain patterns, we propose a novel data augmentation method (i.e., RainMix) to train our deep models. By combining all contributions with sophisticated analysis on different variants, our final method outperforms baseline methods on six single-image deraining datasets and one video-deraining dataset in terms of both recovery quality and speed. In particular, EfDeRain+ can derain within about 6.3 ms on a (481times 321) image and is over 74 times faster than the top baseline method with even better recovery quality. We release code in https://github.com/tsingqguo/efficientderainplus.
{"title":"EfficientDeRain+: Learning Uncertainty-Aware Filtering via RainMix Augmentation for High-Efficiency Deraining","authors":"Qing Guo, Hua Qi, Jingyang Sun, Felix Juefei-Xu, Lei Ma, Di Lin, Wei Feng, Song Wang","doi":"10.1007/s11263-024-02281-7","DOIUrl":"https://doi.org/10.1007/s11263-024-02281-7","url":null,"abstract":"<p>Deraining is a significant and fundamental computer vision task, aiming to remove the rain streaks and accumulations in an image or video. Existing deraining methods usually make heuristic assumptions of the rain model, which compels them to employ complex optimization or iterative refinement for high recovery quality. However, this leads to time-consuming methods and affects the effectiveness of addressing rain patterns, deviating from the assumptions. This paper proposes a simple yet efficient deraining method by formulating deraining as a predictive filtering problem without complex rain model assumptions. Specifically, we identify spatially-variant predictive filtering (SPFilt) that adaptively predicts proper kernels via a deep network to filter different individual pixels. Since the filtering can be implemented via well-accelerated convolution, our method can be significantly efficient. We further propose the <i>EfDeRain+</i> that contains three main contributions to address residual rain traces, multi-scale, and diverse rain patterns without harming efficiency. <i>First</i>, we propose the uncertainty-aware cascaded predictive filtering (UC-PFilt) that can identify the difficulties of reconstructing clean pixels via predicted kernels and remove the residual rain traces effectively. <i>Second</i>, we design the weight-sharing multi-scale dilated filtering (WS-MS-DFilt) to handle multi-scale rain streaks without harming the efficiency. <i>Third</i>, to eliminate the gap across diverse rain patterns, we propose a novel data augmentation method (<i>i.e</i>., <i>RainMix</i>) to train our deep models. By combining all contributions with sophisticated analysis on different variants, our final method outperforms baseline methods on six single-image deraining datasets and one video-deraining dataset in terms of both recovery quality and speed. In particular, <i>EfDeRain+</i> can derain within about 6.3 ms on a <span>(481times 321)</span> image and is over 74 times faster than the top baseline method with even better recovery quality. We release code in https://github.com/tsingqguo/efficientderainplus.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"68 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1007/s11263-024-02275-5
Huimin Ma, Sheng Yi, Shijie Chen, Jiansheng Chen, Yu Wang
Previous weakly supervised semantic segmentation (WSSS) methods mainly begin with the segmentation seeds from the CAM method. Because of the high complexity of driving scene images, their framework performs not well on driving scene datasets. In this paper, we propose a new kind of WSSS annotations on the complex driving scene dataset, with only one or several labeled points per category. This annotation is more lightweight than image-level annotation and provides critical localization information for prototypes. We propose a framework to address the WSSS task under this annotation, which generates prototype feature vectors from labeled points and then produces 2D pseudo labels. Besides, we found the point cloud data is useful for distinguishing different objects. Our framework could extract rich semantic information from unlabeled point cloud data and generate instance masks, which does not require extra annotation resources. We combine the pseudo labels and the instance masks to modify the incorrect regions and thus obtain more accurate supervision for training the semantic segmentation network. We evaluated this framework on the KITTI dataset. Experiments show that the proposed method achieves state-of-the-art performance.
{"title":"Few Annotated Pixels and Point Cloud Based Weakly Supervised Semantic Segmentation of Driving Scenes","authors":"Huimin Ma, Sheng Yi, Shijie Chen, Jiansheng Chen, Yu Wang","doi":"10.1007/s11263-024-02275-5","DOIUrl":"https://doi.org/10.1007/s11263-024-02275-5","url":null,"abstract":"<p>Previous weakly supervised semantic segmentation (WSSS) methods mainly begin with the segmentation seeds from the CAM method. Because of the high complexity of driving scene images, their framework performs not well on driving scene datasets. In this paper, we propose a new kind of WSSS annotations on the complex driving scene dataset, with only one or several labeled points per category. This annotation is more lightweight than image-level annotation and provides critical localization information for prototypes. We propose a framework to address the WSSS task under this annotation, which generates prototype feature vectors from labeled points and then produces 2D pseudo labels. Besides, we found the point cloud data is useful for distinguishing different objects. Our framework could extract rich semantic information from unlabeled point cloud data and generate instance masks, which does not require extra annotation resources. We combine the pseudo labels and the instance masks to modify the incorrect regions and thus obtain more accurate supervision for training the semantic segmentation network. We evaluated this framework on the KITTI dataset. Experiments show that the proposed method achieves state-of-the-art performance.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"2022 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-03DOI: 10.1007/s11263-024-02237-x
Tao Zhou, Qi Ye, Wenhan Luo, Haizhou Ran, Zhiguo Shi, Jiming Chen
Multi-object tracking (MOT) in the scenario of low-frame-rate videos is a promising solution to better meet the computing, storage, and transmitting bandwidth resource constraints of edge devices. Tracking with a low frame rate poses particular challenges in the association stage as objects in two successive frames typically exhibit much quicker variations in locations, velocities, appearances, and visibilities than those in normal frame rates. In this paper, we observe severe performance degeneration of many existing association strategies caused by such variations. Though optical-flow-based methods like CenterTrack can handle the large displacement to some extent due to their large receptive field, the temporally local nature makes them fail to give reliable displacement estimations of objects that newly appear in the current frame (i.e., not visible in the previous frame). To overcome the local nature of optical-flow-based methods, we propose an online tracking method by extending the CenterTrack architecture with a new head, named APP, to recognize unreliable displacement estimations. Further, to capture the fine-grained and private unreliability of each displacement estimation, we extend the binary APP predictions to displacement uncertainties. To this end, we reformulate the displacement estimation task via Bayesian deep learning tools. With APP predictions, we propose to conduct association in a multi-stage manner where vision cues or historical motion cues are leveraged in the corresponding stage. By rethinking the commonly used bipartite matching algorithms, we equip the proposed multi-stage association policy with a hybrid matching strategy conditioned on displacement uncertainties. Our method shows robustness in preserving identities in low-frame-rate video sequences. Experimental results on public datasets in various low-frame-rate settings demonstrate the advantages of the proposed method.
{"title":"APPTracker+: Displacement Uncertainty for Occlusion Handling in Low-Frame-Rate Multiple Object Tracking","authors":"Tao Zhou, Qi Ye, Wenhan Luo, Haizhou Ran, Zhiguo Shi, Jiming Chen","doi":"10.1007/s11263-024-02237-x","DOIUrl":"https://doi.org/10.1007/s11263-024-02237-x","url":null,"abstract":"<p>Multi-object tracking (MOT) in the scenario of low-frame-rate videos is a promising solution to better meet the computing, storage, and transmitting bandwidth resource constraints of edge devices. Tracking with a low frame rate poses particular challenges in the association stage as objects in two successive frames typically exhibit much quicker variations in locations, velocities, appearances, and visibilities than those in normal frame rates. In this paper, we observe severe performance degeneration of many existing association strategies caused by such variations. Though optical-flow-based methods like CenterTrack can handle the large displacement to some extent due to their large receptive field, the temporally local nature makes them fail to give reliable displacement estimations of objects that newly appear in the current frame (i.e., not visible in the previous frame). To overcome the local nature of optical-flow-based methods, we propose an online tracking method by extending the CenterTrack architecture with a new head, named APP, to recognize unreliable displacement estimations. Further, to capture the fine-grained and private unreliability of each displacement estimation, we extend the binary APP predictions to displacement uncertainties. To this end, we reformulate the displacement estimation task via Bayesian deep learning tools. With APP predictions, we propose to conduct association in a multi-stage manner where vision cues or historical motion cues are leveraged in the corresponding stage. By rethinking the commonly used bipartite matching algorithms, we equip the proposed multi-stage association policy with a hybrid matching strategy conditioned on displacement uncertainties. Our method shows robustness in preserving identities in low-frame-rate video sequences. Experimental results on public datasets in various low-frame-rate settings demonstrate the advantages of the proposed method.\u0000</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"7 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}