Four simple, rapid, accurate, precise, reliable, and economical UV-spectrophotometric methods have been proposed for the determination of tadalafil in bulk and in pharmaceutical formulation. “Method A” is first order derivative UV spectrophotometry using amplitude, “method B” is first order derivative UV spectrophotometry using area under curve technique, “method C” is second order derivative UV spectrophotometry using amplitude, and “method D” is second order derivative UV spectrophotometry using area under curve technique. The developed methods have shown best results in terms of linearity, accuracy, precision, and LOD and LOQ for bulk drug and marketed formulation as well. In N,N-dimethylformamide, tadalafil showed maximum absorbance at 284 nm. For “method A” amplitude was recorded at 297 nm while for “method B” area under curve was integrated in the wavelength range of 290.60–304.40 nm. For “method C” amplitude was measured at 284 nm while for “method D” area under curve was selected in the wavelength range of 280.80–286.20 nm. For methods A and B, tadalafil obeyed Lambert-Beer’s law in the range of 05–50 μg/mL while for “methods C and D”, tadalafil obeyed Lambert-Beer’s law in the range of 20–70 μg/mL, and-for “methods A, B, C, and D” the correlation coefficients were found to be than 0.999.
{"title":"Estimation of Tadalafil Using Derivative Spectrophotometry in Bulk Material and in Pharmaceutical Formulation","authors":"Z. Khan, A. Patil, A. Shirkhedkar","doi":"10.1155/2014/392421","DOIUrl":"https://doi.org/10.1155/2014/392421","url":null,"abstract":"Four simple, rapid, accurate, precise, reliable, and economical UV-spectrophotometric methods have been proposed for the determination of tadalafil in bulk and in pharmaceutical formulation. “Method A” is first order derivative UV spectrophotometry using amplitude, “method B” is first order derivative UV spectrophotometry using area under curve technique, “method C” is second order derivative UV spectrophotometry using amplitude, and “method D” is second order derivative UV spectrophotometry using area under curve technique. The developed methods have shown best results in terms of linearity, accuracy, precision, and LOD and LOQ for bulk drug and marketed formulation as well. In N,N-dimethylformamide, tadalafil showed maximum absorbance at 284 nm. For “method A” amplitude was recorded at 297 nm while for “method B” area under curve was integrated in the wavelength range of 290.60–304.40 nm. For “method C” amplitude was measured at 284 nm while for “method D” area under curve was selected in the wavelength range of 280.80–286.20 nm. For methods A and B, tadalafil obeyed Lambert-Beer’s law in the range of 05–50 μg/mL while for “methods C and D”, tadalafil obeyed Lambert-Beer’s law in the range of 20–70 μg/mL, and-for “methods A, B, C, and D” the correlation coefficients were found to be than 0.999.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"78 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2014-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80833861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FTIR spectroscopy is a promising method for quantification of edible oils. Three edible oils, namely, red fruit oil (RFO), corn oil (CO), and soybean oil (SO), in ternary mixture system were quantitatively analyzed using FTIR spectroscopy in combination with partial least square (PLS). FTIR spectra of edible oils in ternary mixture were subjected to several treatments including normal spectra and their derivative. Using PLS calibration, the first derivative FTIR spectra can be exploited for determination of RFO; meanwhile, the second derivative spectra were preferred for determination of CO and SO. The values obtained for the relationship between actual and FTIR predicted values of RFO, CO, and SO were 0.9863, 0.9276, and 0.9693, respectively. The root mean square error of calibration (RMSEC) values obtained were 1.59, 1.72, and 1.60% (v/v) for RFO, CO, and SO, respectively. The result showed that FTIR spectroscopy offers accurate and reliable technique for quantitative analysis of RFO, CO, and SO simultaneously in ternary mixture systems. Besides, the developed method can be extended for analysis of CO and SO as adulterants in RFO.
{"title":"FTIR Spectroscopy Combined with Partial Least Square for Analysis of Red Fruit Oil in Ternary Mixture System","authors":"A. Rohman, D. L. Setyaningrum, S. Riyanto","doi":"10.1155/2014/785914","DOIUrl":"https://doi.org/10.1155/2014/785914","url":null,"abstract":"FTIR spectroscopy is a promising method for quantification of edible oils. Three edible oils, namely, red fruit oil (RFO), corn oil (CO), and soybean oil (SO), in ternary mixture system were quantitatively analyzed using FTIR spectroscopy in combination with partial least square (PLS). FTIR spectra of edible oils in ternary mixture were subjected to several treatments including normal spectra and their derivative. Using PLS calibration, the first derivative FTIR spectra can be exploited for determination of RFO; meanwhile, the second derivative spectra were preferred for determination of CO and SO. The values obtained for the relationship between actual and FTIR predicted values of RFO, CO, and SO were 0.9863, 0.9276, and 0.9693, respectively. The root mean square error of calibration (RMSEC) values obtained were 1.59, 1.72, and 1.60% (v/v) for RFO, CO, and SO, respectively. The result showed that FTIR spectroscopy offers accurate and reliable technique for quantitative analysis of RFO, CO, and SO simultaneously in ternary mixture systems. Besides, the developed method can be extended for analysis of CO and SO as adulterants in RFO.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"23 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2014-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77408111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study represents simple atomic absorption spectroscopic and spectrophotometric methods for determination of pioglitazone hydrochloride (PGZ-HCl) and carvedilol (CRV) based on formation of ion-pair associates between drugs and inorganic complex, bismuth(III) tetraiodide (Method A) and between drugs and organic acidic dyes, fast green and orange G (Method B). Method A is based on formation of ion-pair associate between drugs and bismuth(III) tetraiodide in acidic medium to form orange-red ion-pair associates, which can be quantitatively determined by two different procedures. The formed ion-pair associate is extracted by methylene chloride, dissolved in acetone, dried, and then decomposed by hydrochloric acid, and bismuth content is determined by direct atomic absorption spectrometric technique (Procedure 1) or extracted by methylene chloride, dissolved in acetone, and quantified spectrophotometrically at 490 nm (Procedure 2). Method B is based on formation of ion-pair associate between drugs and either fast green dye or orange G dye in acidic medium to form ion-pair associates. The formed ion-pair associate is extracted by methylene chloride and quantified spectrophotometrically at 630 nm (for fast green dye method) or 498 nm (for orange G dye method). Optimal experimental conditions have been studied. Both methods are applied for determination of the drugs in tablets without interference.
{"title":"Simple Atomic Absorption Spectroscopic and Spectrophotometric Methods for Determination of Pioglitazone Hydrochloride and Carvedilol in Pharmaceutical Dosage Forms","authors":"A. A. Abdelmonem, G. Ragab, H. Hashem, E. Bahgat","doi":"10.1155/2014/768917","DOIUrl":"https://doi.org/10.1155/2014/768917","url":null,"abstract":"This study represents simple atomic absorption spectroscopic and spectrophotometric methods for determination of pioglitazone hydrochloride (PGZ-HCl) and carvedilol (CRV) based on formation of ion-pair associates between drugs and inorganic complex, bismuth(III) tetraiodide (Method A) and between drugs and organic acidic dyes, fast green and orange G (Method B). Method A is based on formation of ion-pair associate between drugs and bismuth(III) tetraiodide in acidic medium to form orange-red ion-pair associates, which can be quantitatively determined by two different procedures. The formed ion-pair associate is extracted by methylene chloride, dissolved in acetone, dried, and then decomposed by hydrochloric acid, and bismuth content is determined by direct atomic absorption spectrometric technique (Procedure 1) or extracted by methylene chloride, dissolved in acetone, and quantified spectrophotometrically at 490 nm (Procedure 2). Method B is based on formation of ion-pair associate between drugs and either fast green dye or orange G dye in acidic medium to form ion-pair associates. The formed ion-pair associate is extracted by methylene chloride and quantified spectrophotometrically at 630 nm (for fast green dye method) or 498 nm (for orange G dye method). Optimal experimental conditions have been studied. Both methods are applied for determination of the drugs in tablets without interference.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"36 1","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2014-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84115124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Heteronuclear spin interactions in solids and anisotropic liquids can be removed by phase modulated decoupling sequences with frequency sweep, such as -TPPM and its variants. The performance of these sequences in isotropic spin systems with regard to the experimental parameters, phase angle, and decoupler offset is presented here. A comparison is made with other commonly used heteronuclear decoupling schemes in liquids, namely, WALTZ-16, GARP, and MLEV. Also, the trajectories of nuclear magnetization vector of abundant nuclei in a simple spin system during TPPM and -TPPM decoupling sequences are traced out using computer simulations.
{"title":"Two-Pulse Phase Modulation Based Decoupling Schemes for Removing Heteronuclear Spin Interactions in the NMR Spectroscopy ofIsotropic Systems: An Analysis Using Experiments and Numerical Simulations","authors":"Cyril Augustine","doi":"10.1155/2014/641473","DOIUrl":"https://doi.org/10.1155/2014/641473","url":null,"abstract":"Heteronuclear spin interactions in solids and anisotropic liquids can be removed by phase modulated decoupling sequences with frequency sweep, such as -TPPM and its variants. The performance of these sequences in isotropic spin systems with regard to the experimental parameters, phase angle, and decoupler offset is presented here. A comparison is made with other commonly used heteronuclear decoupling schemes in liquids, namely, WALTZ-16, GARP, and MLEV. Also, the trajectories of nuclear magnetization vector of abundant nuclei in a simple spin system during TPPM and -TPPM decoupling sequences are traced out using computer simulations.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"41 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2014-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82636299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A new, simple, precise, accurate, reproducible, and efficient Vierordt’s method or simultaneous equation method was developed and validated for simultaneous estimation of paracetamol and flupirtine maleate in pure and pharmaceutical dosage form. The method was based on the measurement of absorbance at two wavelengths 245 nm and 344.5 nm, of paracetamol and flupiritine maleate in 0.1 N HCl correspondingly. Calibration curves of paracetamol and flupiritine maleate were found to be linear in the concentration ranges of 5–15 μg/mL and 1.53–4.61 μg/mL, respectively, with their correlation coefficient values (R2) 0.999. LOD and LOQ were 185.90 ng/mL and 563.38 ng/mL for paracetamol and 78.89 ng/mL and 239.06 ng/mL for flupiritine maleate. In the precision study, the % RSD value was found within limits (%). The percentage recovery at various concentration levels varied from 99.18 to 100.02% for paracetamol and 98.47 to 100.09% for flupiritine maleate confirming that the projected method is accurate. It could be concluded from the results obtained in the present investigation that this method for simultaneous estimation of paracetamol and flupirtine maleate in pure and tablet dosage form is simple, accurate, precise, and economical. The proposed method can be applied successfully for the simultaneous estimation of paracetamol and flupiritine maleate in pure and pharmaceutical dosage form.
{"title":"New Simple Spectrophotometric Method for the Simultaneous Estimation of Paracetamol and Flupirtine Maleate in Pure and Pharmaceutical Dosage Form","authors":"P. Giriraj, T. Sivakkumar","doi":"10.1155/2014/968420","DOIUrl":"https://doi.org/10.1155/2014/968420","url":null,"abstract":"A new, simple, precise, accurate, reproducible, and efficient Vierordt’s method or simultaneous equation method was developed and validated for simultaneous estimation of paracetamol and flupirtine maleate in pure and pharmaceutical dosage form. The method was based on the measurement of absorbance at two wavelengths 245 nm and 344.5 nm, of paracetamol and flupiritine maleate in 0.1 N HCl correspondingly. Calibration curves of paracetamol and flupiritine maleate were found to be linear in the concentration ranges of 5–15 μg/mL and 1.53–4.61 μg/mL, respectively, with their correlation coefficient values (R2) 0.999. LOD and LOQ were 185.90 ng/mL and 563.38 ng/mL for paracetamol and 78.89 ng/mL and 239.06 ng/mL for flupiritine maleate. In the precision study, the % RSD value was found within limits (%). The percentage recovery at various concentration levels varied from 99.18 to 100.02% for paracetamol and 98.47 to 100.09% for flupiritine maleate confirming that the projected method is accurate. It could be concluded from the results obtained in the present investigation that this method for simultaneous estimation of paracetamol and flupirtine maleate in pure and tablet dosage form is simple, accurate, precise, and economical. The proposed method can be applied successfully for the simultaneous estimation of paracetamol and flupiritine maleate in pure and pharmaceutical dosage form.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"114 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2014-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77712574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sharad V. Lande, Nagesh Sharma, Ajay Kumar, R. Jasra
Colloidal metal nanoparticles are of great interest because of their use as catalysts, photocatalysts, adsorbents, and sensors as well as their application in optical, electronic, and magnetic devices. Supported bimetallic systems represent a large part of heterogeneous catalysts which have been used in various reactions important in the chemical, petrochemical, and oil industry. Pd-Ag bimetallic nanocatalysts have become vitally important in some of the petrochemical industry’s processes like hydrogenation of C2–C5 olefins. A heat-treatment method for the preparation of well-stable Pd-Ag complexes is demonstrated using water, concentrated HCl and concentrated nitric acid as media. The stability and interaction of Pd-Ag complexes were characterized by UV-vis absorption spectroscopy. Pd-Ag bimetallic nanoparticles of spherical cubic and octahedral shape in the range of average particle size of 20–60 nm have been prepared and characterized by transmission electron microscopy (TEM).
{"title":"Spectroscopic Characterization of Stability and Interaction of Pd-Ag Complexes","authors":"Sharad V. Lande, Nagesh Sharma, Ajay Kumar, R. Jasra","doi":"10.1155/2014/314070","DOIUrl":"https://doi.org/10.1155/2014/314070","url":null,"abstract":"Colloidal metal nanoparticles are of great interest because of their use as catalysts, photocatalysts, adsorbents, and sensors as well as their application in optical, electronic, and magnetic devices. Supported bimetallic systems represent a large part of heterogeneous catalysts which have been used in various reactions important in the chemical, petrochemical, and oil industry. Pd-Ag bimetallic nanocatalysts have become vitally important in some of the petrochemical industry’s processes like hydrogenation of C2–C5 olefins. A heat-treatment method for the preparation of well-stable Pd-Ag complexes is demonstrated using water, concentrated HCl and concentrated nitric acid as media. The stability and interaction of Pd-Ag complexes were characterized by UV-vis absorption spectroscopy. Pd-Ag bimetallic nanoparticles of spherical cubic and octahedral shape in the range of average particle size of 20–60 nm have been prepared and characterized by transmission electron microscopy (TEM).","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"2014 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2014-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78190920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Of the various problems in decoupling one nucleus type from another using standard decoupling pulse schemes for broadband decoupling, a particular challenge is to effect full, artifact-free decoupling when the size of the coupling constant is very large. Herein it is demonstrated that 1H decoupling of the 31P NMR spectrum of diethyl phosphonate HP(=O)(OCH2CH3)2 can be accomplished with reduced artifacts despite the large value of 693 Hz by using a combination of decoupling pulse schemes involving continuous-wave (CW) irradiation and either adiabatic-pulse decoupling (APD), MPF decoupling, or traditional composite-pulse decoupling (CPD) schemes such as WALTZ or GARP. The considered strategy is simple, efficient, and easy to implement on most instruments. The best result was attained for a combination of CW and CPD using GARP with a standard pulse width of 60 μs. Altogether, the advantages of the methodology include low power requirements, complete decoupling, tolerance of a range of large values, large bandwidth for normal-sized values, and the suppression of sidebands.
{"title":"The Application of Simple and Easy to Implement Decoupling Pulse Scheme Combinations to Effect Decoupling of Large Values with Reduced Artifacts","authors":"K. Klika","doi":"10.1155/2014/289638","DOIUrl":"https://doi.org/10.1155/2014/289638","url":null,"abstract":"Of the various problems in decoupling one nucleus type from another using standard decoupling pulse schemes for broadband decoupling, a particular challenge is to effect full, artifact-free decoupling when the size of the coupling constant is very large. Herein it is demonstrated that 1H decoupling of the 31P NMR spectrum of diethyl phosphonate HP(=O)(OCH2CH3)2 can be accomplished with reduced artifacts despite the large value of 693 Hz by using a combination of decoupling pulse schemes involving continuous-wave (CW) irradiation and either adiabatic-pulse decoupling (APD), MPF decoupling, or traditional composite-pulse decoupling (CPD) schemes such as WALTZ or GARP. The considered strategy is simple, efficient, and easy to implement on most instruments. The best result was attained for a combination of CW and CPD using GARP with a standard pulse width of 60 μs. Altogether, the advantages of the methodology include low power requirements, complete decoupling, tolerance of a range of large values, large bandwidth for normal-sized values, and the suppression of sidebands.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"49 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2014-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83660922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The development of a meaningful dissolution procedure for drug products with limited water solubility has been a challenge to the pharmaceutical industry. Satranidazole (BCS Class II drug) is a new nitroimidazole derivative with potent antiamoebic action. There is no official dissolution medium available in the literature. In the present study, parameters such as saturation solubility in different pH medium, dissolution behavior of formulations, influence of sink conditions, stability, and discriminatory effect of dissolution testing were studied for the selection of a proper dissolution medium. Results of solubility data revealed that solubility of Satranidazole decreases with an increase in pH. Satranidazole showed better sink condition in 0.1 N HCl as compared to other media. The drug and marketed formulations were stable in the dissolution media used. An agitation speed of 75 rpm showed a more discriminating drug release profile than 50 rpm. Using optimized dissolution parameters (paddle at 75 rpm, 900 mL 0.1 N HCl) greater than 80% of the label amount is released over 60 minutes. UV-spectroscopic method used was validated for the specificity, linearity, precision, robustness, and solution stability. The method was successfully applied to granular formulations and also to marketed tablets containing 300 mg Satranidazole.
开发具有有限水溶性的药品有意义的溶出程序一直是制药工业面临的挑战。Satranidazole (BCS II类药物)是一种新的硝基咪唑衍生物,具有有效的抗阿米巴作用。文献中没有官方的溶解介质。本文研究了不同pH介质的饱和溶解度、配方的溶解行为、沉淀条件的影响、稳定性和溶解试验的判别效应等参数,以选择合适的溶解介质。溶解度数据表明,随着ph的增加,Satranidazole的溶解度降低,在0.1 N HCl中,Satranidazole的沉降条件较其他介质好。该药物和市售制剂在所使用的溶出介质中是稳定的。75转/分的搅拌速度比50转/分的搅拌速度更能鉴别药物释放。使用优化的溶解参数(桨速75 rpm, 900 mL 0.1 N HCl),大于80%的标签量在60分钟内释放。验证了紫外光谱法的特异性、线性度、精密度、鲁棒性和溶液稳定性。该方法成功地应用于颗粒制剂和市场上销售的含有300 mg沙硝唑的片剂。
{"title":"Development and Validation of a Discriminating In Vitro Dissolution Method for Oral Formulations Containing Satranidazole","authors":"H. Pawar, P. Joshi","doi":"10.1155/2014/624635","DOIUrl":"https://doi.org/10.1155/2014/624635","url":null,"abstract":"The development of a meaningful dissolution procedure for drug products with limited water solubility has been a challenge to the pharmaceutical industry. Satranidazole (BCS Class II drug) is a new nitroimidazole derivative with potent antiamoebic action. There is no official dissolution medium available in the literature. In the present study, parameters such as saturation solubility in different pH medium, dissolution behavior of formulations, influence of sink conditions, stability, and discriminatory effect of dissolution testing were studied for the selection of a proper dissolution medium. Results of solubility data revealed that solubility of Satranidazole decreases with an increase in pH. Satranidazole showed better sink condition in 0.1 N HCl as compared to other media. The drug and marketed formulations were stable in the dissolution media used. An agitation speed of 75 rpm showed a more discriminating drug release profile than 50 rpm. Using optimized dissolution parameters (paddle at 75 rpm, 900 mL 0.1 N HCl) greater than 80% of the label amount is released over 60 minutes. UV-spectroscopic method used was validated for the specificity, linearity, precision, robustness, and solution stability. The method was successfully applied to granular formulations and also to marketed tablets containing 300 mg Satranidazole.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"45 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86337096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maillard reaction is a nonenzymatic reaction between reducing sugars and free amino acid moieties, which is known as one of the most important modifications in food science. It is essential to characterize the structure of Amadori rearrangement products (ARPs) formed in the early stage of Maillard reaction. In the present study, the Nα-acetyl-lysine-glucose model had been successfully set up to produce ARP, Nα-acetyl-lysine-glucose. After HPLC purification, ARP had been identified by ESI-MS with intense [M
{"title":"Structural Characterization of Amadori Rearrangement Product of Glucosylated Nα-Acetyl-Lysine by Nuclear Magnetic Resonance Spectroscopy","authors":"Chuanjiang Li, Hui Wang, M. Juárez, E. Ruan","doi":"10.1155/2014/789356","DOIUrl":"https://doi.org/10.1155/2014/789356","url":null,"abstract":"Maillard reaction is a nonenzymatic reaction between reducing sugars and free amino acid moieties, which is known as one of the most important modifications in food science. It is essential to characterize the structure of Amadori rearrangement products (ARPs) formed in the early stage of Maillard reaction. In the present study, the Nα-acetyl-lysine-glucose model had been successfully set up to produce ARP, Nα-acetyl-lysine-glucose. After HPLC purification, ARP had been identified by ESI-MS with intense [M","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"30 15 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2014-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78045275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We investigate the interaction of Ba with the Ni(110) surface at elevated temperatures by means of Auger electron spectroscopy and low energy electron diffraction. The results show that annealing of the substrate causes desorption and ordering of the initially amorphous overlayer, resulting in c and structures. It is observed that the induced ordering crucially affects the lineshape of the double Auger transition line Ba(73 eV)N45O23P1, establishing this line as an index of ordering of the Ba overlayer. The underlying physics of this effect is discussed.
{"title":"The Low Energy Auger Electron Spectroscopy Lines as an Index of the Ba Overlayer Order on the Ni(110) Surface","authors":"D. Vlachos, M. Kamaratos, S. Foulias","doi":"10.1155/2014/289346","DOIUrl":"https://doi.org/10.1155/2014/289346","url":null,"abstract":"We investigate the interaction of Ba with the Ni(110) surface at elevated temperatures by means of Auger electron spectroscopy and low energy electron diffraction. The results show that annealing of the substrate causes desorption and ordering of the initially amorphous overlayer, resulting in c and structures. It is observed that the induced ordering crucially affects the lineshape of the double Auger transition line Ba(73 eV)N45O23P1, establishing this line as an index of ordering of the Ba overlayer. The underlying physics of this effect is discussed.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"54 1","pages":"1-4"},"PeriodicalIF":0.0,"publicationDate":"2014-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74842756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}