Pavel Ferkl, Pavel Hrma, Jaroslav Kloužek, Albert A. Kruger, Richard Pokorný
As glass batch is charged into an electric melter, a cold cap forms on the glass melt surface. Heat transfer to the cold cap from the molten glass below and the melter atmosphere above determines the melting rate. A mathematical model of the cold cap and the experimental kinetic data of the feed-to-glass conversion that were collected for several simulated low-activity and high-level waste melter feeds allowed us to develop relationships between the internal structure of the cold cap, its properties, its thickness, and the internal heat transfer. This contribution shows the distribution of major crystalline phases and the cumulative evolution of gases within the cold cap. It also examines the temperature, conversion degree, and heating rate the melter feed is experiencing during the passage through the cold cap and their effects on the cold-cap bottom temperature and morphology, which are important for the computational fluid dynamics simulations of melters.
{"title":"Cold-cap structure in a slurry-fed electric melter","authors":"Pavel Ferkl, Pavel Hrma, Jaroslav Kloužek, Albert A. Kruger, Richard Pokorný","doi":"10.1111/ijag.16645","DOIUrl":"10.1111/ijag.16645","url":null,"abstract":"<p>As glass batch is charged into an electric melter, a cold cap forms on the glass melt surface. Heat transfer to the cold cap from the molten glass below and the melter atmosphere above determines the melting rate. A mathematical model of the cold cap and the experimental kinetic data of the feed-to-glass conversion that were collected for several simulated low-activity and high-level waste melter feeds allowed us to develop relationships between the internal structure of the cold cap, its properties, its thickness, and the internal heat transfer. This contribution shows the distribution of major crystalline phases and the cumulative evolution of gases within the cold cap. It also examines the temperature, conversion degree, and heating rate the melter feed is experiencing during the passage through the cold cap and their effects on the cold-cap bottom temperature and morphology, which are important for the computational fluid dynamics simulations of melters.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"15 1","pages":"73-87"},"PeriodicalIF":2.1,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136184171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Herein, the crystallization behavior of a Li2O–Al2O3–SiO2 (LAS) glass system with the addition of ZrO2 and SnO2 as nucleating agents was investigated using X-ray diffraction, differential scanning calorimetry, four-dimensional scanning transmission electron microscopy, and X-ray absorption fine-structure measurements. At lower heat-treatment temperatures, the addition of ZrO2 and SnO2 afforded a ZrSnO4 solid solution (SS), whereas at higher heat-treatment temperatures, the ZrSnO4 SS decomposed, affording tetragonal ZrO2 and tetragonal SnO2. LAS-based crystalline phases, such as β-quartz and β-spodumene phases SS, were formed after the formation of the ZrSnO4 SS. ZrSnO4 SS particles a few nanometers in size were present in contact with the β-quartz SS particles a few dozen nanometers in size. This suggests that the ZrSnO4 SS served as a crystal nucleus for the β-quartz SS, promoting its growth.
{"title":"Effect of ZrSnO4 solid solution on the crystallization behavior of Li2O–Al2O3–SiO2 glasses","authors":"Takato Kajihara, Hiroyuki Hijiya, Satoshi Yoshida, Kakeru Ninomiya, Maiko Nishibori, Hikaru Saito, Shigeru Fujino, Satoshi Hata","doi":"10.1111/ijag.16644","DOIUrl":"10.1111/ijag.16644","url":null,"abstract":"<p>Herein, the crystallization behavior of a Li<sub>2</sub>O–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> (LAS) glass system with the addition of ZrO<sub>2</sub> and SnO<sub>2</sub> as nucleating agents was investigated using X-ray diffraction, differential scanning calorimetry, four-dimensional scanning transmission electron microscopy, and X-ray absorption fine-structure measurements. At lower heat-treatment temperatures, the addition of ZrO<sub>2</sub> and SnO<sub>2</sub> afforded a ZrSnO<sub>4</sub> solid solution (SS), whereas at higher heat-treatment temperatures, the ZrSnO<sub>4</sub> SS decomposed, affording tetragonal ZrO<sub>2</sub> and tetragonal SnO<sub>2</sub>. LAS-based crystalline phases, such as β-quartz and β-spodumene phases SS, were formed after the formation of the ZrSnO<sub>4</sub> SS. ZrSnO<sub>4</sub> SS particles a few nanometers in size were present in contact with the β-quartz SS particles a few dozen nanometers in size. This suggests that the ZrSnO<sub>4</sub> SS served as a crystal nucleus for the β-quartz SS, promoting its growth.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"15 1","pages":"31-43"},"PeriodicalIF":2.1,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135131306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qinghua Wang, Chao Liu, Kai Yin, Yongqi Zhou, Huixin Wang
Rendering transparent materials extreme wettability, for example, superhydrophobicity or superhydrophilicity, has received considerable attention during the past decades. While fabrication of superhydrophobic glass with high processing efficiency and low production cost has always been a challenge. In this work, a laser-based surface functionalization process that combines ultraviolet (UV) nanosecond laser texturing and silicone oil-assisted heat treatment was employed to render glass superhydrophobicity with high process throughput. The wettability transition is attributed to the combined effects of laser texturing that induces hierarchical surface micro/nanostructures and silicone oil-assisted heat treatment that alters surface chemistry and lowers surface energy. The surface transmittance of the laser-based surface functionalized glass samples in the visible spectrum was experimentally measured and analyzed. The laser-based surface functionalized glass sample also exhibited long-term stability in air, mechanical robustness and good self-cleaning property. More importantly, the developed process shows both high process efficiency and cost effectiveness and has potential for applications where superhydrophobic glass is required.
{"title":"High-throughput laser-based surface functionalization for fabrication of superhydrophobic soda-lime glass","authors":"Qinghua Wang, Chao Liu, Kai Yin, Yongqi Zhou, Huixin Wang","doi":"10.1111/ijag.16643","DOIUrl":"10.1111/ijag.16643","url":null,"abstract":"<p>Rendering transparent materials extreme wettability, for example, superhydrophobicity or superhydrophilicity, has received considerable attention during the past decades. While fabrication of superhydrophobic glass with high processing efficiency and low production cost has always been a challenge. In this work, a laser-based surface functionalization process that combines ultraviolet (UV) nanosecond laser texturing and silicone oil-assisted heat treatment was employed to render glass superhydrophobicity with high process throughput. The wettability transition is attributed to the combined effects of laser texturing that induces hierarchical surface micro/nanostructures and silicone oil-assisted heat treatment that alters surface chemistry and lowers surface energy. The surface transmittance of the laser-based surface functionalized glass samples in the visible spectrum was experimentally measured and analyzed. The laser-based surface functionalized glass sample also exhibited long-term stability in air, mechanical robustness and good self-cleaning property. More importantly, the developed process shows both high process efficiency and cost effectiveness and has potential for applications where superhydrophobic glass is required.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"15 1","pages":"57-72"},"PeriodicalIF":2.1,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48508197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rajesh Dagupati, Mercedes Sedano, Róbert Klement, Jose J. Velázquez, Alicia Durán, Francisco Muñoz, Maria J. Pascual, Dušan Galusek
The influence of Al2O3 addition on the precipitation of NaYF4 crystals in oxyfluoride glasses has been investigated through the thermal, structural, and optical characterization of the parent glasses and corresponding glass–ceramics (GCs). The high-resolution transmission electron microscopy analysis of the GC with 5 mol% of Al2O3 shows the presence of phase-separated droplets about 69 nm in size containing several NaYF4 nanocrystals with the diameter of about 10–15 nm. Raman and magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy were used to examine the structural changes attributed to the addition of Al2O3. The 19F MAS-NMR analysis indicated that fluorine atoms are present in different chemical environments (Na–F, Na–Si–F, Na–Al–F, and NaYF4). The increasing amount of Al2O3 reduces the crystallization of NaYF4 phase due to the increased fraction of fluorine bound in Na–Al–F environments. The visible luminescence investigation of the glasses and GCs demonstrated that the intensity of Er3+ ions emission transitions in the GCs was higher than that of the parent glass. This difference was attributed to the presence of Er3+ ions bound in NaYF4 crystalline phase. Further evidence that the Er3+ ions were present in NaYF4 phase was provided by the fact that the excited level Er3+:4S3/2 lifetime was increased in GCs as compared to parent glass.
{"title":"The influence of Al2O3 concentration on the NaYF4 crystallization in oxyfluoride glass–ceramics","authors":"Rajesh Dagupati, Mercedes Sedano, Róbert Klement, Jose J. Velázquez, Alicia Durán, Francisco Muñoz, Maria J. Pascual, Dušan Galusek","doi":"10.1111/ijag.16642","DOIUrl":"10.1111/ijag.16642","url":null,"abstract":"<p>The influence of Al<sub>2</sub>O<sub>3</sub> addition on the precipitation of NaYF<sub>4</sub> crystals in oxyfluoride glasses has been investigated through the thermal, structural, and optical characterization of the parent glasses and corresponding glass–ceramics (GCs). The high-resolution transmission electron microscopy analysis of the GC with 5 mol% of Al<sub>2</sub>O<sub>3</sub> shows the presence of phase-separated droplets about 69 nm in size containing several NaYF<sub>4</sub> nanocrystals with the diameter of about 10–15 nm. Raman and magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy were used to examine the structural changes attributed to the addition of Al<sub>2</sub>O<sub>3</sub>. The <sup>19</sup>F MAS-NMR analysis indicated that fluorine atoms are present in different chemical environments (Na–F, Na–Si–F, Na–Al–F, and NaYF<sub>4</sub>). The increasing amount of Al<sub>2</sub>O<sub>3</sub> reduces the crystallization of NaYF<sub>4</sub> phase due to the increased fraction of fluorine bound in Na–Al–F environments. The visible luminescence investigation of the glasses and GCs demonstrated that the intensity of Er<sup>3+</sup> ions emission transitions in the GCs was higher than that of the parent glass. This difference was attributed to the presence of Er<sup>3+</sup> ions bound in NaYF<sub>4</sub> crystalline phase. Further evidence that the Er<sup>3+</sup> ions were present in NaYF<sub>4</sub> phase was provided by the fact that the excited level Er<sup>3+</sup>:<sup>4</sup>S<sub>3/2</sub> lifetime was increased in GCs as compared to parent glass.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"15 1","pages":"44-56"},"PeriodicalIF":2.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ceramics.onlinelibrary.wiley.com/doi/epdf/10.1111/ijag.16642","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47357081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The control of humidity between certain limits is essential to avoid the alteration of historical objects, such as unstable historical glasses. However, the usual limits can be altered due to the presence of volatile organic compounds. This work presents the results of the exposure of soda, potash, and mixed-alkali silicate glasses to neutral and acidic (formic) atmospheres with ∼30%, ∼70%, and ∼100% relative humidity. The hygroscopic capacity of the glass was analyzed by gravimetry, and the surface alteration was evaluated by infrared spectroscopy, optical microscopy, and ion chromatography. In all glasses, the alteration begins with alkali ions’ lixiviation followed by the silica network's hydrolytic attack. The results showed that soda and mixed-alkali silicate glasses exhibit similar behavior, while the potash-lime one experienced the fastest degradation due to its composition. Results also confirmed that high humidity increased the alteration rate causing a higher hygroscopicity and reactivity of glasses. Finally, acidic environments promoted the ion-exchange reaction at high humidity, accelerating the lixiviation of alkaline ions and promoting the diffusion of water into the glass network.
{"title":"Influence of humidity in the alteration of unstable glasses","authors":"Elena Laso, Mario Aparicio, Teresa Palomar","doi":"10.1111/ijag.16641","DOIUrl":"10.1111/ijag.16641","url":null,"abstract":"<p>The control of humidity between certain limits is essential to avoid the alteration of historical objects, such as unstable historical glasses. However, the usual limits can be altered due to the presence of volatile organic compounds. This work presents the results of the exposure of soda, potash, and mixed-alkali silicate glasses to neutral and acidic (formic) atmospheres with ∼30%, ∼70%, and ∼100% relative humidity. The hygroscopic capacity of the glass was analyzed by gravimetry, and the surface alteration was evaluated by infrared spectroscopy, optical microscopy, and ion chromatography. In all glasses, the alteration begins with alkali ions’ lixiviation followed by the silica network's hydrolytic attack. The results showed that soda and mixed-alkali silicate glasses exhibit similar behavior, while the potash-lime one experienced the fastest degradation due to its composition. Results also confirmed that high humidity increased the alteration rate causing a higher hygroscopicity and reactivity of glasses. Finally, acidic environments promoted the ion-exchange reaction at high humidity, accelerating the lixiviation of alkaline ions and promoting the diffusion of water into the glass network.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"15 1","pages":"88-103"},"PeriodicalIF":2.1,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ceramics.onlinelibrary.wiley.com/doi/epdf/10.1111/ijag.16641","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49336020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeanini Jiusti, Elise Regnier, Norma Maria Machado, Mohamed Leith Ghazzai, Vincent Malivert, Muriel Neyret, François Faure
In France, high-activity level wastes resulting from nuclear fission are conditioned in a homogeneous sodium-aluminoborosilicate glass by high-temperature vitrification. The tolerance of even a small fraction of crystals could enable an increase in the waste loadings, in addition to promoting process flexibility. If the waste loading were to be increased in French nuclear glass, cerianite (CeO2) crystals could precipitate. In this study, we investigated the cerianite crystallization in a simplified nuclear glass melt at different temperatures, Ce2O3 wt%, and shear conditions. Furthermore, the evolution of the viscosity along with cerianite precipitation was followed. It was found that Ce2O3 is highly soluble in the glass melt, as even for a Ce2O3 wt% as high as 10% wt, the cerianite fraction in dynamic conditions at 1100°C after 8 h of crystallization was less than 1% vol. In addition, shear strongly accelerates cerianite crystallization and a high Ce2O3 content can engender the precipitation of highly branched dendrites. The evolution of the cerianite fraction did not significantly affect the viscosity of the glass melt. Finally, unlike what has been observed in the well-known platinum group metal (PGM)-bearing melts, a glass melt containing .8 vol% of cerianite crystals remains Newtonian.
{"title":"Precipitation of cerianite crystals and its effect on the rheology of a simplified nuclear glass melt","authors":"Jeanini Jiusti, Elise Regnier, Norma Maria Machado, Mohamed Leith Ghazzai, Vincent Malivert, Muriel Neyret, François Faure","doi":"10.1111/ijag.16639","DOIUrl":"10.1111/ijag.16639","url":null,"abstract":"<p>In France, high-activity level wastes resulting from nuclear fission are conditioned in a homogeneous sodium-aluminoborosilicate glass by high-temperature vitrification. The tolerance of even a small fraction of crystals could enable an increase in the waste loadings, in addition to promoting process flexibility. If the waste loading were to be increased in French nuclear glass, cerianite (CeO<sub>2</sub>) crystals could precipitate. In this study, we investigated the cerianite crystallization in a simplified nuclear glass melt at different temperatures, Ce<sub>2</sub>O<sub>3</sub> wt%, and shear conditions. Furthermore, the evolution of the viscosity along with cerianite precipitation was followed. It was found that Ce<sub>2</sub>O<sub>3</sub> is highly soluble in the glass melt, as even for a Ce<sub>2</sub>O<sub>3</sub> wt% as high as 10% wt, the cerianite fraction in dynamic conditions at 1100°C after 8 h of crystallization was less than 1% vol. In addition, shear strongly accelerates cerianite crystallization and a high Ce<sub>2</sub>O<sub>3</sub> content can engender the precipitation of highly branched dendrites. The evolution of the cerianite fraction did not significantly affect the viscosity of the glass melt. Finally, unlike what has been observed in the well-known platinum group metal (PGM)-bearing melts, a glass melt containing .8 vol% of cerianite crystals remains Newtonian.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 4","pages":"502-521"},"PeriodicalIF":2.1,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48570115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhehao Hua, Gao Tang, Qinhua Wei, Laishun Qin, Youqiang Huang, Peiqing Cai, Gongxun Bai, Zhenzhen Zhou, Gang Zhou, Jing Ren, Zexuan Sui, Sen Qian, Zhigang Wang
A series of Mn2+ single-doped 0.2Gd2O3-0.2Al2O3-0.6SiO2 (GAS: xMn2+) glasses with Si3N4 as reducing agent were prepared. The presence of [SiO4-x] defects and Mn2+ ions was determined from the absorption and excitation spectra of the glasses. With the increase of Mn2+ concentration, the intensity of blue emission decreases, while the intensity of red emission increases. The color coordinate of GAS: 6Mn2+ glass is (0.264, 0.226). The lifetime of the glasses was tested. Under the monitoring of 440 nm, the fast components (τf) are between 17 and 85 μs, and the slow components (τs) are between 200–650 μs. The former belongs to [SiO4-x] defects, and the latter is [4E(G), 4A1(G)]→6A1(S) transition of Mn2+ ions. Under the monitoring at 630 nm, the τf are between 110 and 300 μs, and the τs are between 680 and 1220 μs, which are due to 4T1(G)→6A1(S) transition of Mn2+ ions and Mn2+ pairs, respectively. The energy transfer mechanism of [SiO4-x] defect→Mn2+ ions are explained. The efficient [SiO4-x] defect →Mn2+ ions energy transfer process was demonstrated by time-resolved photoluminescence, and the energy transfer efficiency is over 85%. The maximum photoluminescence quantum yield (PL QY) of the glasses can reach 15.87%. The thermal activation energy of the glasses was calculated. In addition, X-ray excited red luminescence spectra and the mechanism of the glasses were investigated.
{"title":"White-light emission and red scintillation from Mn2+ ions single-doped aluminum-silicate glasses","authors":"Zhehao Hua, Gao Tang, Qinhua Wei, Laishun Qin, Youqiang Huang, Peiqing Cai, Gongxun Bai, Zhenzhen Zhou, Gang Zhou, Jing Ren, Zexuan Sui, Sen Qian, Zhigang Wang","doi":"10.1111/ijag.16640","DOIUrl":"https://doi.org/10.1111/ijag.16640","url":null,"abstract":"<p>A series of Mn<sup>2+</sup> single-doped 0.2Gd<sub>2</sub>O<sub>3</sub>-0.2Al<sub>2</sub>O<sub>3</sub>-0.6SiO<sub>2</sub> (GAS: xMn<sup>2+</sup>) glasses with Si<sub>3</sub>N<sub>4</sub> as reducing agent were prepared. The presence of [SiO<sub>4-x</sub>] defects and Mn<sup>2+</sup> ions was determined from the absorption and excitation spectra of the glasses. With the increase of Mn<sup>2+</sup> concentration, the intensity of blue emission decreases, while the intensity of red emission increases. The color coordinate of GAS: 6Mn<sup>2+</sup> glass is (0.264, 0.226). The lifetime of the glasses was tested. Under the monitoring of 440 nm, the fast components (τ<sub>f</sub>) are between 17 and 85 μs, and the slow components (τ<sub>s</sub>) are between 200–650 μs. The former belongs to [SiO<sub>4-x</sub>] defects, and the latter is [<sup>4</sup>E(G), <sup>4</sup>A<sub>1</sub>(G)]→<sup>6</sup>A<sub>1</sub>(S) transition of Mn<sup>2+</sup> ions. Under the monitoring at 630 nm, the τ<sub>f</sub> are between 110 and 300 μs, and the τ<sub>s</sub> are between 680 and 1220 μs, which are due to <sup>4</sup>T<sub>1</sub>(G)→<sup>6</sup>A<sub>1</sub>(S) transition of Mn<sup>2+</sup> ions and Mn<sup>2+</sup> pairs, respectively. The energy transfer mechanism of [SiO<sub>4-x</sub>] defect→Mn<sup>2+</sup> ions are explained. The efficient [SiO<sub>4-x</sub>] defect →Mn<sup>2+</sup> ions energy transfer process was demonstrated by time-resolved photoluminescence, and the energy transfer efficiency is over 85%. The maximum photoluminescence quantum yield (PL QY) of the glasses can reach 15.87%. The thermal activation energy of the glasses was calculated. In addition, X-ray excited red luminescence spectra and the mechanism of the glasses were investigated.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 4","pages":"573-584"},"PeriodicalIF":2.1,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50127865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stainless steel slag waste can be used to prepare value-added glass ceramics, which can fix potentially toxic Cr from the slag within the crystalline phase. The occurrence and distribution of Cr during the preparation of glass ceramics has a great influence on the final Cr fixation effect. In this study, the effects of the TiO2 content on the occurrence and distribution of Cr during the nucleation and crystallization steps and on the final properties of the glass ceramics were systematically studied. In the nucleation stage, with increasing TiO2 content, the Cr distributed in the spinel containing chromium nuclei first increases and then decreases. In the crystallization stage, Diopside crystal phase nucleates and grows with spinel containing chromium nanocrystals as heterogeneous nuclei. X-ray photoelectron spectroscopy analysis showed that the chromium distributed in the diopside crystals first increased and then slightly decreased as the TiO2 content increased. The optimal TiO2 content is 3.4 wt.%, which resulted in 97 wt.% of the total Cr being fixed in the diopside crystalline phase (with a very low Cr leaching concentration of 0.009 mg/L), and a high compressive strength of the final glass ceramic of 267.4 MPa, and a Vickers hardness of 1211.8 HV. The research results provide theoretical and technical support for strengthening Cr fixation to enable harmless and high-value utilization of stainless steel slag for fabricating glass ceramics.
{"title":"Effect of TiO2 on the occurrence and distribution of chromium in stainless-steel slag glass ceramics","authors":"Zhifang Tong, Jiaxing Wang, Congcong Xu, Zhaoxun Xie","doi":"10.1111/ijag.16638","DOIUrl":"10.1111/ijag.16638","url":null,"abstract":"<p>Stainless steel slag waste can be used to prepare value-added glass ceramics, which can fix potentially toxic Cr from the slag within the crystalline phase. The occurrence and distribution of Cr during the preparation of glass ceramics has a great influence on the final Cr fixation effect. In this study, the effects of the TiO<sub>2</sub> content on the occurrence and distribution of Cr during the nucleation and crystallization steps and on the final properties of the glass ceramics were systematically studied. In the nucleation stage, with increasing TiO<sub>2</sub> content, the Cr distributed in the spinel containing chromium nuclei first increases and then decreases. In the crystallization stage, Diopside crystal phase nucleates and grows with spinel containing chromium nanocrystals as heterogeneous nuclei. X-ray photoelectron spectroscopy analysis showed that the chromium distributed in the diopside crystals first increased and then slightly decreased as the TiO<sub>2</sub> content increased. The optimal TiO<sub>2</sub> content is 3.4 wt.%, which resulted in 97 wt.% of the total Cr being fixed in the diopside crystalline phase (with a very low Cr leaching concentration of 0.009 mg/L), and a high compressive strength of the final glass ceramic of 267.4 MPa, and a Vickers hardness of 1211.8 HV. The research results provide theoretical and technical support for strengthening Cr fixation to enable harmless and high-value utilization of stainless steel slag for fabricating glass ceramics.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 4","pages":"522-533"},"PeriodicalIF":2.1,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43318372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. J. Faber, Domingos de Sousa Meneses, Peter A. van Nijnatten
Experimental high temperature near infrared (NIR) absorption spectra of different SiO2-based glasses, including lead silicate crystal glass, clear soda lime silicate (SLS) glass and fused silica with low and high OH content, are compared. The more polarizable the glass, the stronger is the increase in the high temperature NIR absorption at wavelengths < 2 µm, involving a red shift of the optical bandgap edge with increasing temperature. It appears that the modified glassy Urbach's rule provides a framework for describing the temperature red shift of the absorption edge of lead silicate crystal glass, even above Tg. This red shift causes a 4–7 times lower Rosseland thermal radiation conductivity of lead crystal glass melts compared to clear SLS glass melts. Low OH fused silica is practically transparent for NIR thermal radiation, also at high temperatures above Tg. Incorporation of water in fused silica increases the NIR absorption in the spectral region 1.7–3.4 µm, for all temperatures. An upper limit of the diffusion coefficient D of water in fused silica was estimated from the time to measure the high temperature NIR spectra of thin (∼2 mm) samples: D < 4 * 10−10 m2/s at temperatures up to around 2000°C.
{"title":"High temperature near IR spectral absorption of clear SiO2-based glasses","authors":"A. J. Faber, Domingos de Sousa Meneses, Peter A. van Nijnatten","doi":"10.1111/ijag.16636","DOIUrl":"10.1111/ijag.16636","url":null,"abstract":"<p>Experimental high temperature near infrared (NIR) absorption spectra of different SiO<sub>2</sub>-based glasses, including lead silicate crystal glass, clear soda lime silicate (SLS) glass and fused silica with low and high OH content, are compared. The more polarizable the glass, the stronger is the increase in the high temperature NIR absorption at wavelengths < 2 µm, involving a red shift of the optical bandgap edge with increasing temperature. It appears that the modified glassy Urbach's rule provides a framework for describing the temperature red shift of the absorption edge of lead silicate crystal glass, even above <i>T<sub>g</sub></i>. This red shift causes a 4–7 times lower Rosseland thermal radiation conductivity of lead crystal glass melts compared to clear SLS glass melts. Low OH fused silica is practically transparent for NIR thermal radiation, also at high temperatures above <i>T<sub>g</sub></i>. Incorporation of water in fused silica increases the NIR absorption in the spectral region 1.7–3.4 µm, for all temperatures. An upper limit of the diffusion coefficient D of water in fused silica was estimated from the time to measure the high temperature NIR spectra of thin (∼2 mm) samples: D < 4 * 10<sup>−10</sup> m<sup>2</sup>/s at temperatures up to around 2000°C.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 3","pages":"366-372"},"PeriodicalIF":2.1,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44879817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Deng, Daniel J. Backhouse, Feroz Kabir Kazi, Ronak Janani, Chris Holcroft, Marlin Magallanes, Martyn Marshall, Caroline M. Jackson, Paul A. Bingham
Based on the current UK decarbonization policy, a general outlook on potential routes for the glass industry to achieve net-zero is discussed and the differentiation during decarbonization is specified. Biomass ash is considered a potential alternative raw material for low-carbon glass manufacture as it is rich in certain advantageous components, chiefly network modifiers. Simple sieving processes were shown to effectively separate impurities such as S, Cl, and C from some biomass ashes according to particle size distribution. The concentration of undesirable impurities decreased with increasing particle size. Morphologies and X-ray diffraction patterns of larger washed biomass ash particles indicated liquid/amorphous phase formation during biomass combustion. The washing of ashes was also shown to be a potential route to purification. A washed bracken ash relevant to both modern and ancient glass production was characterized for comparison. Ultraviolet-visible near-infrared (UV-Vis-near IR) absorption spectra of representative green container glasses produced using biomass ash confirmed that ∼5 wt.% ash in representative glass batches has little impact on the color and redox state of glasses; the redox status of glass produced using >2 mm biomass ash after washing was less reduced than that of glass produced using high levels (>∼9 wt.%) of >2 mm biomass ash after sieving alone, observed via the redox couple Cr3+/Cr6+ by UV-Vis-near IR absorption spectroscopy.
{"title":"Alternative raw material research for decarbonization of UK glass manufacture","authors":"Wei Deng, Daniel J. Backhouse, Feroz Kabir Kazi, Ronak Janani, Chris Holcroft, Marlin Magallanes, Martyn Marshall, Caroline M. Jackson, Paul A. Bingham","doi":"10.1111/ijag.16637","DOIUrl":"https://doi.org/10.1111/ijag.16637","url":null,"abstract":"<p>Based on the current UK decarbonization policy, a general outlook on potential routes for the glass industry to achieve net-zero is discussed and the differentiation during decarbonization is specified. Biomass ash is considered a potential alternative raw material for low-carbon glass manufacture as it is rich in certain advantageous components, chiefly network modifiers. Simple sieving processes were shown to effectively separate impurities such as S, Cl, and C from some biomass ashes according to particle size distribution. The concentration of undesirable impurities decreased with increasing particle size. Morphologies and X-ray diffraction patterns of larger washed biomass ash particles indicated liquid/amorphous phase formation during biomass combustion. The washing of ashes was also shown to be a potential route to purification. A washed bracken ash relevant to both modern and ancient glass production was characterized for comparison. Ultraviolet-visible near-infrared (UV-Vis-near IR) absorption spectra of representative green container glasses produced using biomass ash confirmed that ∼5 wt.% ash in representative glass batches has little impact on the color and redox state of glasses; the redox status of glass produced using >2 mm biomass ash after washing was less reduced than that of glass produced using high levels (>∼9 wt.%) of >2 mm biomass ash after sieving alone, observed via the redox couple Cr<sup>3+</sup>/Cr<sup>6+</sup> by UV-Vis-near IR absorption spectroscopy.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 3","pages":"341-365"},"PeriodicalIF":2.1,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijag.16637","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50147554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}