Pub Date : 2026-01-01Epub Date: 2025-10-31DOI: 10.1080/15226514.2025.2574902
Sultan Turkoglu, Remziye Aysun Kepekçi, Olcayto Keskinkan
In this study, ZnO nanoparticles with a size of 192 nm were produced via green synthesis using Diospyros kaki L. peel extract and were characterized by energy-dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Visible spectroscopy, dynamic light scattering (DLS), Brunauer-Emmett-Teller (BET), and zeta potential (ZP) analysis. The produced nanoparticles were tested for photocatalytic degradation of methylene blue and optimized using the Box-Behnken design. Under optimum conditions (pH: 10, dye concentration: 10 ppm and catalyst amount: 0.13 g and pH: 7, dye concentration: 10 ppm and catalyst amount: 0.6 g), 100% dye removal was achieved in 270 min and the model was validated by ANOVA. This study represents the first investigation involving the production and photocatalytic application of nanoparticles synthesized using D. kaki peel.
{"title":"Photocatalysis of methylene blue by ZnO nanoparticles produced by green synthesis.","authors":"Sultan Turkoglu, Remziye Aysun Kepekçi, Olcayto Keskinkan","doi":"10.1080/15226514.2025.2574902","DOIUrl":"10.1080/15226514.2025.2574902","url":null,"abstract":"<p><p>In this study, ZnO nanoparticles with a size of 192 nm were produced <i>via</i> green synthesis using <i>Diospyros kaki</i> L. peel extract and were characterized by energy-dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-Visible spectroscopy, dynamic light scattering (DLS), Brunauer-Emmett-Teller (BET), and zeta potential (ZP) analysis. The produced nanoparticles were tested for photocatalytic degradation of methylene blue and optimized using the Box-Behnken design. Under optimum conditions (pH: 10, dye concentration: 10 ppm and catalyst amount: 0.13 g and pH: 7, dye concentration: 10 ppm and catalyst amount: 0.6 g), 100% dye removal was achieved in 270 min and the model was validated by ANOVA. This study represents the first investigation involving the production and photocatalytic application of nanoparticles synthesized using <i>D. kaki</i> peel.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"513-523"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145421810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-01Epub Date: 2025-08-09DOI: 10.1080/15226514.2025.2542559
Erin Lincoln, Azam Noori
The Chernobyl Nuclear Power Plant (CNPP) disaster in 1986 released significant amounts of radiocesium (137Cs), radiostrontium (90Sr), and radioiodine (131I) across Europe and eastern areas of Russia, leading to widespread environmental contamination that negatively impacted human health and harmed flora and fauna in a variety of terrestrial and aquatic ecosystems. The long-term effects of the Chernobyl incident remain a persistent concern, particularly due to radiocesium which has a half-life of 30.17 years, and various environmental and human-driven events that continue to resuspend radionuclides into the environment. Nearly four decades after the incident, various remediation efforts have been implemented, including physical, chemical, and biological approaches. However, no method has proven to be completely effective, and the significant remaining contamination necessitates the implementation of new strategies for remediation. Some of the most promising remediation techniques fall under the science of bioremediation; the use of bacteria, algae, fungi, and plants to remove contaminants from the environment. Phytoremediation is promising due to its environmentally friendly nature and its cost. This review article examines the environmental impacts of the Chernobyl fallout, evaluates remediation efforts over the past four decades, and explores emerging phytoremediation strategies that could enhance radionuclide removal from contaminated terrestrial and aquatic environments.
{"title":"Phytoremediation potential for radionuclide removal following the Chernobyl Nuclear Power Plant disaster.","authors":"Erin Lincoln, Azam Noori","doi":"10.1080/15226514.2025.2542559","DOIUrl":"10.1080/15226514.2025.2542559","url":null,"abstract":"<p><p>The Chernobyl Nuclear Power Plant (CNPP) disaster in 1986 released significant amounts of radiocesium (<sup>137</sup>Cs), radiostrontium (<sup>90</sup>Sr), and radioiodine (<sup>131</sup>I) across Europe and eastern areas of Russia, leading to widespread environmental contamination that negatively impacted human health and harmed flora and fauna in a variety of terrestrial and aquatic ecosystems. The long-term effects of the Chernobyl incident remain a persistent concern, particularly due to radiocesium which has a half-life of 30.17 years, and various environmental and human-driven events that continue to resuspend radionuclides into the environment. Nearly four decades after the incident, various remediation efforts have been implemented, including physical, chemical, and biological approaches. However, no method has proven to be completely effective, and the significant remaining contamination necessitates the implementation of new strategies for remediation. Some of the most promising remediation techniques fall under the science of bioremediation; the use of bacteria, algae, fungi, and plants to remove contaminants from the environment. Phytoremediation is promising due to its environmentally friendly nature and its cost. This review article examines the environmental impacts of the Chernobyl fallout, evaluates remediation efforts over the past four decades, and explores emerging phytoremediation strategies that could enhance radionuclide removal from contaminated terrestrial and aquatic environments.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"36-48"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144804042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-01Epub Date: 2025-09-07DOI: 10.1080/15226514.2025.2554171
Şennur Merve Yakut
The green synthesis method is a significant approach that offers several advantages, including simplicity, rapidity, and cost-effectiveness in the synthesis of nanoparticles. Iron nanoparticles were synthesized in this work using waste banana peel extract as a capping and reducing agent. The produced nanoparticles were then subjected to a number of characterization procedures, such as Raman spectroscopy, X-ray diffractometry (XRD), zeta potential analysis, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-VIS) absorption spectroscopy, field scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), and thermogravimetric analysis (TGA). The effect of the nanoparticles on dye elimination was next investigated separately and with the aid of ultrasound irridation. To ascertain the efficacy of the nanoparticles, their performance was compared with that of the classical Fenton process. The results showed that 99.7% of the dye was removed within 60 min with a 10 mg/L iron concentration, 10 mg/L hydrogen peroxide (H2O2) concentration, and 53 kHz ultrasound radiation. In FeNPs reuse, 91% efficiency was achieved in the 2nd cycle, 56% in the 3rd cycle and 51.37% in the 4th cycle.
{"title":"Iron nanoparticle synthesis using waste banana peels and Maxilon Blue 5G sono-degradation.","authors":"Şennur Merve Yakut","doi":"10.1080/15226514.2025.2554171","DOIUrl":"10.1080/15226514.2025.2554171","url":null,"abstract":"<p><p>The green synthesis method is a significant approach that offers several advantages, including simplicity, rapidity, and cost-effectiveness in the synthesis of nanoparticles. Iron nanoparticles were synthesized in this work using waste banana peel extract as a capping and reducing agent. The produced nanoparticles were then subjected to a number of characterization procedures, such as Raman spectroscopy, X-ray diffractometry (XRD), zeta potential analysis, Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible (UV-VIS) absorption spectroscopy, field scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), and thermogravimetric analysis (TGA). The effect of the nanoparticles on dye elimination was next investigated separately and with the aid of ultrasound irridation. To ascertain the efficacy of the nanoparticles, their performance was compared with that of the classical Fenton process. The results showed that 99.7% of the dye was removed within 60 min with a 10 mg/L iron concentration, 10 mg/L hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) concentration, and 53 kHz ultrasound radiation. In FeNPs reuse, 91% efficiency was achieved in the 2nd cycle, 56% in the 3rd cycle and 51.37% in the 4th cycle.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"149-161"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145008271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-01Epub Date: 2025-09-12DOI: 10.1080/15226514.2025.2555586
Adnan Khan, Babar Iqbal, Nazim Hassan, Inam Ullah, Muhammad Sohail Memon
Melatonin (MT) is a natural, multifunctional molecule with amphiphilic properties, enabling it to cross cellular membranes rapidly, and it also contributes to plant resistance against abiotic stresses. However, the possible complex mechanisms by which MT mitigates salt toxicity and oxidative damage in cauliflower (Brassica oleracea L.) remain unclear. To fill this gap and clarify the pathway to salt stress resistance, the present study investigated the effects of exogenous 50 μM MT on growth, physiological, biochemical, and phyto-hormonal responses of cauliflower seedlings subjected to 200 mM NaCl-induced salinity stress. Our results revealed that salinity stress triggered a significant reduction in leaf and root biomass, chlorophyll and carotenoid pigments, gas exchange parameters, and K+ and Mg2+ ions indicators, while Na+ levels and hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations were significantly elevated, suggesting that cauliflower plants were adversely affected by salt-induced oxidative stress. However, exogenous MT application alleviated the reductions in growth, biochemical parameters, and physiological functions, promoting melatonin content and reducing reactive oxygen species (ROS) accumulation and lipid peroxidation by enhancing photosynthetic efficiency and promoting the accumulation of osmoprotectants under salt stress. Moreover, MT suppressed salt-induced oxidative stress by declining oxidative indicators via enhancing antioxidants activities such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) enzymes as well as significantly increasing abscisic acid (ABA) levels in the leaves of cauliflower plants under saline stress. In conclusion, we propose that exogenous MT application significantly enhances the physiological and biochemical profiles of cauliflower plants by improving organic osmolytes and mitigating salt-induced oxidative stress. Likewise, the correlation analysis presented strong evidence and confirms a direct contribution of MT+NAA in the growth, physio-biochemical, and phyto-hormonal traits under severe saline stress. This finding suggests that exogenous melatonin application could offer valuable strategies for cauliflower cultivation in saline environments.
褪黑素(MT)是一种天然的多功能分子,具有两亲性,使其能够快速穿过细胞膜,并有助于植物抵抗非生物胁迫。然而,MT减轻菜花(Brassica oleracea L.)盐毒性和氧化损伤的复杂机制仍不清楚。为了填补这一空白并阐明盐胁迫抗性的途径,本研究研究了外源50 μM MT对200 mM nacl诱导盐胁迫下花椰菜幼苗生长、生理生化和植物激素反应的影响。结果表明,盐胁迫导致花椰菜叶片和根系生物量、叶绿素和类胡萝卜素色素、气体交换参数以及K+和Mg2+离子指标显著降低,Na+水平、过氧化氢(H2O2)和丙二醛(MDA)浓度显著升高,表明盐胁迫对花椰菜植株产生了不利影响。然而,外源MT通过提高光合效率和促进渗透保护剂的积累,缓解了盐胁迫下植株生长、生化参数和生理功能的下降,促进褪黑素含量的增加,减少活性氧(ROS)的积累和脂质过氧化。此外,MT通过提高盐胁迫下菜花叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)等抗氧化剂活性,以及显著提高脱落酸(ABA)水平,降低了氧化指标,从而抑制盐胁迫诱导的氧化应激。综上所述,我们认为外源MT施用通过改善有机渗透和减轻盐诱导的氧化应激,显著提高了花椰菜植株的生理生化特征。同样,相关分析也提供了强有力的证据,证实了MT+NAA在重度盐胁迫下对生长、生理生化和植物激素性状的直接贡献。这一发现表明外源褪黑激素的应用可以为盐环境下的花椰菜种植提供有价值的策略。
{"title":"Melatonin alleviates salinity-induced impairments by regulating plant growth and physiological indices of cauliflower (<i>Brassica oleracea</i> L.) seedlings.","authors":"Adnan Khan, Babar Iqbal, Nazim Hassan, Inam Ullah, Muhammad Sohail Memon","doi":"10.1080/15226514.2025.2555586","DOIUrl":"10.1080/15226514.2025.2555586","url":null,"abstract":"<p><p>Melatonin (MT) is a natural, multifunctional molecule with amphiphilic properties, enabling it to cross cellular membranes rapidly, and it also contributes to plant resistance against abiotic stresses. However, the possible complex mechanisms by which MT mitigates salt toxicity and oxidative damage in cauliflower (<i>Brassica oleracea</i> L.) remain unclear. To fill this gap and clarify the pathway to salt stress resistance, the present study investigated the effects of exogenous 50 μM MT on growth, physiological, biochemical, and phyto-hormonal responses of cauliflower seedlings subjected to 200 mM NaCl-induced salinity stress. Our results revealed that salinity stress triggered a significant reduction in leaf and root biomass, chlorophyll and carotenoid pigments, gas exchange parameters, and K<sup>+</sup> and Mg<sup>2+</sup> ions indicators, while Na<sup>+</sup> levels and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and malondialdehyde (MDA) concentrations were significantly elevated, suggesting that cauliflower plants were adversely affected by salt-induced oxidative stress. However, exogenous MT application alleviated the reductions in growth, biochemical parameters, and physiological functions, promoting melatonin content and reducing reactive oxygen species (ROS) accumulation and lipid peroxidation by enhancing photosynthetic efficiency and promoting the accumulation of osmoprotectants under salt stress. Moreover, MT suppressed salt-induced oxidative stress by declining oxidative indicators via enhancing antioxidants activities such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) enzymes as well as significantly increasing abscisic acid (ABA) levels in the leaves of cauliflower plants under saline stress. In conclusion, we propose that exogenous MT application significantly enhances the physiological and biochemical profiles of cauliflower plants by improving organic osmolytes and mitigating salt-induced oxidative stress. Likewise, the correlation analysis presented strong evidence and confirms a direct contribution of MT+NAA in the growth, physio-biochemical, and phyto-hormonal traits under severe saline stress. This finding suggests that exogenous melatonin application could offer valuable strategies for cauliflower cultivation in saline environments.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"172-188"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145040024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-01Epub Date: 2025-09-23DOI: 10.1080/15226514.2025.2563133
Jian Ren, Maihe Ren, Shuqi Li, Yan Zhang, Bao Wang, Weiran Dai
This study investigated the regulatory mechanism of exogenous Jasmonic acid (JA) in detoxifying Cu stress in guinea grass (Panicum maximum). Seedlings were treated with Cu (300 µM), JA (10 µM), and their combinations via Hoagland solution in controlled growth chambers for 30 days. The results indicated that Cu stress significantly reduced superoxide dismutase (-51.2%) and peroxidase (-38.0%), chlorophyll content, net photosynthetic rate (Pn), and led to decreases in leaf length, width, plant height, and biomass (-49.7%). Conversely, exogenous JA effectively mitigated the adverse effects of Cu stress by reducing membrane damage, and increasing chlorophyll, Pn (+107%), and antioxidant enzymes (p<0.05), and biomass (+84.7%), modifying associated metabolites. A total of 63 metabolites with differential accumulations were identified when exposed to JA, Cu, or their combination, mainly including amino acids, organic acids, and carbohydrates. Excessive Cu significantly reduced the levels of capric acid, salicylic acid, and glucosaminic acid, while increasing malic acid and serine content, which are primarily involved in regulating the citrate cycle and alanine-aspartate and glutamate metabolism. Overall, these findings demonstrates that guinea grass alleviates Cu toxicity by enhancing photosynthetic efficiency, antioxidant enzyme activity, and modifying associated metabolites and pathways under JA, thereby exhibiting potential for phytoremediation of Cu stress.
{"title":"Exogenous jasmonic acid alleviates Cu-induced damages in guinea grass by enhancing photosynthesis, antioxidant enzyme activity and modifying associated metabolites.","authors":"Jian Ren, Maihe Ren, Shuqi Li, Yan Zhang, Bao Wang, Weiran Dai","doi":"10.1080/15226514.2025.2563133","DOIUrl":"10.1080/15226514.2025.2563133","url":null,"abstract":"<p><p>This study investigated the regulatory mechanism of exogenous Jasmonic acid (JA) in detoxifying Cu stress in guinea grass (<i>Panicum maximum</i>). Seedlings were treated with Cu (300 µM), JA (10 µM), and their combinations <i>via</i> Hoagland solution in controlled growth chambers for 30 days. The results indicated that Cu stress significantly reduced superoxide dismutase (-51.2%) and peroxidase (-38.0%), chlorophyll content, net photosynthetic rate (<i>Pn</i>), and led to decreases in leaf length, width, plant height, and biomass (-49.7%). Conversely, exogenous JA effectively mitigated the adverse effects of Cu stress by reducing membrane damage, and increasing chlorophyll, <i>Pn</i> (+107%), and antioxidant enzymes (<i>p</i><b> </b><<b> </b>0.05), and biomass (+84.7%), modifying associated metabolites. A total of 63 metabolites with differential accumulations were identified when exposed to JA, Cu, or their combination, mainly including amino acids, organic acids, and carbohydrates. Excessive Cu significantly reduced the levels of capric acid, salicylic acid, and glucosaminic acid, while increasing malic acid and serine content, which are primarily involved in regulating the citrate cycle and alanine-aspartate and glutamate metabolism. Overall, these findings demonstrates that guinea grass alleviates Cu toxicity by enhancing photosynthetic efficiency, antioxidant enzyme activity, and modifying associated metabolites and pathways under JA, thereby exhibiting potential for phytoremediation of Cu stress.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"324-335"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145130760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-01Epub Date: 2025-11-12DOI: 10.1080/15226514.2025.2568114
Shiza Tariq, Asghari Bano, Motsim Billah
This study aimed to measure the bioremediation potential of silver nanoparticles (AgNPs) and plant growth-promoting rhizobacteria (PGPR) in enhancing maize growth under contaminated conditions. The irrigation water used was effluent from tube well and Hitech Industries Taxila (HIT), both containing Fe and Mn levels exceeding permissible limits. Tap water irrigation served as the control. Notably, the Cr levels in HIT effluent water were 280% higher than the permissible limits set by the World Health Organization (WHO 2011). The HIT water showed 64.11%, 200%, and 24% higher content of Ca, K, and Na as compared to control. Seeds were soaked for 2h prior to sowing in 71-h old Pseudomonas stutzeri (P. stutzeri) (Gene bank accession no. KX574858) culture, at concentration of 108 cells/mL. The toxic effects of chromium (Cr) leads to a reduction in photosynthetic activity. The results showed that the combined treatment of AgNPs and PGPR increased flavonoid, phenolic, and carotenoid activities by 78%, 167%, and 55%, respectively, in tube well-irrigated plants. Additionally, PGPR and AgNPs effectively reduced oxidative stress by enhancing the activities of enzymes, superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), and peroxidase (POD) in maize irrigated with tube well water. The study demonstrates the potential of AgNPs and PGPR in mitigating the adverse effects of heavy metal (HM) toxicity on maize plants. The findings suggest that maize plants irrigated with high Cr-contaminated water exhibited enhanced metal tolerance when treated with PGPR. The key objective of this study was to explore the individual effects of P. stutzeri and AgNPs on the stabilization of Mn, Fe, and Cr, and their impact on maize physiological responses. This study also evaluated the role of AgNPs and P. stutzeri in enhancing the availability and uptake of phosphorus (P) and nitrogen (N) macronutrients in rhizospheric soil irrigated with HM-contaminated water.
本研究旨在测定银纳米颗粒(AgNPs)和植物促生根瘤菌(PGPR)在污染条件下促进玉米生长的生物修复潜力。所使用的灌溉用水是管井和Hitech Industries Taxila (HIT)的废水,其铁和锰含量都超过了允许的限度。自来水灌溉作为对照。值得注意的是,HIT废水中的铬含量比世界卫生组织(世卫组织,2011年)规定的允许限值高出280%。与对照相比,HIT水的Ca、K和Na含量分别提高了64.11%、200%和24%。播种前将种子浸泡2h,接种71 h stutzeri假单胞菌(P. stutzeri)。KX574858)培养,浓度为108个细胞/mL。铬(Cr)的毒性作用导致光合活性降低。结果表明,AgNPs和PGPR联合处理可使管灌植株的类黄酮、酚类和类胡萝卜素活性分别提高78%、167%和55%。此外,PGPR和AgNPs通过提高玉米超氧化物歧化酶(SOD)、苯丙氨酸解氨酶(PAL)和过氧化物酶(POD)活性,有效降低了玉米的氧化应激。该研究证明了AgNPs和PGPR在减轻重金属(HM)对玉米植株的有害影响方面的潜力。研究结果表明,用高铬污染水灌溉的玉米植株在用PGPR处理时表现出更强的金属耐受性。本研究的主要目的是探讨stutzeri和AgNPs对Mn、Fe和Cr稳定的个体效应及其对玉米生理反应的影响。本研究还评价了AgNPs和P. stutzeri在提高hm污染水灌溉根际土壤磷(P)和氮(N)宏量养分的有效性和吸收中的作用。
{"title":"Physiological effects of silver nanoparticles and <i>Pseudomonas stutzeri</i> on <i>Zea mays</i> L. irrigated with effluent water from industry.","authors":"Shiza Tariq, Asghari Bano, Motsim Billah","doi":"10.1080/15226514.2025.2568114","DOIUrl":"10.1080/15226514.2025.2568114","url":null,"abstract":"<p><p>This study aimed to measure the bioremediation potential of silver nanoparticles (AgNPs) and plant growth-promoting rhizobacteria (PGPR) in enhancing maize growth under contaminated conditions. The irrigation water used was effluent from tube well and Hitech Industries Taxila (HIT), both containing Fe and Mn levels exceeding permissible limits. Tap water irrigation served as the control. Notably, the Cr levels in HIT effluent water were 280% higher than the permissible limits set by the World Health Organization (WHO 2011). The HIT water showed 64.11%, 200%, and 24% higher content of Ca, K, and Na as compared to control. Seeds were soaked for 2h prior to sowing in 71-h old <i>Pseudomonas stutzeri</i> (<i>P. stutzeri</i>) (Gene bank accession no. KX574858) culture, at concentration of 10<sup>8</sup> cells/mL. The toxic effects of chromium (Cr) leads to a reduction in photosynthetic activity. The results showed that the combined treatment of AgNPs and PGPR increased flavonoid, phenolic, and carotenoid activities by 78%, 167%, and 55%, respectively, in tube well-irrigated plants. Additionally, PGPR and AgNPs effectively reduced oxidative stress by enhancing the activities of enzymes, superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), and peroxidase (POD) in maize irrigated with tube well water. The study demonstrates the potential of AgNPs and PGPR in mitigating the adverse effects of heavy metal (HM) toxicity on maize plants. The findings suggest that maize plants irrigated with high Cr-contaminated water exhibited enhanced metal tolerance when treated with PGPR. The key objective of this study was to explore the individual effects of <i>P. stutzeri</i> and AgNPs on the stabilization of Mn, Fe, and Cr, and their impact on maize physiological responses. This study also evaluated the role of AgNPs and <i>P. stutzeri</i> in enhancing the availability and uptake of phosphorus (P) and nitrogen (N) macronutrients in rhizospheric soil irrigated with HM-contaminated water.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"412-423"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145495425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-01Epub Date: 2025-07-30DOI: 10.1080/15226514.2025.2539429
Kwang Mo Yang
Phytoremediation is an environmentally friendly and low-cost technology for remediating petroleum contaminated soils. This review analyzed the publications indexed in the Scopus database between 2015 and 2025. The number of publications and citations related to the phytoremediation of petroleum hydrocarbons has increased rapidly, presumably due to the growing environmental pollution of petrochemicals worldwide. China emerged as the most productive country, followed by India and the United States, respectively. The majority of publications were found in Environmental Science and Pollution Research, International Journal of Phytoremediation, Chemosphere, Science of the Total Environment, and Journal of Hazardous Materials. The top five keywords in this field were bioremediation, polycyclic aromatic hydrocarbons, petroleum hydrocarbons, rhizoremediation, and heavy metals, excluding phytoremediation. The keyword analysis showed a focus on co-contaminated soil, plant-microbial interaction, amendment-assisted phytoremediation, and phytotoxicity. This bibliometric review provides valuable insights for future directions related to the phytoremediation of petroleum hydrocarbons.
{"title":"Recent trend in phytoremediation of petroleum hydrocarbon contaminated soil: a bibliometric review.","authors":"Kwang Mo Yang","doi":"10.1080/15226514.2025.2539429","DOIUrl":"10.1080/15226514.2025.2539429","url":null,"abstract":"<p><p>Phytoremediation is an environmentally friendly and low-cost technology for remediating petroleum contaminated soils. This review analyzed the publications indexed in the Scopus database between 2015 and 2025. The number of publications and citations related to the phytoremediation of petroleum hydrocarbons has increased rapidly, presumably due to the growing environmental pollution of petrochemicals worldwide. China emerged as the most productive country, followed by India and the United States, respectively. The majority of publications were found in Environmental Science and Pollution Research, International Journal of Phytoremediation, Chemosphere, Science of the Total Environment, and Journal of Hazardous Materials. The top five keywords in this field were bioremediation, polycyclic aromatic hydrocarbons, petroleum hydrocarbons, rhizoremediation, and heavy metals, excluding phytoremediation. The keyword analysis showed a focus on co-contaminated soil, plant-microbial interaction, amendment-assisted phytoremediation, and phytotoxicity. This bibliometric review provides valuable insights for future directions related to the phytoremediation of petroleum hydrocarbons.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"19-27"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144742114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-01Epub Date: 2025-09-17DOI: 10.1080/15226514.2025.2558165
Ahmad Syahmi Zaini, Nurul Aishah Abdul Rahim, Nicky Rahmana Putra, Azrul Nurfaiz Mohd Faizal, Muhammad Abbas Ahmad Zaini
This study explores the transformation of oil condensate waste (OCW) into activated carbons (ACs) as an efficient solution for managing condensate waste within palm oil mill, while providing a sustainable alternative for dye removal from wastewater. OCW was chemically activated using sulfuric acid (CH samples) and zinc chloride (CZ samples), followed by comprehensive characterization of their elemental composition, surface chemistry, and textural properties. The resulting activated carbons exhibited specific surface areas ranging from 427.85 to 493.42 m2/g with the maximum adsorption capacities of 230.5 mg/g. Adsorption performance was evaluated using isotherm and kinetic models, with the pseudo-second-order model providing the best fit, indicative of a chemisorption mechanism. Thermodynamic parameters further revealed that the adsorption process was both endothermic and spontaneous in nature. The results demonstrate the potential of activated carbons derived from OCW as efficient and sustainable adsorbents for wastewater treatment applications.
{"title":"Utilizing oil palm sterilization condensate as methylene blue adsorbent.","authors":"Ahmad Syahmi Zaini, Nurul Aishah Abdul Rahim, Nicky Rahmana Putra, Azrul Nurfaiz Mohd Faizal, Muhammad Abbas Ahmad Zaini","doi":"10.1080/15226514.2025.2558165","DOIUrl":"10.1080/15226514.2025.2558165","url":null,"abstract":"<p><p>This study explores the transformation of oil condensate waste (OCW) into activated carbons (ACs) as an efficient solution for managing condensate waste within palm oil mill, while providing a sustainable alternative for dye removal from wastewater. OCW was chemically activated using sulfuric acid (CH samples) and zinc chloride (CZ samples), followed by comprehensive characterization of their elemental composition, surface chemistry, and textural properties. The resulting activated carbons exhibited specific surface areas ranging from 427.85 to 493.42 m<sup>2</sup>/g with the maximum adsorption capacities of 230.5 mg/g. Adsorption performance was evaluated using isotherm and kinetic models, with the pseudo-second-order model providing the best fit, indicative of a chemisorption mechanism. Thermodynamic parameters further revealed that the adsorption process was both endothermic and spontaneous in nature. The results demonstrate the potential of activated carbons derived from OCW as efficient and sustainable adsorbents for wastewater treatment applications.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"210-223"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145075220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Industrial wastewater pollution is an environmental problem that affects ecosystems and communities. Phycoremediation offers an eco-friendly alternative for contaminant removal. This study evaluated the efficiency of Tetradesmus obliquus (To), Chlorella sorokiniana (Cs), and Chlorella vulgaris (Cv) in treating dairy wastewater. Microalgae were cultivated in photobioreactors at four dilution rates (0.20, 0.25, 0.30, and 0.35d-1). The initial wastewater contained pH 7.79 ± 0.50, total nitrogen (TN) 188 ± 0.50 mg L-1, total phosphorus (TP) 20.45 ± 0.17 mg L-1, chemical oxygen demand (COD) 8400 ± 52mgO2L-1, Mn 2.02mgL-1, Al 217.43mgL-1, Cr 0.04μgL-1, total coliforms (TC) 3800CFUmL-1, and Escherichia coli (EC) 100CFUmL-1. All microalgae showed high removal efficiency, with 0.20d-1 as the optimal rate. After treatment, To0.20 reduce TN 97.3 ± 0.71mgL-1, TP 2.39 ± 0.16mgL-1, COD 570 ± 2mgO2L-1, Mn 0.06 ± 0.00mgL-1, Al 0.07 ± 0.00mgL-1, Cr 0.02 ± 0.00µgL-1, TC and EC not detected. Cs0.2, it was TN 4.94 ± 0.35mgL-1, TP 6.59 ± 0.23mgL-1, COD 432 ± 13mgO2L-1, Mn 0.06 ± 0.00mgL-1, Al 0.03 ± 0.01mgL-1, TC 4 ± 0CFU mL-1, Cr and EC not detected and Cv0.2, it was TN 5.15 ± 0.89mgL-1, TP 5.77 ± 0.05mgL-1, COD 450 ± 14mgO2L-1, Mn 0.06 ± 0.00mgL-1, Al, Cr, TC and EC not detected. The best treatment was Cv0.20, which eliminated 99% TN, 72% TP, 95% COD, and 100% TC and EC. This study provides new insights into using different microalgae and dilution rates to produce remediated effluent meeting irrigation standards.
{"title":"Semi-continuous microalgae cultivation on dairy wastewater considering low dilution rates: insights about cultivation stability and contaminant removal.","authors":"Gina Fiorella Vezzosi Zoto, Natalia Agustina Sacks, Melina Abril Urbani, Luz Marina Zapata","doi":"10.1080/15226514.2025.2560534","DOIUrl":"10.1080/15226514.2025.2560534","url":null,"abstract":"<p><p>Industrial wastewater pollution is an environmental problem that affects ecosystems and communities. Phycoremediation offers an eco-friendly alternative for contaminant removal. This study evaluated the efficiency of <i>Tetradesmus obliquus</i> (To), <i>Chlorella sorokiniana</i> (Cs), and <i>Chlorella vulgaris</i> (Cv) in treating dairy wastewater. Microalgae were cultivated in photobioreactors at four dilution rates (0.20, 0.25, 0.30, and 0.35d<sup>-1</sup>). The initial wastewater contained pH 7.79 ± 0.50, total nitrogen (TN) 188 ± 0.50 mg L<sup>-1</sup>, total phosphorus (TP) 20.45 ± 0.17 mg L<sup>-1</sup>, chemical oxygen demand (COD) 8400 ± 52mgO<sub>2</sub>L<sup>-1</sup>, Mn 2.02mgL<sup>-1</sup>, Al 217.43mgL<sup>-1</sup>, Cr 0.04μgL<sup>-1</sup>, total coliforms (TC) 3800CFUmL<sup>-1</sup>, and <i>Escherichia coli</i> (EC) 100CFUmL<sup>-1</sup>. All microalgae showed high removal efficiency, with 0.20d<sup>-1</sup> as the optimal rate. After treatment, To0.20 reduce TN 97.3 ± 0.71mgL<sup>-1</sup>, TP 2.39 ± 0.16mgL<sup>-1</sup>, COD 570 ± 2mgO<sub>2</sub>L<sup>-1</sup>, Mn 0.06 ± 0.00mgL<sup>-1</sup>, Al 0.07 ± 0.00mgL<sup>-1</sup>, Cr 0.02 ± 0.00µgL<sup>-1</sup>, TC and EC not detected. Cs0.2, it was TN 4.94 ± 0.35mgL<sup>-1</sup>, TP 6.59 ± 0.23mgL<sup>-1</sup>, COD 432 ± 13mgO<sub>2</sub>L<sup>-1</sup>, Mn 0.06 ± 0.00mgL<sup>-1</sup>, Al 0.03 ± 0.01mgL<sup>-1</sup>, TC 4 ± 0CFU mL<sup>-1</sup>, Cr and EC not detected and Cv0.2, it was TN 5.15 ± 0.89mgL<sup>-1</sup>, TP 5.77 ± 0.05mgL<sup>-1</sup>, COD 450 ± 14mgO<sub>2</sub>L<sup>-1</sup>, Mn 0.06 ± 0.00mgL<sup>-1</sup>, Al, Cr, TC and EC not detected. The best treatment was Cv0.20, which eliminated 99% TN, 72% TP, 95% COD, and 100% TC and EC. This study provides new insights into using different microalgae and dilution rates to produce remediated effluent meeting irrigation standards.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"255-266"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145085905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2026-01-01Epub Date: 2025-09-23DOI: 10.1080/15226514.2025.2562310
Ume Laila, Aisha Nazir, Firdaus-E- Bareen, Muhammad Shafiq, Faiza Irshad
The high content of toxic metals (TMs) in tannery solid waste (TSW) necessitates a synergistic approach for its remediation. The research focused on the derivation of TSW biochar and its autochthonous microbes as an integrated approach for phytoextraction of TMs. For this, TSW autochthonous strains of Bacillus and Trichoderma viride were used alone and in combination with TSW biochar treatments of 2.5, 5, and 10% (w/w), namely; BC1, BC2, BC3. Surface analyses of TSW biochar through SEM and FTIR demonstrated the agglomeration and deposition of inorganic moieties and exchangeable functional sites on the biochar surface. The combined treatment of TSW biochar along with Bacillus and T. viride revealed significantly improved TMs uptake (Cr 540.01 mg kg-1 > Cd 380.44 mg kg-1 > Pb 224.44 mg kg-1) and plant biomass at 10% TSW biochar amendment. However, TMs content was found below the limit of detection (LOD) in seeds of sunflower. Biochemical responses such as total soluble protein content (73.61%), total chlorophyll content (12.69%), catalase (80.66%), and superoxide dismutase (82.31%) were improved under treatment assisted with microbial inoculum as compared to control. This integrated method promotes environmental sustainability and agricultural production by addressing the challenges associated with handling of TSW.
{"title":"Synergistic impact of tannery solid waste derived biochar and autochthonous microbes on metals phytoextraction and stress alleviation in sunflower.","authors":"Ume Laila, Aisha Nazir, Firdaus-E- Bareen, Muhammad Shafiq, Faiza Irshad","doi":"10.1080/15226514.2025.2562310","DOIUrl":"10.1080/15226514.2025.2562310","url":null,"abstract":"<p><p>The high content of toxic metals (TMs) in tannery solid waste (TSW) necessitates a synergistic approach for its remediation. The research focused on the derivation of TSW biochar and its autochthonous microbes as an integrated approach for phytoextraction of TMs. For this, TSW autochthonous strains of <i>Bacillus</i> and <i>Trichoderma viride</i> were used alone and in combination with TSW biochar treatments of 2.5, 5, and 10% (w/w), namely; BC1, BC2, BC3. Surface analyses of TSW biochar through SEM and FTIR demonstrated the agglomeration and deposition of inorganic moieties and exchangeable functional sites on the biochar surface. The combined treatment of TSW biochar along with <i>Bacillus</i> and <i>T. viride</i> revealed significantly improved TMs uptake (Cr 540.01 mg kg<sup>-1</sup> > Cd 380.44 mg kg<sup>-1</sup> > Pb 224.44 mg kg<sup>-1</sup>) and plant biomass at 10% TSW biochar amendment. However, TMs content was found below the limit of detection (LOD) in seeds of sunflower. Biochemical responses such as total soluble protein content (73.61%), total chlorophyll content (12.69%), catalase (80.66%), and superoxide dismutase (82.31%) were improved under treatment assisted with microbial inoculum as compared to control. This integrated method promotes environmental sustainability and agricultural production by addressing the challenges associated with handling of TSW.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"284-294"},"PeriodicalIF":3.1,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145130861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}