The present study synthesized a novel dendrimer with specific functional groups and use them as pharmaceutical carriers at the nanoscale. First, a glycodendrimer was synthesized and a porphyrin sub...
{"title":"Synthesis of the glycodendrimer macromolecule based on porphyrin as a targeted drug delivery system","authors":"Rezvan Shojaei, Hossein Mighani, Elham Yeganeh-Salman, Pouya Taheri, Moein Ghorbanian, Raha Mokhtari Aghdami","doi":"10.1080/00914037.2023.2289518","DOIUrl":"https://doi.org/10.1080/00914037.2023.2289518","url":null,"abstract":"The present study synthesized a novel dendrimer with specific functional groups and use them as pharmaceutical carriers at the nanoscale. First, a glycodendrimer was synthesized and a porphyrin sub...","PeriodicalId":14203,"journal":{"name":"International Journal of Polymeric Materials and Polymeric Biomaterials","volume":"4 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138632099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A tri-layer scaffold was fabricated according to functionally graded materials (FGM) theory from poly(glycerol sebcate)/poly(L-lactic acid) blend by the increasing polylactic acid ratio from the in...
{"title":"Fabrication of a tri-layer scaffold with dual release of heparin and PRP for tissue engineering of small‐diameter blood vessels","authors":"Anousheh Zargar Kharazi, Aida Ghebleh, Laleh Shariati","doi":"10.1080/00914037.2023.2289537","DOIUrl":"https://doi.org/10.1080/00914037.2023.2289537","url":null,"abstract":"A tri-layer scaffold was fabricated according to functionally graded materials (FGM) theory from poly(glycerol sebcate)/poly(L-lactic acid) blend by the increasing polylactic acid ratio from the in...","PeriodicalId":14203,"journal":{"name":"International Journal of Polymeric Materials and Polymeric Biomaterials","volume":"28 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138632843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nerve injuries and neurodegenerative disorders remain serious challenges due to the poor results of nerve cell regeneration. The most promising treatment for such injuries is treatments based on st...
{"title":"Micro texturing and laser irradiation, two stimulus of growth and differentiation to neural like cell on the PMMA polymer","authors":"Somayeh Hashamdar, Parviz Parvin, Sara Mayahi, Behnaz Rahimi, Mitra Refahizadeh, Fatemeh Ramezani","doi":"10.1080/00914037.2023.2282994","DOIUrl":"https://doi.org/10.1080/00914037.2023.2282994","url":null,"abstract":"Nerve injuries and neurodegenerative disorders remain serious challenges due to the poor results of nerve cell regeneration. The most promising treatment for such injuries is treatments based on st...","PeriodicalId":14203,"journal":{"name":"International Journal of Polymeric Materials and Polymeric Biomaterials","volume":"51 4","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138520468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-24DOI: 10.1080/00914037.2023.2285023
Tae Hyoung Kim, Byung Yi Ko, Ki Chang Song
Glistening is the condensation of water that forms within the intraocular lens (IOL) materials. In this study, a new approach was attempted to reduce the glistening using various types and content ...
{"title":"Preparation of hydrophobic acrylic intraocular lens materials using various crosslinking agents to reduce glistening","authors":"Tae Hyoung Kim, Byung Yi Ko, Ki Chang Song","doi":"10.1080/00914037.2023.2285023","DOIUrl":"https://doi.org/10.1080/00914037.2023.2285023","url":null,"abstract":"Glistening is the condensation of water that forms within the intraocular lens (IOL) materials. In this study, a new approach was attempted to reduce the glistening using various types and content ...","PeriodicalId":14203,"journal":{"name":"International Journal of Polymeric Materials and Polymeric Biomaterials","volume":"10 4","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138520495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-15DOI: 10.1080/00914037.2023.2277237
Zahra Niazi, Mohsen Ashjari
A novel hybrid of a quercetin-loaded silica-chitosan, modified by crosslinked gelatin-folate was developed in the current study as a pH-sensitive drug delivery system. The entrapment efficiency of ...
{"title":"Hybrid nanoarchitecture of gelatin-modified silica-chitosan as an efficient delivery platform and functional role of crosslinking","authors":"Zahra Niazi, Mohsen Ashjari","doi":"10.1080/00914037.2023.2277237","DOIUrl":"https://doi.org/10.1080/00914037.2023.2277237","url":null,"abstract":"A novel hybrid of a quercetin-loaded silica-chitosan, modified by crosslinked gelatin-folate was developed in the current study as a pH-sensitive drug delivery system. The entrapment efficiency of ...","PeriodicalId":14203,"journal":{"name":"International Journal of Polymeric Materials and Polymeric Biomaterials","volume":"16 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138520469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AbstractChemotherapy is one of the most common therapeutic approaches in most cancers like prostate cancer, which has always faced limitations. The purpose of the present study was to design and prepare the targeted polymeric nanoparticles for the co-delivery of Paclitaxel (PTX) and Chrysin (CHR) to prostate cancer cells to improve the PTX therapeutic efficacy. Through the current research, the surface modification of the PTX/CHR-loaded PCL-PEG-PCL nanoparticles with chitosan and hyaluronic acid (PTX/CHR-PCEC-CS/HA) was successfully performed through the physical adsorption process. SEM results showed that this polymeric NPs had a homogeneous spherical structure. The encapsulation efficiency was 78.6 and 93.28% for CHR and PTX, respectively. It is important to mention that the controlled drug-release behavior of the PTX/CHR-PCEC-CS/HA was also investigated. The results demonstrated that the dual drug-loaded PCEC-CS/HA NPs had a significant effect on reducing the survival of the cancer. Also, the results exhibited that the cytotoxicity of the dual drug-loaded polymeric NPs in the PC3 cell line is significantly higher than in the HUVEC cell line. Based on the findings, the targeted PTX/CHR-PCEC-CS/HA NPs could be employed as a suitable candidate for the effective treatment of the prostate cancer.Keywords: paclitaxelChrysinpolymeric nanoparticlesprostate cancertargeted drug delivery AcknowledgmentsThis project was fulfilled at the Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran. We would like to thank the Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran for their assistance in this research. Besides, the authors would like to thank the Drug Applied Research Center, Tabriz University of Medical Sciences cooperation in this project.Author contributionsAll authors have given approval to the final version of the manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementNo data was used for the research described in the article.
{"title":"Targeted co-delivery of paclitaxel and chrysin by hyaluronate/chitosan-coated polymeric nanoparticles for prostate cancer chemotherapy","authors":"Behzad Jamali, Sajjad Jamali, Sevil Vaghefi Moghaddam, Mohsen Firoozrai, Soodabeh Davaran, Fatemeh Abedi","doi":"10.1080/00914037.2023.2277219","DOIUrl":"https://doi.org/10.1080/00914037.2023.2277219","url":null,"abstract":"AbstractChemotherapy is one of the most common therapeutic approaches in most cancers like prostate cancer, which has always faced limitations. The purpose of the present study was to design and prepare the targeted polymeric nanoparticles for the co-delivery of Paclitaxel (PTX) and Chrysin (CHR) to prostate cancer cells to improve the PTX therapeutic efficacy. Through the current research, the surface modification of the PTX/CHR-loaded PCL-PEG-PCL nanoparticles with chitosan and hyaluronic acid (PTX/CHR-PCEC-CS/HA) was successfully performed through the physical adsorption process. SEM results showed that this polymeric NPs had a homogeneous spherical structure. The encapsulation efficiency was 78.6 and 93.28% for CHR and PTX, respectively. It is important to mention that the controlled drug-release behavior of the PTX/CHR-PCEC-CS/HA was also investigated. The results demonstrated that the dual drug-loaded PCEC-CS/HA NPs had a significant effect on reducing the survival of the cancer. Also, the results exhibited that the cytotoxicity of the dual drug-loaded polymeric NPs in the PC3 cell line is significantly higher than in the HUVEC cell line. Based on the findings, the targeted PTX/CHR-PCEC-CS/HA NPs could be employed as a suitable candidate for the effective treatment of the prostate cancer.Keywords: paclitaxelChrysinpolymeric nanoparticlesprostate cancertargeted drug delivery AcknowledgmentsThis project was fulfilled at the Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran. We would like to thank the Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran for their assistance in this research. Besides, the authors would like to thank the Drug Applied Research Center, Tabriz University of Medical Sciences cooperation in this project.Author contributionsAll authors have given approval to the final version of the manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementNo data was used for the research described in the article.","PeriodicalId":14203,"journal":{"name":"International Journal of Polymeric Materials and Polymeric Biomaterials","volume":"29 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135038666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AbstractThere is a deficit for bone tissue natural grafts that seek to be covered with synthetic substitutes. Scaffolds generated with 3D printing and electrospinning allow adequate mechanical properties maintaining a structure appropriate for cell growth. Here, a scaffold made up of three-dimensional (3D) printed PLA frameworks added with PCL/PLA/nHA nanofibers was manufactured. The framework showed mechanical properties similar to other reported bone substitutes, while the nanofibers showed diameters between 200 and 850 nm. Scaffolds were suitable for cell adhesion and proliferation when evaluated with fibroblasts, showing cell proliferation into the nanofiber network, a fundamental aspect in tissue engineering.Keywords: Nanofiberspolymeric scaffoldselectrospunpolylactic acidpolycaprolactonenanohydroxyapatitetissue engineeringbone AcknowledgmentsGonzalez Rodríguez Omar A. and Ramírez Guerrero Nancy acknowledge doctoral fellowship from CONACyT, N° 001406.Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.CRediT authorship contribution statementGonzález Rodríguez Omar Alejandro: Conceptualization, Methodology, Ramírez Guerrero Nancy Cecilia: Methodology, Software, Casañas Pimentel Rocio Guadalupe: Visualization, Investigation, Jaime Fonseca Mónica Rosalia: Writing – Reviewing and Editing, San Martín Martínez Eduardo: Conceptualization, Data curation, Writing – Original draft preparation.Data availability statementData will be made available on request.Additional informationFundingThis work was supported by Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico, Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional.
{"title":"Polycaprolactone, polylactic acid, and nanohydroxyapatite scaffolds obtained by electrospinning and 3D printing for tissue engineering","authors":"Omar Alejandro González Rodríguez, Nancy Cecilia Ramírez Guerrero, Rocio Guadalupe Casañas Pimentel, Mónica Rosalia Jaime Fonseca, Eduardo San Martín Martínez","doi":"10.1080/00914037.2023.2277222","DOIUrl":"https://doi.org/10.1080/00914037.2023.2277222","url":null,"abstract":"AbstractThere is a deficit for bone tissue natural grafts that seek to be covered with synthetic substitutes. Scaffolds generated with 3D printing and electrospinning allow adequate mechanical properties maintaining a structure appropriate for cell growth. Here, a scaffold made up of three-dimensional (3D) printed PLA frameworks added with PCL/PLA/nHA nanofibers was manufactured. The framework showed mechanical properties similar to other reported bone substitutes, while the nanofibers showed diameters between 200 and 850 nm. Scaffolds were suitable for cell adhesion and proliferation when evaluated with fibroblasts, showing cell proliferation into the nanofiber network, a fundamental aspect in tissue engineering.Keywords: Nanofiberspolymeric scaffoldselectrospunpolylactic acidpolycaprolactonenanohydroxyapatitetissue engineeringbone AcknowledgmentsGonzalez Rodríguez Omar A. and Ramírez Guerrero Nancy acknowledge doctoral fellowship from CONACyT, N° 001406.Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.CRediT authorship contribution statementGonzález Rodríguez Omar Alejandro: Conceptualization, Methodology, Ramírez Guerrero Nancy Cecilia: Methodology, Software, Casañas Pimentel Rocio Guadalupe: Visualization, Investigation, Jaime Fonseca Mónica Rosalia: Writing – Reviewing and Editing, San Martín Martínez Eduardo: Conceptualization, Data curation, Writing – Original draft preparation.Data availability statementData will be made available on request.Additional informationFundingThis work was supported by Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico, Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional.","PeriodicalId":14203,"journal":{"name":"International Journal of Polymeric Materials and Polymeric Biomaterials","volume":"351 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135474638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the present work, N-substituted glutamic acid, polyethylene and polypropylene glycols have been used to design biocompatible copolyesters via Steglich reactions. Due to the presence of alternating hydrophilic and hydrophobic blocks in their structures, these copolyesters are able to form self-stabilized nanoparticle dispersions in aqueous media. The lipophilic core of these nanoparticles can solubilize poorly water-soluble compounds and release them into a model of lipids in a human body. Moreover, the obtained copolyesters possess no cytotoxic effects over a wide concentration range. Thus, we conclude that obtained copolyesters show significant promise for further development as drug delivery systems.
{"title":"Surface active polyesters based on N-substituted glutamic acid as promising materials for biomedical applications","authors":"Nataliia Fihurka, Ihor Tarnavchyk, Nataliya Nosova, Serhii Varvarenko, Iryna Dron, Dmytro Ostapiv, Vasyl Vlislo, Volodymyr Samaryk","doi":"10.1080/00914037.2023.2274591","DOIUrl":"https://doi.org/10.1080/00914037.2023.2274591","url":null,"abstract":"In the present work, N-substituted glutamic acid, polyethylene and polypropylene glycols have been used to design biocompatible copolyesters via Steglich reactions. Due to the presence of alternating hydrophilic and hydrophobic blocks in their structures, these copolyesters are able to form self-stabilized nanoparticle dispersions in aqueous media. The lipophilic core of these nanoparticles can solubilize poorly water-soluble compounds and release them into a model of lipids in a human body. Moreover, the obtained copolyesters possess no cytotoxic effects over a wide concentration range. Thus, we conclude that obtained copolyesters show significant promise for further development as drug delivery systems.","PeriodicalId":14203,"journal":{"name":"International Journal of Polymeric Materials and Polymeric Biomaterials","volume":"7 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135678815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-03DOI: 10.1080/00914037.2023.2277235
Fatima Tariq, Muhammad Zaman, Muhammad Ahsan Waqar, Muhammad Asad Saeed, Rai Muhammad Sarfraz
AbstractNiosomal and Polymeric-based nanoparticles offer advantages over conventional systems, such as targeted drug delivery and reduced toxicity. These nanoparticles are very promising due to their high drug loading capacity, stability, and ability to target specific cells or tissues. However, developing these nanoparticles presents challenges and requires careful selection of materials. These particles can deliver both hydrophilic and hydrophobic drugs and have applications in cancer therapy, gene therapy, and vaccination. This review aims to provide a comprehensive understanding of the current state of the art in the field of niosomal and polymeric nanoparticle design and optimization for efficient targeted drug delivery.Keywords: Cancer therapydrug loadingniosomal nanoparticlesoptimizationpolymeric nanoparticles Disclosure statementNo potential conflict of interest was reported by the author(s).
{"title":"Design, optimization & characterization of niosomal & polymeric nanoparticles","authors":"Fatima Tariq, Muhammad Zaman, Muhammad Ahsan Waqar, Muhammad Asad Saeed, Rai Muhammad Sarfraz","doi":"10.1080/00914037.2023.2277235","DOIUrl":"https://doi.org/10.1080/00914037.2023.2277235","url":null,"abstract":"AbstractNiosomal and Polymeric-based nanoparticles offer advantages over conventional systems, such as targeted drug delivery and reduced toxicity. These nanoparticles are very promising due to their high drug loading capacity, stability, and ability to target specific cells or tissues. However, developing these nanoparticles presents challenges and requires careful selection of materials. These particles can deliver both hydrophilic and hydrophobic drugs and have applications in cancer therapy, gene therapy, and vaccination. This review aims to provide a comprehensive understanding of the current state of the art in the field of niosomal and polymeric nanoparticle design and optimization for efficient targeted drug delivery.Keywords: Cancer therapydrug loadingniosomal nanoparticlesoptimizationpolymeric nanoparticles Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":14203,"journal":{"name":"International Journal of Polymeric Materials and Polymeric Biomaterials","volume":"2 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135873617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A pH-sensitive magnetic hydrogel nanocomposite based on alginate for controlled release of methotrexate","authors":"Fahimeh Farshi Azhar, Aylin Ahmadinia, Hanieh Mousazadeh, Elnaz Kheirkhah","doi":"10.1080/00914037.2023.2274601","DOIUrl":"https://doi.org/10.1080/00914037.2023.2274601","url":null,"abstract":"","PeriodicalId":14203,"journal":{"name":"International Journal of Polymeric Materials and Polymeric Biomaterials","volume":"43 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136104046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}