Talam Kibona Enock, Cecil K. King'ondu, A. Pogrebnoi, Y. Jande
Environmental concerns and energy security uncertainties associated with fossil fuels have driven the world to shift to renewable energy sources. However, most renewable energy sources with exception of hydropower are intermittent in nature and thus need storage systems. Amongst various storage systems, supercapacitors are the promising candidates for energy storage not only in renewable energies but also in hybrid vehicles and portable devices due to their high power density. Supercapacitor electrodes are almost invariably made of carbon derived from biomass. Several reviews had been focused on general carbon materials for supercapacitor electrode. This review is focused on understanding the extent to which different types of biomasses have been used as porous carbon materials for supercapacitor electrodes. It also details hydrothermal microwave assisted, ionothermal, and molten salts carbonization as techniques of synthesizing activated carbon from biomasses as well as their characteristics and their impacts on electrochemical performance.
{"title":"Status of Biomass Derived Carbon Materials for Supercapacitor Application","authors":"Talam Kibona Enock, Cecil K. King'ondu, A. Pogrebnoi, Y. Jande","doi":"10.1155/2017/6453420","DOIUrl":"https://doi.org/10.1155/2017/6453420","url":null,"abstract":"Environmental concerns and energy security uncertainties associated with fossil fuels have driven the world to shift to renewable energy sources. However, most renewable energy sources with exception of hydropower are intermittent in nature and thus need storage systems. Amongst various storage systems, supercapacitors are the promising candidates for energy storage not only in renewable energies but also in hybrid vehicles and portable devices due to their high power density. Supercapacitor electrodes are almost invariably made of carbon derived from biomass. Several reviews had been focused on general carbon materials for supercapacitor electrode. This review is focused on understanding the extent to which different types of biomasses have been used as porous carbon materials for supercapacitor electrodes. It also details hydrothermal microwave assisted, ionothermal, and molten salts carbonization as techniques of synthesizing activated carbon from biomasses as well as their characteristics and their impacts on electrochemical performance.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":"2017 1","pages":"1-14"},"PeriodicalIF":1.8,"publicationDate":"2017-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/6453420","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49503439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Real Time Analyzer (RTA) utilizing DC- and AC-voltammetric techniques is an in situ, online monitoring system that provides a complete chemical analysis of different electrochemical deposition solutions. The RTA employs multivariate calibration when predicting concentration parameters from a multivariate data set. Although the hierarchical and multiblock Principal Component Regression- (PCR-) and Partial Least Squares- (PLS-) based methods can handle data sets even when the number of variables significantly exceeds the number of samples, it can be advantageous to reduce the number of variables to obtain improvement of the model predictions and better interpretation. This presentation focuses on the introduction of a multistep, rigorous method of data-selection-based Least Squares Regression, Simple Modeling of Class Analogy modeling power, and, as a novel application in electroanalysis, Uninformative Variable Elimination by PLS and by PCR, Variable Importance in the Projection coupled with PLS, Interval PLS, Interval PCR, and Moving Window PLS. Selection criteria of the optimum decomposition technique for the specific data are also demonstrated. The chief goal of this paper is to introduce to the community of electroanalytical chemists numerous variable selection methods which are well established in spectroscopy and can be successfully applied to voltammetric data analysis.
{"title":"Online Monitoring of Copper Damascene Electroplating Bath by Voltammetry: Selection of Variables for Multiblock and Hierarchical Chemometric Analysis of Voltammetric Data","authors":"A. Jaworski, H. Wikiel, K. Wikiel","doi":"10.1155/2017/4289517","DOIUrl":"https://doi.org/10.1155/2017/4289517","url":null,"abstract":"The Real Time Analyzer (RTA) utilizing DC- and AC-voltammetric techniques is an in situ, online monitoring system that provides a complete chemical analysis of different electrochemical deposition solutions. The RTA employs multivariate calibration when predicting concentration parameters from a multivariate data set. Although the hierarchical and multiblock Principal Component Regression- (PCR-) and Partial Least Squares- (PLS-) based methods can handle data sets even when the number of variables significantly exceeds the number of samples, it can be advantageous to reduce the number of variables to obtain improvement of the model predictions and better interpretation. This presentation focuses on the introduction of a multistep, rigorous method of data-selection-based Least Squares Regression, Simple Modeling of Class Analogy modeling power, and, as a novel application in electroanalysis, Uninformative Variable Elimination by PLS and by PCR, Variable Importance in the Projection coupled with PLS, Interval PLS, Interval PCR, and Moving Window PLS. Selection criteria of the optimum decomposition technique for the specific data are also demonstrated. The chief goal of this paper is to introduce to the community of electroanalytical chemists numerous variable selection methods which are well established in spectroscopy and can be successfully applied to voltammetric data analysis.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":"2017 1","pages":"1-13"},"PeriodicalIF":1.8,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/4289517","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64676978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francisco Ferniza-García, A. Amaya-chávez, G. Roa‐Morales, C. Barrera-Díaz
This study presents the results of a coupled electrocoagulation-phytoremediation treatment for the reduction of copper, cadmium, lead, and zinc, present in aqueous solution. The electrocoagulation was carried out in a batch reactor using aluminum electrodes in parallel arrangement; the optimal conditions were current density of 8 mA/cm2 and operating time of 180 minutes. For phytoremediation the macrophytes, Typha latifolia L., were used during seven days of treatment. The results indicated that the coupled treatment reduced metal concentrations by 99.2% Cu, 81.3% Cd, and 99.4% Pb, while Zn increased due to the natural concentrations of the plant used.
{"title":"Removal of Pb, Cu, Cd, and Zn Present in Aqueous Solution Using Coupled Electrocoagulation-Phytoremediation Treatment","authors":"Francisco Ferniza-García, A. Amaya-chávez, G. Roa‐Morales, C. Barrera-Díaz","doi":"10.1155/2017/7681451","DOIUrl":"https://doi.org/10.1155/2017/7681451","url":null,"abstract":"This study presents the results of a coupled electrocoagulation-phytoremediation treatment for the reduction of copper, cadmium, lead, and zinc, present in aqueous solution. The electrocoagulation was carried out in a batch reactor using aluminum electrodes in parallel arrangement; the optimal conditions were current density of 8 mA/cm2 and operating time of 180 minutes. For phytoremediation the macrophytes, Typha latifolia L., were used during seven days of treatment. The results indicated that the coupled treatment reduced metal concentrations by 99.2% Cu, 81.3% Cd, and 99.4% Pb, while Zn increased due to the natural concentrations of the plant used.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":"2017 1","pages":"1-11"},"PeriodicalIF":1.8,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2017/7681451","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64705619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Porous metals and alloys, such as those fabricated via electrochemical dealloying, are of interest for a variety of energy applications, ranging from their potential for enhanced catalytic behavior to their use as high surface area supports for pseudocapacitor materials. Here, the electrochemical dealloying process was explored for electrodeposited binary NiCo and ternary NiCoCu thin films. For each of the four different metal ratios, films were dealloyed using linear sweep voltammetry to various potentials in order to gain insight into the evolution of the film over the course of the linear sweep. Electrochemical capacitance, scanning electron microscopy, and energy dispersive X-ray spectroscopy were used to examine the structure and composition of each sample before and after linear sweep voltammetry was performed. For NiCo films, dealloying resulted in almost no change in composition but did result in an increased capacitance, with greater increases occurring at higher linear sweep potentials, indicating the removal of material from the films. Dealloying also resulted in the appearance of large pores on the surface of the high nickel percentage NiCo films, while low nickel percentage NiCo films had little observable change in morphology. For NiCoCu films, Cu was almost completely removed at linear sweep potentials greater than 0.5 V versus Ag/AgCl. The linear sweep removed large Cu-rich dendrites from the films, while also causing increases in measured capacitance.
{"title":"Dealloying Behavior of NiCo and NiCoCu Thin Films","authors":"Benjamin Peecher, J. R. Hampton","doi":"10.1155/2016/2935035","DOIUrl":"https://doi.org/10.1155/2016/2935035","url":null,"abstract":"Porous metals and alloys, such as those fabricated via electrochemical dealloying, are of interest for a variety of energy applications, ranging from their potential for enhanced catalytic behavior to their use as high surface area supports for pseudocapacitor materials. Here, the electrochemical dealloying process was explored for electrodeposited binary NiCo and ternary NiCoCu thin films. For each of the four different metal ratios, films were dealloyed using linear sweep voltammetry to various potentials in order to gain insight into the evolution of the film over the course of the linear sweep. Electrochemical capacitance, scanning electron microscopy, and energy dispersive X-ray spectroscopy were used to examine the structure and composition of each sample before and after linear sweep voltammetry was performed. For NiCo films, dealloying resulted in almost no change in composition but did result in an increased capacitance, with greater increases occurring at higher linear sweep potentials, indicating the removal of material from the films. Dealloying also resulted in the appearance of large pores on the surface of the high nickel percentage NiCo films, while low nickel percentage NiCo films had little observable change in morphology. For NiCoCu films, Cu was almost completely removed at linear sweep potentials greater than 0.5 V versus Ag/AgCl. The linear sweep removed large Cu-rich dendrites from the films, while also causing increases in measured capacitance.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":"2016 1","pages":"2935035"},"PeriodicalIF":1.8,"publicationDate":"2016-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/2935035","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64305137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The electrochemical processes in solutions with a much lower amount of free cyanide (<10 g/L KCN) than the conventional alkaline silver electrolytes were first explored by using cyclic voltammetry. The electrochemical behavior and the effect of KAg(CN)2, KCN, and KNO3 electrolytes and solution pH on the electrodeposition and dissolution processes were investigated. Moreover, suitable working conditions for high speed, low cyanide silver electrodeposition were also proposed. Both silver and cyanide ions concentration had significant effects on the electrode polarization and deposition rate. The onset potential of silver electrodeposition could be shifted to more positive values by using solutions containing higher silver and lower KCN concentration. Higher silver concentration also led to higher deposition rate. Besides maintaining high conductivity of the solution, KNO3 might help reduce the operating current density required for silver electrodeposition at high silver concentration albeit at the expense of slowing down the electrodeposition rate. The silver dissolution consists of a limiting step and the reaction rate depends on the amount of free cyanide ions. The surface and material characteristics of Ag films deposited by low cyanide solution are also compared with those deposited by conventional high cyanide solution.
{"title":"Cyclic Voltammetric Study of High Speed Silver Electrodeposition and Dissolution in Low Cyanide Solutions","authors":"Bo Zheng, L. Wong, L. Wu, Zhongxiu Chen","doi":"10.1155/2016/4318178","DOIUrl":"https://doi.org/10.1155/2016/4318178","url":null,"abstract":"The electrochemical processes in solutions with a much lower amount of free cyanide (<10 g/L KCN) than the conventional alkaline silver electrolytes were first explored by using cyclic voltammetry. The electrochemical behavior and the effect of KAg(CN)2, KCN, and KNO3 electrolytes and solution pH on the electrodeposition and dissolution processes were investigated. Moreover, suitable working conditions for high speed, low cyanide silver electrodeposition were also proposed. Both silver and cyanide ions concentration had significant effects on the electrode polarization and deposition rate. The onset potential of silver electrodeposition could be shifted to more positive values by using solutions containing higher silver and lower KCN concentration. Higher silver concentration also led to higher deposition rate. Besides maintaining high conductivity of the solution, KNO3 might help reduce the operating current density required for silver electrodeposition at high silver concentration albeit at the expense of slowing down the electrodeposition rate. The silver dissolution consists of a limiting step and the reaction rate depends on the amount of free cyanide ions. The surface and material characteristics of Ag films deposited by low cyanide solution are also compared with those deposited by conventional high cyanide solution.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":"2016 1","pages":"1-11"},"PeriodicalIF":1.8,"publicationDate":"2016-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/4318178","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64380207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. P. Ballesteros, Yelsin Enrique Mendez Camacho, L. Hernandez
The synergistic effects of fluid flow, sand particles, and solution pH on erosion-corrosion of AISI 4330 steel alloy in saline-sand medium were studied through a rotating cylinder electrode (RCE) system by weight-loss and electrochemical measurements. The worn surface was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results show that, under all the test conditions assessed, the passivity of the steel alloy could not be maintained; as a result, an activation mechanism dominates the corrosion process of steel alloy. Furthermore, the potentiodynamic curves show that, with the increasing of the electrode flow rate and particle size, the anodic current density increased, which is due to deterioration of the electrode by the impacting slurry. Although the increase of particle size affects the anodic current density, the effect of particle size does not cause a significant change in the polarization behavior of the steel electrode. The electrochemical impedance and potentiodynamic curves suggest that erosion-corrosion phenomenon of the ASISI 4330 steel is under mixed control of mass transport and charge transfer. The inductive loops formed in the impedance plots are representative of an increase in roughness of the electrode caused by the particles impacting at the surface. The change in the passivity of the steel alloy as the pH is altered plays an important role in the corrosion rate.
{"title":"Evaluation of the Synergistic Effect of Erosion-Corrosion on AISI 4330 Steel in Saline-Sand Multiphase Flow by Electrochemical and Gravimetric Techniques","authors":"D. P. Ballesteros, Yelsin Enrique Mendez Camacho, L. Hernandez","doi":"10.1155/2016/1831654","DOIUrl":"https://doi.org/10.1155/2016/1831654","url":null,"abstract":"The synergistic effects of fluid flow, sand particles, and solution pH on erosion-corrosion of AISI 4330 steel alloy in saline-sand medium were studied through a rotating cylinder electrode (RCE) system by weight-loss and electrochemical measurements. The worn surface was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results show that, under all the test conditions assessed, the passivity of the steel alloy could not be maintained; as a result, an activation mechanism dominates the corrosion process of steel alloy. Furthermore, the potentiodynamic curves show that, with the increasing of the electrode flow rate and particle size, the anodic current density increased, which is due to deterioration of the electrode by the impacting slurry. Although the increase of particle size affects the anodic current density, the effect of particle size does not cause a significant change in the polarization behavior of the steel electrode. The electrochemical impedance and potentiodynamic curves suggest that erosion-corrosion phenomenon of the ASISI 4330 steel is under mixed control of mass transport and charge transfer. The inductive loops formed in the impedance plots are representative of an increase in roughness of the electrode caused by the particles impacting at the surface. The change in the passivity of the steel alloy as the pH is altered plays an important role in the corrosion rate.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":"1 1","pages":"1-7"},"PeriodicalIF":1.8,"publicationDate":"2016-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/1831654","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64247129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Baltic Sea is a relatively shallow inland sea surrounded by the countries of North-Eastern Europe and Scandinavia. The brackish water in the Baltic Sea has low salt concentration and it is typically one-sixth of the ocean seawater. The “nominal” amount of dissolved solids, upon which formulae for artificial seawater are based, is about 34,500 ppm, of which most is sodium chloride. The major constituents are those whose concentrations are greater than 1 mg/L and are not greatly affected by biological processes. The ratio of concentrations of these ions and molecules to each other is relatively constant. Corrosion rates were determined in long-term tests in Gulf of Finland brackish water off Helsinki. The water temperature varies through the year from about 0°C in January to 15-16°C in June to August. Salinity is 4–6, highest at the end of summer and lowest when ice melts. pH is between 7.0 and 8.1. Weight loss tests from one- to four-year tests for steel, stainless steel, copper, aluminium, zinc, and galvanized steel are reported and compared to short term laboratory tests in artificial seawater. Tests for passivation rates and crevice corrosion for stainless steel are discussed in terms of environment variation. The effect of corrosion on strength of steel is also discussed.
{"title":"Factors Affecting Corrosion in Gulf of Finland Brackish Water","authors":"J. Aromaa, O. Forsén","doi":"10.1155/2016/3720280","DOIUrl":"https://doi.org/10.1155/2016/3720280","url":null,"abstract":"The Baltic Sea is a relatively shallow inland sea surrounded by the countries of North-Eastern Europe and Scandinavia. The brackish water in the Baltic Sea has low salt concentration and it is typically one-sixth of the ocean seawater. The “nominal” amount of dissolved solids, upon which formulae for artificial seawater are based, is about 34,500 ppm, of which most is sodium chloride. The major constituents are those whose concentrations are greater than 1 mg/L and are not greatly affected by biological processes. The ratio of concentrations of these ions and molecules to each other is relatively constant. Corrosion rates were determined in long-term tests in Gulf of Finland brackish water off Helsinki. The water temperature varies through the year from about 0°C in January to 15-16°C in June to August. Salinity is 4–6, highest at the end of summer and lowest when ice melts. pH is between 7.0 and 8.1. Weight loss tests from one- to four-year tests for steel, stainless steel, copper, aluminium, zinc, and galvanized steel are reported and compared to short term laboratory tests in artificial seawater. Tests for passivation rates and crevice corrosion for stainless steel are discussed in terms of environment variation. The effect of corrosion on strength of steel is also discussed.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":"27 1","pages":"1-9"},"PeriodicalIF":1.8,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/3720280","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64344439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Corrosion behavior of Mg-5Y-1.5Nd alloy was investigated after heat treatment. The microstructure and precipitation were studied by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The weight loss rates of different samples were arranged as T6-24 hT6-6 hT6-14 has-castT4. The open circuit potential (OCP) showed that T4 sample had a more positive potential than that of other samples. The potentiodynamic polarization curves showed that the T6-24 h sample had the highest corrosion current density of 245.362 μAcm−2, whereas the T4 sample had the lowest at 52.164 μAcm−2. The EIS results confirmed that the heat treatment reduced the corrosion resistance for Mg-5Y-1.5Nd alloy, because the precipitations acted as the cathode of electrochemical reactions to accelerate the corrosion process. The corrosion rates of different samples were mainly determined by the amount and distribution of the precipitations. The precipitations played dual roles that depended on the amount and distribution. The presence of the phase in the alloys could deteriorate the corrosion performance as it could act as an effective galvanic cathode. Otherwise, a fine and homogeneous phase appeared to be a better anticorrosion barrier.
{"title":"Effect of Heat Treatment on Corrosion Behaviors of Mg-5Y-1.5Nd Alloys","authors":"Xiumin Ma, Q. Jiang, Yantao Li, B. Hou","doi":"10.1155/2016/7097589","DOIUrl":"https://doi.org/10.1155/2016/7097589","url":null,"abstract":"Corrosion behavior of Mg-5Y-1.5Nd alloy was investigated after heat treatment. The microstructure and precipitation were studied by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). The weight loss rates of different samples were arranged as T6-24 hT6-6 hT6-14 has-castT4. The open circuit potential (OCP) showed that T4 sample had a more positive potential than that of other samples. The potentiodynamic polarization curves showed that the T6-24 h sample had the highest corrosion current density of 245.362 μAcm−2, whereas the T4 sample had the lowest at 52.164 μAcm−2. The EIS results confirmed that the heat treatment reduced the corrosion resistance for Mg-5Y-1.5Nd alloy, because the precipitations acted as the cathode of electrochemical reactions to accelerate the corrosion process. The corrosion rates of different samples were mainly determined by the amount and distribution of the precipitations. The precipitations played dual roles that depended on the amount and distribution. The presence of the phase in the alloys could deteriorate the corrosion performance as it could act as an effective galvanic cathode. Otherwise, a fine and homogeneous phase appeared to be a better anticorrosion barrier.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":"2016 1","pages":"1-9"},"PeriodicalIF":1.8,"publicationDate":"2016-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/7097589","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64506143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Serge Foukmeniok Mbokou, M. Pontie, J. Bouchara, F. M. M. Tchieno, E. Njanja, A. Mogni, P. Pontalier, I. Tonle
Electrochemical determination of acetaminophen (APAP) was successfully performed using a carbon paste electrode (CPE)modified with coffee husks (CH-CPE). Scanning electron microscopy (SEM) and SEM-energy dispersive X-ray spectroscopy (SEM-EDX) were, respectively, used for the morphological and elemental characterization of coffee husks prior to their utilization. Theelectrochemical oxidation of APAP was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and squarewave voltammetry (SWV). SWV technique appeared to be more sensitive since the oxidation current of APAP was twofold higherwith the CH-CPE sensor than with the bare CPE, in relation to the increase in the organophilic character of the electrode surface.Furthermore, on CH-CPE, the current response of APAP varied linearly with its concentration in the range of 6.6????M to 0.5 mM,leading to a detection limit of 0.66????M(????/????=3). Finally, the proposed CH-CPE sensor was successfully used to determine theamount of APAP in commercialized tablets (Doliprane�500 and Doliprane 1000), with a recovery rate ranging from 98% to 103%.This novel sensor opens the way for the development of low-cost and reliable devices for the electroanalysis of pharmaceuticalformulations in developing countries.
{"title":"Electroanalytical Performance of a Carbon Paste Electrode Modified by Coffee Husks for the Quantification of Acetaminophen in Quality Control of Commercialized Pharmaceutical Tablets","authors":"Serge Foukmeniok Mbokou, M. Pontie, J. Bouchara, F. M. M. Tchieno, E. Njanja, A. Mogni, P. Pontalier, I. Tonle","doi":"10.1155/2016/1953278","DOIUrl":"https://doi.org/10.1155/2016/1953278","url":null,"abstract":"Electrochemical determination of acetaminophen (APAP) was successfully performed using a carbon paste electrode (CPE)modified with coffee husks (CH-CPE). Scanning electron microscopy (SEM) and SEM-energy dispersive X-ray spectroscopy (SEM-EDX) were, respectively, used for the morphological and elemental characterization of coffee husks prior to their utilization. Theelectrochemical oxidation of APAP was investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and squarewave voltammetry (SWV). SWV technique appeared to be more sensitive since the oxidation current of APAP was twofold higherwith the CH-CPE sensor than with the bare CPE, in relation to the increase in the organophilic character of the electrode surface.Furthermore, on CH-CPE, the current response of APAP varied linearly with its concentration in the range of 6.6????M to 0.5 mM,leading to a detection limit of 0.66????M(????/????=3). Finally, the proposed CH-CPE sensor was successfully used to determine theamount of APAP in commercialized tablets (Doliprane�500 and Doliprane 1000), with a recovery rate ranging from 98% to 103%.This novel sensor opens the way for the development of low-cost and reliable devices for the electroanalysis of pharmaceuticalformulations in developing countries.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":"2016 1","pages":"1-10"},"PeriodicalIF":1.8,"publicationDate":"2016-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/1953278","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64252815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chemically modified mesoporous silica material (SBA-15) was used for the construction of Tl(I) selective carbon paste electrode. The best response was found with the electrode containing 10% modifier as electrode material. The electrode has a lower detection limit of 6.0 × 10−9 M in a working concentration range of 1.0 × 10−8–1.0 × 10−1 M. The selectivity coefficient calculated by match potential method (MPM) shows the high selectivity of electrode towards Tl(I) over other tested ions. The electrode was successfully applied as an indicator electrode for the titration of 0.01 M TlNO3 solution with standards EDTA solution and for sequential titration of mixture of different anions.
{"title":"Determination of Thallium(I) by Hybrid Mesoporous Silica (SBA-15) Modified Electrode","authors":"G. Rani, S. Singh","doi":"10.1155/2016/9075651","DOIUrl":"https://doi.org/10.1155/2016/9075651","url":null,"abstract":"Chemically modified mesoporous silica material (SBA-15) was used for the construction of Tl(I) selective carbon paste electrode. The best response was found with the electrode containing 10% modifier as electrode material. The electrode has a lower detection limit of 6.0 × 10−9 M in a working concentration range of 1.0 × 10−8–1.0 × 10−1 M. The selectivity coefficient calculated by match potential method (MPM) shows the high selectivity of electrode towards Tl(I) over other tested ions. The electrode was successfully applied as an indicator electrode for the titration of 0.01 M TlNO3 solution with standards EDTA solution and for sequential titration of mixture of different anions.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":"2016 1","pages":"1-7"},"PeriodicalIF":1.8,"publicationDate":"2016-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2016/9075651","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64597627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}