Pub Date : 2024-02-26DOI: 10.1177/10567895241234383
Yue Zhao, Xi Wang, Rubing Guo, Shouguang Sun
This paper presents a rolling contact fatigue life prediction model for bearing steel. In the initial stage of rolling contact, the gradient structure appears in the subsurface region of bearing steel and the hardness shows a gradient distribution along the contact depth direction due to the roller compaction effect. This indicates that the fatigue resistance of bearing steel varies in the subsurface region. Besides, each subsurface material volume element is subject to different stress cycles. Based on Weibull theory, the survival possibility of subsurface volume elements is formulated. Then the rolling contact fatigue life is evaluated considering the stress state and anti-fatigue performance of each elementary volume of the subsurface material. According to the phenomenon and assumption, the model proposed for gradient material was applied in the rolling contact fatigue life prediction of the bearing steel GCr15 and validated with the fatigue experiment data in the open literature. Furthermore, the accuracy of the proposed model results was compared with the traditional empirical rolling contact fatigue life prediction models.
{"title":"A rolling contact fatigue life prediction model for bearing steel considering its gradient structure due to cyclic hardening","authors":"Yue Zhao, Xi Wang, Rubing Guo, Shouguang Sun","doi":"10.1177/10567895241234383","DOIUrl":"https://doi.org/10.1177/10567895241234383","url":null,"abstract":"This paper presents a rolling contact fatigue life prediction model for bearing steel. In the initial stage of rolling contact, the gradient structure appears in the subsurface region of bearing steel and the hardness shows a gradient distribution along the contact depth direction due to the roller compaction effect. This indicates that the fatigue resistance of bearing steel varies in the subsurface region. Besides, each subsurface material volume element is subject to different stress cycles. Based on Weibull theory, the survival possibility of subsurface volume elements is formulated. Then the rolling contact fatigue life is evaluated considering the stress state and anti-fatigue performance of each elementary volume of the subsurface material. According to the phenomenon and assumption, the model proposed for gradient material was applied in the rolling contact fatigue life prediction of the bearing steel GCr15 and validated with the fatigue experiment data in the open literature. Furthermore, the accuracy of the proposed model results was compared with the traditional empirical rolling contact fatigue life prediction models.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"187 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139977009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-26DOI: 10.1177/10567895241233866
Kai Cao, Ganggui Liu, Hui Li, Zhiyi Huang
Thermal damage assessment of cementitious composites is essential for evaluating post-fire health conditions of the engineering structures, as well as the basis for reinforcement and repair after fires. Fibers and fly ash are widely used in cementitious composites due to their excellent properties. However, quantifying and predicting the thermal damage of hybrid fibers reinforced cementitious composites blended with fly ash at high temperatures is still inexplicit. Hence, this study aims to realize multiscale prediction of thermal damage for hybrid fibers reinforced cementitious composites blended with fly ash at high temperatures. First, the volumes of the phase compositions during hydration and dehydration are calculated by the hydration of cement and fly ash and the dehydration of hydration products. Then, a multiscale model is established to predict the thermal damage of hybrid fibers reinforced cementitious composites and verified by the experimental data. At last, the temperature field of tunnel lining structure in fires is obtained by numerical modeling and employing it to predict thermal damage at different thicknesses and moments. Results show that the heating rate determines the dehydration degree of hydration products and the volumes of the phase composites at high temperatures. The proposed multiscale model can reflect the thermal microcracking of cement paste, the interfacial thermal damage between aggregates and the cement paste, and the deterioration of elastic modulus of fibers. After three hours of exposure to fires, serious damage appears at the surface and the thickness of 2 cm and 5 cm of the lining, while there is nearly no damage at a thickness of 30 cm or more.
{"title":"Multiscale prediction of thermal damage for hybrid fibers reinforced cementitious composites blended with fly ash at high temperatures","authors":"Kai Cao, Ganggui Liu, Hui Li, Zhiyi Huang","doi":"10.1177/10567895241233866","DOIUrl":"https://doi.org/10.1177/10567895241233866","url":null,"abstract":"Thermal damage assessment of cementitious composites is essential for evaluating post-fire health conditions of the engineering structures, as well as the basis for reinforcement and repair after fires. Fibers and fly ash are widely used in cementitious composites due to their excellent properties. However, quantifying and predicting the thermal damage of hybrid fibers reinforced cementitious composites blended with fly ash at high temperatures is still inexplicit. Hence, this study aims to realize multiscale prediction of thermal damage for hybrid fibers reinforced cementitious composites blended with fly ash at high temperatures. First, the volumes of the phase compositions during hydration and dehydration are calculated by the hydration of cement and fly ash and the dehydration of hydration products. Then, a multiscale model is established to predict the thermal damage of hybrid fibers reinforced cementitious composites and verified by the experimental data. At last, the temperature field of tunnel lining structure in fires is obtained by numerical modeling and employing it to predict thermal damage at different thicknesses and moments. Results show that the heating rate determines the dehydration degree of hydration products and the volumes of the phase composites at high temperatures. The proposed multiscale model can reflect the thermal microcracking of cement paste, the interfacial thermal damage between aggregates and the cement paste, and the deterioration of elastic modulus of fibers. After three hours of exposure to fires, serious damage appears at the surface and the thickness of 2 cm and 5 cm of the lining, while there is nearly no damage at a thickness of 30 cm or more.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"127 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139976973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-26DOI: 10.1177/10567895241233833
Bilal Ahmed, Taehyo Park, Jong-Su Jeon
This work introduces a theoretical framework for continuum damage and healing mechanics by extending stress decomposition to account for tensile, compressive, and shear stresses. In addition to the spectral stress decomposition into tensile and compressive components, we extend the existing stress decomposition method to address shear stresses. The extraction of shear stresses employs two hypotheses, considering both same-signed and opposite-signed principal stresses. This stress decomposition approach yields three damage variables [Formula: see text] and three healing variables [Formula: see text]. The damage formulation is discussed in terms of equivalent strain and conjugate force, while the healing formulation is based on the initial damage state and healing time. We explore the influence of material parameters and healing time on damage and healing evolution. Furthermore, we analyze the relationship between nominal stress-to-effective stress ratio, damage variables, and healing time. Lastly, we present a thermodynamically consistent formulation for damage-healing processes, acknowledging that this work establishes a theoretical formulation. The proposed method is validated by analyzing the performance of an L-shaped concrete specimen using three damage variables and one healing variable. These results illustrate the model's ability to effectively capture the damage and healing phenomena. The practical implementation of the proposed formulation will be pursued numerically using innovative healing techniques and a pseudo-damage healing approach, which will be detailed in future work.
本研究通过扩展应力分解法以考虑拉应力、压应力和剪应力,介绍了连续损伤和愈合力学的理论框架。除了将频谱应力分解为拉应力和压应力成分外,我们还扩展了现有的应力分解方法,以处理剪应力。剪应力的提取采用了两个假设,同时考虑了同向和异向主应力。这种应力分解方法产生了三个损伤变量[公式:见正文]和三个愈合变量[公式:见正文]。损伤公式以等效应变和共轭力为基础进行讨论,而愈合公式则以初始损伤状态和愈合时间为基础。我们探讨了材料参数和愈合时间对损伤和愈合演变的影响。此外,我们还分析了名义应力与有效应力比、损伤变量和愈合时间之间的关系。最后,我们提出了损伤愈合过程的热力学一致公式,承认这项工作建立了一个理论公式。通过使用三个损伤变量和一个愈合变量分析 L 型混凝土试件的性能,验证了所提出的方法。这些结果表明该模型能够有效捕捉损伤和愈合现象。我们将利用创新的愈合技术和伪损伤愈合方法,通过数值计算来实际应用所提出的方法,这将在今后的工作中详细介绍。
{"title":"Multi-stress damage and healing mechanics in quasi-brittle materials: Theoretical overview","authors":"Bilal Ahmed, Taehyo Park, Jong-Su Jeon","doi":"10.1177/10567895241233833","DOIUrl":"https://doi.org/10.1177/10567895241233833","url":null,"abstract":"This work introduces a theoretical framework for continuum damage and healing mechanics by extending stress decomposition to account for tensile, compressive, and shear stresses. In addition to the spectral stress decomposition into tensile and compressive components, we extend the existing stress decomposition method to address shear stresses. The extraction of shear stresses employs two hypotheses, considering both same-signed and opposite-signed principal stresses. This stress decomposition approach yields three damage variables [Formula: see text] and three healing variables [Formula: see text]. The damage formulation is discussed in terms of equivalent strain and conjugate force, while the healing formulation is based on the initial damage state and healing time. We explore the influence of material parameters and healing time on damage and healing evolution. Furthermore, we analyze the relationship between nominal stress-to-effective stress ratio, damage variables, and healing time. Lastly, we present a thermodynamically consistent formulation for damage-healing processes, acknowledging that this work establishes a theoretical formulation. The proposed method is validated by analyzing the performance of an L-shaped concrete specimen using three damage variables and one healing variable. These results illustrate the model's ability to effectively capture the damage and healing phenomena. The practical implementation of the proposed formulation will be pursued numerically using innovative healing techniques and a pseudo-damage healing approach, which will be detailed in future work.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"295 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139976933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-16DOI: 10.1177/10567895231215557
Jiahui Shen, Mário Rui Tiago Arruda, Alfonso Pagani
Higher-order theories have a broad range of successful applications but also suffer from localization instability and mesh-size dependency when modeling quasi-brittle materials such as concrete with strain-softening behavior. To overcome the above difficulties, this paper proposes a fracture energy regularization method with a unified, consistent crack bandwidth specifically tailored for higher-order beam theories. The Carrera unified formulation (CUF) is applied to develop scalable structural theories and related finite elements. To evaluate the accuracy of the new crack bandwidth, three typical experimental quasi-static benchmarks of pure concrete structures are utilized. A modified Mazars damage model with tensile and compressive softening laws is implemented in these benchmarks. The comparison between numerical and experimental results demonstrates that the proposed method can accurately determine the correct crack bandwidth and preserve the dissipated energy per unit area of a fracture surface. Moreover, this robust estimation of crack bandwidth reduces the mesh dependency in general, ensuring the high efficiency of the CUF model.
{"title":"A consistent crack bandwidth for higher-order beam theories: Application to concrete","authors":"Jiahui Shen, Mário Rui Tiago Arruda, Alfonso Pagani","doi":"10.1177/10567895231215557","DOIUrl":"https://doi.org/10.1177/10567895231215557","url":null,"abstract":"Higher-order theories have a broad range of successful applications but also suffer from localization instability and mesh-size dependency when modeling quasi-brittle materials such as concrete with strain-softening behavior. To overcome the above difficulties, this paper proposes a fracture energy regularization method with a unified, consistent crack bandwidth specifically tailored for higher-order beam theories. The Carrera unified formulation (CUF) is applied to develop scalable structural theories and related finite elements. To evaluate the accuracy of the new crack bandwidth, three typical experimental quasi-static benchmarks of pure concrete structures are utilized. A modified Mazars damage model with tensile and compressive softening laws is implemented in these benchmarks. The comparison between numerical and experimental results demonstrates that the proposed method can accurately determine the correct crack bandwidth and preserve the dissipated energy per unit area of a fracture surface. Moreover, this robust estimation of crack bandwidth reduces the mesh dependency in general, ensuring the high efficiency of the CUF model.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"9 4p2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138968010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-11DOI: 10.1177/10567895231217036
Suvadeep Sen, Badri Prasad Patel
Conscious efforts on reduction of greenhouse gas emissions have led to an energy transition to renewable energy, however uncertainties of renewable energy production have resulted in higher thermal cycling demands from conventional power plants. Thermal load cycling at high temperature regions of steam turbine components leads to enhanced creep-fatigue damage accumulation. It is well established that such damage mechanism is numerically best predicted by unified constitutive modeling including damage as a variable as per the formalism of continuum damage mechanics at an expense of considerable computational efforts using finite element analysis. In this paper, the non-iterative Asymptotic Numerical Method (ANM), currently limited to partial cycle analysis with linear hardening plasticity model, is proposed for the first time to address cyclic viscoplasticity problems including damage capable of handling multiple cycles and most generalized loading conditions. Regularization techniques additionally necessary to implement loading-unloading-reloading criteria and advanced constitutive models etc. are presented. The constitutive model chosen for the formulation includes the non-linear multiple back stress variable modified Chaboche model to include damage combined with modified Chaboche-Rousselier isotropic hardening model to include damage, power law for viscoplasticity, Lemaitre’s damage potential and Kachanov-Rabotnov’s creep damage law. The method is verified with defined error measures and then applied to two high pressure steam turbine rotors, one with and another without thermal stress relief groove (TSRG) at the inlet under service type loading conditions to study the beneficial effect of the TSRG on creep-fatigue damage evolution. The accumulated errors of the proposed ANM and computational time are compared to a conventional Newton-Raphson solution.
{"title":"Continuum damage mechanics of cyclic viscoplasticity using asymptotic numerical method","authors":"Suvadeep Sen, Badri Prasad Patel","doi":"10.1177/10567895231217036","DOIUrl":"https://doi.org/10.1177/10567895231217036","url":null,"abstract":"Conscious efforts on reduction of greenhouse gas emissions have led to an energy transition to renewable energy, however uncertainties of renewable energy production have resulted in higher thermal cycling demands from conventional power plants. Thermal load cycling at high temperature regions of steam turbine components leads to enhanced creep-fatigue damage accumulation. It is well established that such damage mechanism is numerically best predicted by unified constitutive modeling including damage as a variable as per the formalism of continuum damage mechanics at an expense of considerable computational efforts using finite element analysis. In this paper, the non-iterative Asymptotic Numerical Method (ANM), currently limited to partial cycle analysis with linear hardening plasticity model, is proposed for the first time to address cyclic viscoplasticity problems including damage capable of handling multiple cycles and most generalized loading conditions. Regularization techniques additionally necessary to implement loading-unloading-reloading criteria and advanced constitutive models etc. are presented. The constitutive model chosen for the formulation includes the non-linear multiple back stress variable modified Chaboche model to include damage combined with modified Chaboche-Rousselier isotropic hardening model to include damage, power law for viscoplasticity, Lemaitre’s damage potential and Kachanov-Rabotnov’s creep damage law. The method is verified with defined error measures and then applied to two high pressure steam turbine rotors, one with and another without thermal stress relief groove (TSRG) at the inlet under service type loading conditions to study the beneficial effect of the TSRG on creep-fatigue damage evolution. The accumulated errors of the proposed ANM and computational time are compared to a conventional Newton-Raphson solution.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"10 11","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138980366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-11DOI: 10.1177/10567895231215553
Grzegorz Szczęsny, M. Kopeć, Adrian Łukaszewicz, Zbigniew L. Kowalewski
Implant breaking destabilizing the fracture may be caused by its structural defect, inappropriate use, or massive overloads. We present the patient, who broke the plate stabilizing comminuted clavicular fracture at the sixth postoperative week due to the, primarily reported, simple loading of the limb that should not exceeded admissible limits. Macroscopic examination excluded its manufacturing defect of an explant, but revealed areas of fatigue fractures, as well as anterior and inferior bending of its edges. Mechanical analysis proved sufficient material durability. Those findings clearly showed that the plate broke in consequence of repetitive overloads exceeding its durability. Patient, when acquitted with those results, confessed that the plate broke, while fishing. Moreover, he reported an episode of alcohol overuse that could contribute to implant failure bringing the risk of additional injury. Biomechanical analysis confirmed that mechanical loads throwing the spinner exceed values adequate for plate breaking. Thus, the real circumstances of the complication seem to be unveiled pointing out to facts that some patients disobey postoperative recommendations to avoid overloading of stabilized extremity, thus participating actively in this type of complications, that they dissemble the real circumstances of the complications, and that they may exhibit risky and irrational behavior. Basing on the presented case we concluded that in some cases plaster cast immobilization supporting stabilized fracture may be beneficial precluding banned activities and preventing from secondary injuries reducing the risk of postoperative complications.
{"title":"Identification of the damage mechanism in orthopaedic implant. Case study including the biomechanical analysis","authors":"Grzegorz Szczęsny, M. Kopeć, Adrian Łukaszewicz, Zbigniew L. Kowalewski","doi":"10.1177/10567895231215553","DOIUrl":"https://doi.org/10.1177/10567895231215553","url":null,"abstract":"Implant breaking destabilizing the fracture may be caused by its structural defect, inappropriate use, or massive overloads. We present the patient, who broke the plate stabilizing comminuted clavicular fracture at the sixth postoperative week due to the, primarily reported, simple loading of the limb that should not exceeded admissible limits. Macroscopic examination excluded its manufacturing defect of an explant, but revealed areas of fatigue fractures, as well as anterior and inferior bending of its edges. Mechanical analysis proved sufficient material durability. Those findings clearly showed that the plate broke in consequence of repetitive overloads exceeding its durability. Patient, when acquitted with those results, confessed that the plate broke, while fishing. Moreover, he reported an episode of alcohol overuse that could contribute to implant failure bringing the risk of additional injury. Biomechanical analysis confirmed that mechanical loads throwing the spinner exceed values adequate for plate breaking. Thus, the real circumstances of the complication seem to be unveiled pointing out to facts that some patients disobey postoperative recommendations to avoid overloading of stabilized extremity, thus participating actively in this type of complications, that they dissemble the real circumstances of the complications, and that they may exhibit risky and irrational behavior. Basing on the presented case we concluded that in some cases plaster cast immobilization supporting stabilized fracture may be beneficial precluding banned activities and preventing from secondary injuries reducing the risk of postoperative complications.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"38 8","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138981036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-06DOI: 10.1177/10567895231215558
H. Darban, Raimondo Luciano, Michał Basista
The buckling instability of micro- and nanopillars can be an issue when designing intelligent miniaturized devices and characterizing composite materials reinforced with small-scale beam-like particles. Analytical modeling of the buckling of miniaturized pillars is especially important due to the difficulties in conducting experiments. Here, a well-posed stress-driven nonlocal model is developed, which allows the calculation of the critical loads and buckling configurations of the miniaturized pillars on an elastic foundation and with arbitrary numbers of edge cracks. The discontinuities in bending slopes and deflection at the damaged cross-sections due to the edge cracks are captured through the incorporation of both rotational and translational springs. A comprehensive analysis is conducted to investigate the instability of pillars containing a range of one to four cracks. This analysis reveals interesting effects regarding the influence of crack location, nonlocality, and elastic foundation on the initial and subsequent critical loads and associated buckling configurations. The main findings are: (i) the shielding and amplification effects related to a system of cracks become more significant as the dimensions of pillars reduce, (ii) the influence of the shear force at the damaged cross-section related to the translational spring must not be neglected when dealing with higher modes of buckling and long cracks, (iii) an elastic foundation decreases the effects of the cracks and size dependency on the buckling loads, and (iv) the effects of the edge cracks on the critical loads and buckling configurations of the miniaturized pillars are highly dependent on the boundary conditions.
{"title":"Effects of multiple edge cracks, shear force, elastic foundation, and boundary conditions on bucking of small-scale pillars","authors":"H. Darban, Raimondo Luciano, Michał Basista","doi":"10.1177/10567895231215558","DOIUrl":"https://doi.org/10.1177/10567895231215558","url":null,"abstract":"The buckling instability of micro- and nanopillars can be an issue when designing intelligent miniaturized devices and characterizing composite materials reinforced with small-scale beam-like particles. Analytical modeling of the buckling of miniaturized pillars is especially important due to the difficulties in conducting experiments. Here, a well-posed stress-driven nonlocal model is developed, which allows the calculation of the critical loads and buckling configurations of the miniaturized pillars on an elastic foundation and with arbitrary numbers of edge cracks. The discontinuities in bending slopes and deflection at the damaged cross-sections due to the edge cracks are captured through the incorporation of both rotational and translational springs. A comprehensive analysis is conducted to investigate the instability of pillars containing a range of one to four cracks. This analysis reveals interesting effects regarding the influence of crack location, nonlocality, and elastic foundation on the initial and subsequent critical loads and associated buckling configurations. The main findings are: (i) the shielding and amplification effects related to a system of cracks become more significant as the dimensions of pillars reduce, (ii) the influence of the shear force at the damaged cross-section related to the translational spring must not be neglected when dealing with higher modes of buckling and long cracks, (iii) an elastic foundation decreases the effects of the cracks and size dependency on the buckling loads, and (iv) the effects of the edge cracks on the critical loads and buckling configurations of the miniaturized pillars are highly dependent on the boundary conditions.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"28 12","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138598129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-02DOI: 10.1177/10567895231215474
Ali Mahmoudi, Arash P. Jirandehi, Mohammad Ali Amooie, M. Khonsari
A reliable approach based on an entropy-damage model for assessing remaining useful fatigue life is presented. Two damage models are presented and evaluated to assess their effectiveness in predicting remaining useful life. The first model focuses on reduced toughness caused by fatigue degradation, while the second is based on accumulating entropy during fatigue loading. The entropy-based approach employs infrared thermography to anticipate entropy accumulation and damage status. Outcomes reveal that the entropy-driven technique offers enhanced precision. Moreover, its damage growth rate remains consistent, regardless of the number of cycles leading to failure, ensuring a more stable tracking of damage evolution. It successfully predicts the remaining useful life and can treat variable load sequencing without knowing the loading history. An extensive set of experimental results with carbon steel 1018 are presented to illustrate the utility of the approach.
{"title":"Entropy-based damage model for assessing the remaining useful fatigue life","authors":"Ali Mahmoudi, Arash P. Jirandehi, Mohammad Ali Amooie, M. Khonsari","doi":"10.1177/10567895231215474","DOIUrl":"https://doi.org/10.1177/10567895231215474","url":null,"abstract":"A reliable approach based on an entropy-damage model for assessing remaining useful fatigue life is presented. Two damage models are presented and evaluated to assess their effectiveness in predicting remaining useful life. The first model focuses on reduced toughness caused by fatigue degradation, while the second is based on accumulating entropy during fatigue loading. The entropy-based approach employs infrared thermography to anticipate entropy accumulation and damage status. Outcomes reveal that the entropy-driven technique offers enhanced precision. Moreover, its damage growth rate remains consistent, regardless of the number of cycles leading to failure, ensuring a more stable tracking of damage evolution. It successfully predicts the remaining useful life and can treat variable load sequencing without knowing the loading history. An extensive set of experimental results with carbon steel 1018 are presented to illustrate the utility of the approach.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"116 13","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138607470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-28DOI: 10.1177/10567895231215555
Xin Xiong, K. Zhou, Feng Gao, Chun Xu, Jie-lin Li
The study of the constitutive model under stress loading for rock after undergoing freeze-thaw weathering cycles (FTWCs) treatment has important theoretical significance for the site operation and numerical calculation of rock mass engineering in cold regions. In this work, a series of FTWCs treatment tests of sandstone were carried out, and the evolution characteristics of the T2 spectrum distribution curve for sandstone before and after FTWCs treatment were analyzed utilizing nuclear magnetic resonance (NMR) technology. The schematic diagram of freeze-thaw damage evolution for sandstone was drawn, and the damage evolution mechanism was analyzed. Evolution laws of the stress-strain curves, peak and residual strength, peak and residual strain, and Young's modulus of sandstone under different FTWCs and confining pressures were analyzed by conventional triaxial compression tests. A piecewise constitutive model under triaxial stress loading for sandstone after undergoing FTWCs treatment was established, and the model considered the significant influence of FTWCs on the nonlinear deformation in the compaction stage and residual strength. By introducing error analysis indexes, the proposed model and published models were compared with the experimental data, it was found that the proposed model's performance is better than the published models, which indicated that the proposed model has good performance and strong universality.
{"title":"A new damage constitutive model for frozen-thawed sandstone under triaxial conditions: Considering the characteristics of pre-peak compaction and post-peak residual strength","authors":"Xin Xiong, K. Zhou, Feng Gao, Chun Xu, Jie-lin Li","doi":"10.1177/10567895231215555","DOIUrl":"https://doi.org/10.1177/10567895231215555","url":null,"abstract":"The study of the constitutive model under stress loading for rock after undergoing freeze-thaw weathering cycles (FTWCs) treatment has important theoretical significance for the site operation and numerical calculation of rock mass engineering in cold regions. In this work, a series of FTWCs treatment tests of sandstone were carried out, and the evolution characteristics of the T2 spectrum distribution curve for sandstone before and after FTWCs treatment were analyzed utilizing nuclear magnetic resonance (NMR) technology. The schematic diagram of freeze-thaw damage evolution for sandstone was drawn, and the damage evolution mechanism was analyzed. Evolution laws of the stress-strain curves, peak and residual strength, peak and residual strain, and Young's modulus of sandstone under different FTWCs and confining pressures were analyzed by conventional triaxial compression tests. A piecewise constitutive model under triaxial stress loading for sandstone after undergoing FTWCs treatment was established, and the model considered the significant influence of FTWCs on the nonlinear deformation in the compaction stage and residual strength. By introducing error analysis indexes, the proposed model and published models were compared with the experimental data, it was found that the proposed model's performance is better than the published models, which indicated that the proposed model has good performance and strong universality.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"94 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139222445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-28DOI: 10.1177/10567895231212329
Adrian Łukaszewicz, M. Kopeć, Grzegorz Szczęsny, Zbigniew L. Kowalewski
Implant fractures complicate orthopaedic procedures requiring secondary surgeries. However, it is not exactly known when the damage initiation starts and which factors predispose them to the highest degree. Thus, the aim of the study was to characterize changes observed in orthopaedic implants after their removal from the bone. Particular efforts were made to determine, which of them occur during the process of its production, installation, usage and removal. Such identification enabled to specify the role of lesions emerging during each period and their role in the implant’s deformation or fracture. The paper was focused on implants dedicated to the stabilization of the femur fractures since the bone transfers the highest loads. External surface and geometric features of eight representative implants were observed under standard and stereoscopic cameras, as well as under light and scanning electron microscopes. Macroscopic analysis of the investigated implants exhibited a number of defects in the form of scratches, abrasions, deformations and chipping. The wear degree of each implant was different and strictly depended on how it was implanted in the patient's body, as well as on how the patient exploited it through his mobility. Four different sources of implant integrity changes were identified: manufacturing-related changes, implant application-related changes, daily life-related changes and implant removal-related changes.
{"title":"Characteristics of orthopaedic implants damage and mechanisms of its initiation","authors":"Adrian Łukaszewicz, M. Kopeć, Grzegorz Szczęsny, Zbigniew L. Kowalewski","doi":"10.1177/10567895231212329","DOIUrl":"https://doi.org/10.1177/10567895231212329","url":null,"abstract":"Implant fractures complicate orthopaedic procedures requiring secondary surgeries. However, it is not exactly known when the damage initiation starts and which factors predispose them to the highest degree. Thus, the aim of the study was to characterize changes observed in orthopaedic implants after their removal from the bone. Particular efforts were made to determine, which of them occur during the process of its production, installation, usage and removal. Such identification enabled to specify the role of lesions emerging during each period and their role in the implant’s deformation or fracture. The paper was focused on implants dedicated to the stabilization of the femur fractures since the bone transfers the highest loads. External surface and geometric features of eight representative implants were observed under standard and stereoscopic cameras, as well as under light and scanning electron microscopes. Macroscopic analysis of the investigated implants exhibited a number of defects in the form of scratches, abrasions, deformations and chipping. The wear degree of each implant was different and strictly depended on how it was implanted in the patient's body, as well as on how the patient exploited it through his mobility. Four different sources of implant integrity changes were identified: manufacturing-related changes, implant application-related changes, daily life-related changes and implant removal-related changes.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"464 1","pages":""},"PeriodicalIF":4.2,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139222608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}