R. P. Kengne-Momo, P. Daniel, F. Lagarde, Y. L. Jeyachandran, J. Pilard, Marie-José Durand-Thouand, G. Thouand
Interaction and surface binding characteristics of staphylococcal protein A (SpA) and an anti-Escherichia coli immunoglobulin G (IgG) were studied using the Raman spectroscopy. The tyrosine amino acid residues present in the α-helix structure of SpA were found to be involved in interaction with IgG. In bulk interaction condition the native structure of proteins was almost preserved where interaction-related changes were observed in the overall secondary structure (α-helix) of SpA. In the adsorbed state, the protein structure was largely modified, which allowed the identification of tyrosine amino acids involved in SpA and IgG interaction. This study constitutes a direct Raman spectroscopic investigation of SpA and IgG (receptor-antibody) interaction mechanism in the goal of a future biosensor application for detection of pathogenic microorganisms.
{"title":"Protein Interactions Investigated by the Raman Spectroscopy for Biosensor Applications","authors":"R. P. Kengne-Momo, P. Daniel, F. Lagarde, Y. L. Jeyachandran, J. Pilard, Marie-José Durand-Thouand, G. Thouand","doi":"10.1155/2012/462901","DOIUrl":"https://doi.org/10.1155/2012/462901","url":null,"abstract":"Interaction and surface binding characteristics of staphylococcal protein A (SpA) and an anti-Escherichia coli immunoglobulin G (IgG) were studied using the Raman spectroscopy. The tyrosine amino acid residues present in the α-helix structure of SpA were found to be involved in interaction with IgG. In bulk interaction condition the native structure of proteins was almost preserved where interaction-related changes were observed in the overall secondary structure (α-helix) of SpA. In the adsorbed state, the protein structure was largely modified, which allowed the identification of tyrosine amino acids involved in SpA and IgG interaction. This study constitutes a direct Raman spectroscopic investigation of SpA and IgG (receptor-antibody) interaction mechanism in the goal of a future biosensor application for detection of pathogenic microorganisms.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"77 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2012-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74642269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Tfaili, C. Gobinet, J. Angiboust, M. Manfait, O. Piot
Raman microimaging is a potential analytical technique in health field and presents many possible pharmaceutical applications. In this study, we tested a micrometer spatial resolution probe coupled to a portable Raman imager via an indexed multifiber bundle. At the level of the probe, the fibers were arranged in a circular geometry in order to fit to the pupil of an objective. The imaging potential of this Raman system was assessed on pharmaceutical-like pellets. We showed that this setup permits to record, nearly in real time, Raman images with a micrometer resolution. The collected images revealed a marked heterogeneity in chemicals distribution. Further investigations will be led on cells and biological tissues to evaluate the potential of this Raman imaging device for biomedical applications.
{"title":"Raman Microimaging Using a Novel Multifiber-Based Device: A Feasibility Study on Pharmaceutical Tablets","authors":"S. Tfaili, C. Gobinet, J. Angiboust, M. Manfait, O. Piot","doi":"10.1155/2012/959235","DOIUrl":"https://doi.org/10.1155/2012/959235","url":null,"abstract":"Raman microimaging is a potential analytical technique in health field and presents many possible pharmaceutical applications. In this study, we tested a micrometer spatial resolution probe coupled to a portable Raman imager via an indexed multifiber bundle. At the level of the probe, the fibers were arranged in a circular geometry in order to fit to the pupil of an objective. The imaging potential of this Raman system was assessed on pharmaceutical-like pellets. We showed that this setup permits to record, nearly in real time, Raman images with a micrometer resolution. The collected images revealed a marked heterogeneity in chemicals distribution. Further investigations will be led on cells and biological tissues to evaluate the potential of this Raman imaging device for biomedical applications.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"21 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2012-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75038248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Lee, Tzon Huei Lee, Ching-Tung Lin, Tiffany Chen, P. Lin
The mass spectra of a series of stevioside analogues including the amide and dimer compounds of steviol, isosteviol, and steviolbioside were examined. Positive ion mass spectral fragmentation of new steviol, isosteviol, and steviolbioside amides and the amide dimers are reported and discussed. The techniques included their synthesis procedures, fast-atom bombardment (FAB), and LC/MS/MS mass spectra. Intense [M
{"title":"Mass Spectra Analyses of Amides and Amide Dimers of Steviol, Isosteviol, and Steviolbioside","authors":"L. Lee, Tzon Huei Lee, Ching-Tung Lin, Tiffany Chen, P. Lin","doi":"10.1155/2012/894891","DOIUrl":"https://doi.org/10.1155/2012/894891","url":null,"abstract":"The mass spectra of a series of stevioside analogues including the amide and dimer compounds of steviol, isosteviol, and steviolbioside were examined. Positive ion mass spectral fragmentation of new steviol, isosteviol, and steviolbioside amides and the amide dimers are reported and discussed. The techniques included their synthesis procedures, fast-atom bombardment (FAB), and LC/MS/MS mass spectra. Intense [M","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"66 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2012-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91554680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Intramolecular mobility of positive charge carriers in conjugated polymer films based on dithieno [2,3- b: 2 , 3 - d] pyrrole (DTP) is studied by time-resolved microwave conductivity (TRMC). A series of DTP homopolymer and copolymers combined with phenyl, 2, 2 -biphenyl, thiophene, 2, 2 -bithiophene, and 9, 9 -dioctylfluorene were synthesized by Suzuki-Miyaura and Yamamoto coupling reactions. Polymers containing DTP unit are reported to show high value of hole mobility measured by FET method, and this type of polymers is expected to have stable HOMO orbitals which are important for hole transportation. Among these copolymers, DTP coupled with 9, 9 -dioctylfluorene copolymer showed the highest charge carrier mobility as high as 1.7 cm 2/Vs, demonstrating an excellent electrical property on rigid copolymer backbones.
利用时间分辨微波电导率(TRMC)研究了二噻吩[2,3- b: 2,3- d]吡咯(DTP)共轭聚合物膜中正电荷载流子的分子内迁移率。通过Suzuki-Miyaura和Yamamoto偶联反应,合成了一系列与苯基、2,2-联苯、噻吩、2,2-二噻吩和9,9-二辛基芴结合的DTP均聚物和共聚物。据报道,含有DTP单元的聚合物显示出高的空穴迁移率,并且这类聚合物有望具有稳定的HOMO轨道,这对空穴迁移至关重要。在这些共聚物中,DTP与9,9-二辛基氟共聚物偶联的载流子迁移率最高,高达1.7 cm 2/Vs,在刚性共聚物骨架上表现出优异的电学性能。
{"title":"Effects of Molecular Structure on Intramolecular Charge Carrier Transport in Dithieno [3,2-b: 2,3-d] Pyrrole-Based Conjugated Copolymers","authors":"Yoshihito Honsho, A. Saeki, S. Seki","doi":"10.1155/2012/983523","DOIUrl":"https://doi.org/10.1155/2012/983523","url":null,"abstract":"Intramolecular mobility of positive charge carriers in conjugated polymer films based on dithieno [2,3- b: 2 , 3 - d] pyrrole (DTP) is studied by time-resolved microwave conductivity (TRMC). A series of DTP homopolymer and copolymers combined with phenyl, 2, 2 -biphenyl, thiophene, 2, 2 -bithiophene, and 9, 9 -dioctylfluorene were synthesized by Suzuki-Miyaura and Yamamoto coupling reactions. Polymers containing DTP unit are reported to show high value of hole mobility measured by FET method, and this type of polymers is expected to have stable HOMO orbitals which are important for hole transportation. Among these copolymers, DTP coupled with 9, 9 -dioctylfluorene copolymer showed the highest charge carrier mobility as high as 1.7 cm 2/Vs, demonstrating an excellent electrical property on rigid copolymer backbones.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"12 2 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2012-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79353989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z. Karpas, G. Cohen, E. Atweh, G. Barnard, M. Golan
Vaginal infections (vaginosis) globally affect more than 15% of the female population of reproductive age. However, diagnosis of vaginosis and differentiating between the three common types: bacterial vaginosis (BV), vulvovaginal candidiasis (VVC), and trichomoniasis are challenging. Elevated levels of the biogenic amines, trimethylamine (TMA), putrescine, and cadaverine have been found in vaginal discharge fluid of women with vaginosis. Ion mobility spectrometry (IMS) is particularly suitable for measurement of amines even in complex biological matrices due to their high proton affinity and has been shown to be suitable for the diagnosis of vaginal infections. Recent developments that have increased the accuracy of the technique for diagnosis of BV and simplified sample introduction are described here.
{"title":"Recent Applications of Ion Mobility Spectrometry in Diagnosis of Vaginal Infections","authors":"Z. Karpas, G. Cohen, E. Atweh, G. Barnard, M. Golan","doi":"10.1155/2012/323859","DOIUrl":"https://doi.org/10.1155/2012/323859","url":null,"abstract":"Vaginal infections (vaginosis) globally affect more than 15% of the female population of reproductive age. However, diagnosis of vaginosis and differentiating between the three common types: bacterial vaginosis (BV), vulvovaginal candidiasis (VVC), and trichomoniasis are challenging. Elevated levels of the biogenic amines, trimethylamine (TMA), putrescine, and cadaverine have been found in vaginal discharge fluid of women with vaginosis. Ion mobility spectrometry (IMS) is particularly suitable for measurement of amines even in complex biological matrices due to their high proton affinity and has been shown to be suitable for the diagnosis of vaginal infections. Recent developments that have increased the accuracy of the technique for diagnosis of BV and simplified sample introduction are described here.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"50 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2012-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78276430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. L. Ramírez-Cedeño, Natalie Gaensbauer, Hilsamar Félix-Rivera, W. Ortiz-Rivera, L. Pacheco‐Londoño, S. Hernández‐Rivera
Raman spectroscopy has been widely proposed as a technique to nondestructively and noninvasively interrogate the contents of glass and plastic bottles. In this work, Raman spectroscopy is used in a concealed threat scenario where hazardous liquids have been intentionally mixed with common consumer products to mask its appearance or spectra. The hazardous liquids under consideration included the chemical warfare agent (CWA) simulant triethyl phosphate (TEP), hydrogen peroxide, and acetone as representative of toxic industrial compounds (TICs). Fiber optic coupled Raman spectroscopy (FOCRS) and partial least squares (PLS) algorithm analysis were used to quantify hydrogen peroxide in whiskey, acetone in perfume, and TEP in colored beverages. Spectral data was used to evaluate if the hazardous liquids can be successfully concealed in consumer products. Results demonstrated that FOC-RS systems were able to discriminate between nonhazardous consumer products and mixtures with hazardous materials at concentrations lower than 5%.
{"title":"Fiber Optic Coupled Raman Based Detection of Hazardous Liquids Concealed in Commercial Products","authors":"M. L. Ramírez-Cedeño, Natalie Gaensbauer, Hilsamar Félix-Rivera, W. Ortiz-Rivera, L. Pacheco‐Londoño, S. Hernández‐Rivera","doi":"10.1155/2012/463731","DOIUrl":"https://doi.org/10.1155/2012/463731","url":null,"abstract":"Raman spectroscopy has been widely proposed as a technique to nondestructively and noninvasively interrogate the contents of glass and plastic bottles. In this work, Raman spectroscopy is used in a concealed threat scenario where hazardous liquids have been intentionally mixed with common consumer products to mask its appearance or spectra. The hazardous liquids under consideration included the chemical warfare agent (CWA) simulant triethyl phosphate (TEP), hydrogen peroxide, and acetone as representative of toxic industrial compounds (TICs). Fiber optic coupled Raman spectroscopy (FOCRS) and partial least squares (PLS) algorithm analysis were used to quantify hydrogen peroxide in whiskey, acetone in perfume, and TEP in colored beverages. Spectral data was used to evaluate if the hazardous liquids can be successfully concealed in consumer products. Results demonstrated that FOC-RS systems were able to discriminate between nonhazardous consumer products and mixtures with hazardous materials at concentrations lower than 5%.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"60 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2012-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75198372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Resonance-enhanced Raman spectroscopy has been used to perform standoff measurements on nitromethane (NM), 2,4-DNT, and 2,4,6-TNT in vapor phase. The Raman cross sections for NM, DNT, and TNT in vapor phase have been measured in the wavelength range 210–300 nm under laboratory conditions, in order to estimate how large resonance enhancement factors can be achieved for these explosives. The results show that the signal is enhanced up to 250,000 times for 2,4-DNT and up to 60,000 times for 2,4,6-TNT compared to the nonresonant signal at 532 nm. Realistic outdoor measurements on NM in vapor phase at 13 m distance were also performed, which indicate a potential for resonance Raman spectroscopy as a standoff technique for detection of vapor phase explosives. In addition, the Raman spectra of acetone, ethanol, and methanol were measured at the same wavelengths, and their influence on the spectrum from NM was investigated.
{"title":"Resonance-Enhanced Raman Spectroscopy on Explosives Vapor at Standoff Distances","authors":"A. Ehlerding, I. Johansson, S. Wallin, H. Östmark","doi":"10.1155/2012/158715","DOIUrl":"https://doi.org/10.1155/2012/158715","url":null,"abstract":"Resonance-enhanced Raman spectroscopy has been used to perform standoff measurements on nitromethane (NM), 2,4-DNT, and 2,4,6-TNT in vapor phase. The Raman cross sections for NM, DNT, and TNT in vapor phase have been measured in the wavelength range 210–300 nm under laboratory conditions, in order to estimate how large resonance enhancement factors can be achieved for these explosives. The results show that the signal is enhanced up to 250,000 times for 2,4-DNT and up to 60,000 times for 2,4,6-TNT compared to the nonresonant signal at 532 nm. Realistic outdoor measurements on NM in vapor phase at 13 m distance were also performed, which indicate a potential for resonance Raman spectroscopy as a standoff technique for detection of vapor phase explosives. In addition, the Raman spectra of acetone, ethanol, and methanol were measured at the same wavelengths, and their influence on the spectrum from NM was investigated.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"81 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2012-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83975825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Bergeron, Etienne Perrier, A. Potier, G. Delmas
The calorimetric and infrared (IR) spectroscopy measurements of polyethylene oxide (PEO) are used to evaluate the deformation and relaxation that films experience during a temperature cycle (30°C–90°C–30°C). After melting, the intensity of some bands decreases by 10 to 70%. During the temperature cycle, the C–O band in the 1100 cm−1 region and the C–C–O deformation bands at 650 and 500 cm−1 show some new features. A network of cooperative oxygen-hydrogen interactions between the PEO chains form in films with special history, namely, in thermally treated films, in thin films prepared from gel forming solutions, and in thick films after aging. The interchain interaction network is suggested from the IR absorption bands in the 1200 and 900 cm−1 region and also from small bands at 1144 and 956 cm−1. The network seems absent or reduced in thin films. IR spectroscopy appears a sensitive technique to study chain conformations in PEO films and in other materials where order, disorder, and the formation of intermolecular interactions coexist.
{"title":"A Study of the Deformation, Network, and Aging of Polyethylene Oxide Films by Infrared Spectroscopy and Calorimetric Measurements","authors":"C. Bergeron, Etienne Perrier, A. Potier, G. Delmas","doi":"10.1155/2012/432046","DOIUrl":"https://doi.org/10.1155/2012/432046","url":null,"abstract":"The calorimetric and infrared (IR) spectroscopy measurements of polyethylene oxide (PEO) are used to evaluate the deformation and relaxation that films experience during a temperature cycle (30°C–90°C–30°C). After melting, the intensity of some bands decreases by 10 to 70%. During the temperature cycle, the C–O band in the 1100 cm−1 region and the C–C–O deformation bands at 650 and 500 cm−1 show some new features. A network of cooperative oxygen-hydrogen interactions between the PEO chains form in films with special history, namely, in thermally treated films, in thin films prepared from gel forming solutions, and in thick films after aging. The interchain interaction network is suggested from the IR absorption bands in the 1200 and 900 cm−1 region and also from small bands at 1144 and 956 cm−1. The network seems absent or reduced in thin films. IR spectroscopy appears a sensitive technique to study chain conformations in PEO films and in other materials where order, disorder, and the formation of intermolecular interactions coexist.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"396 1","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2012-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80717105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. V. García-Meza, R. H. Lara, H. Navarro‐Contreras
We report the application of confocal laser scanning microscopy CLSM and Raman spectroscopy on the (bio)chemical oxidation of pyrite and chalcopyrite, in order to understand how surface sulfur species (S𝑛2−/S0) affects biofilm evolution during mineral colonization by Acidithiobacillus thiooxidans. We found that cells attachment occurs as cells clusters and monolayered biofilms within the first 12 h. Longer times resulted in the formation of micro- and macrocolonies with variable cell density and higher epifluorescence signal of the extracellular polymeric substances (EPS), indicating double dynamic activity of A. thiooxidans: sulfur biooxidation and biofilm formation. Raman spectra indicated S𝑛2−/S0 consumption modification during biofilm evolution. Hence, cell density increase was primarily associated with the presence of S0; the presence of refractory sulfur species on the mineral surfaces does not to affect biofilm evolution. The EPS of the biofilms was mainly composed of extracellular hydrophobic compounds (vr. gr. lipids) and a minor content of hydrophilic exopolysaccharides, suggesting a hydrophobic interaction between attached cells and the altered pyrite and chalcopyrite.
{"title":"Application of Raman Spectroscopy to the Biooxidation Analysis of Sulfide Minerals","authors":"J. V. García-Meza, R. H. Lara, H. Navarro‐Contreras","doi":"10.1155/2012/501706","DOIUrl":"https://doi.org/10.1155/2012/501706","url":null,"abstract":"We report the application of confocal laser scanning microscopy CLSM and Raman spectroscopy on the (bio)chemical oxidation of pyrite and chalcopyrite, in order to understand how surface sulfur species (S𝑛2−/S0) affects biofilm evolution during mineral colonization by Acidithiobacillus thiooxidans. We found that cells attachment occurs as cells clusters and monolayered biofilms within the first 12 h. Longer times resulted in the formation of micro- and macrocolonies with variable cell density and higher epifluorescence signal of the extracellular polymeric substances (EPS), indicating double dynamic activity of A. thiooxidans: sulfur biooxidation and biofilm formation. Raman spectra indicated S𝑛2−/S0 consumption modification during biofilm evolution. Hence, cell density increase was primarily associated with the presence of S0; the presence of refractory sulfur species on the mineral surfaces does not to affect biofilm evolution. The EPS of the biofilms was mainly composed of extracellular hydrophobic compounds (vr. gr. lipids) and a minor content of hydrophilic exopolysaccharides, suggesting a hydrophobic interaction between attached cells and the altered pyrite and chalcopyrite.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"6 4 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2012-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79514123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present results from mass spectrometric analysis of NIST standard materials and meteoritic samples conducted by a miniaturised laser ablation mass spectrometer designed for space research. The mass analyser supports investigation with a mass resolution ( 𝑚 / Δ 𝑚 ) ≈ 500–600 and dynamic range within seven decades. Nevertheless, to maintain an optimal spectral quality laser irradiances lower than ~1 GW/cm 2 are applied so far which results in a spread of RSC values. To achieve the quantitative performance of mass analyser, various effects influencing RSC factors have to be investigated. In this paper we investigate influence of laser irradiance, sampling procedure and plasma chemistry on the quantitative elemental and isotopic analysis. The studies indicate necessity for accurate control of laser characteristics and acquisition procedure. A relatively low irradiance applied causes a negligible sample damage and allows for accumulation of large number of waveforms from one sample location. The procedure yields statistically well averaged data and allows a sensitive in-depth analysis. The quantitative analyses of isotopic composition can be performed with accuracy and precision better as 1% and 2%, for isotopic patterns of elements and clusters, respectively. The numerical integration methods would be preferred to achieve more accurate results. The measurements of Allende sample yield detection of Pb isotopic pattern, nevertheless cluster species are readily observed in spectrum and make the elemental analysis of other trace elements difficult due to isobaric interferences. These detections are of a considerable interest because of possible application of the instrument for in situ elemental and isotopic analysis and radiometric dating of solids.
{"title":"On Applicability of a Miniaturised Laser Ablation Time of Flight Mass Spectrometer for Trace Elements Measurements","authors":"M. Tulej, A. Riedo, M. Iakovleva, P. Wurz","doi":"10.1155/2012/234949","DOIUrl":"https://doi.org/10.1155/2012/234949","url":null,"abstract":"We present results from mass spectrometric analysis of NIST standard materials and meteoritic samples conducted by a miniaturised laser ablation mass spectrometer designed for space research. The mass analyser supports investigation with a mass resolution ( 𝑚 / Δ 𝑚 ) ≈ 500–600 and dynamic range within seven decades. Nevertheless, to maintain an optimal spectral quality laser irradiances lower than ~1 GW/cm 2 are applied so far which results in a spread of RSC values. To achieve the quantitative performance of mass analyser, various effects influencing RSC factors have to be investigated. In this paper we investigate influence of laser irradiance, sampling procedure and plasma chemistry on the quantitative elemental and isotopic analysis. The studies indicate necessity for accurate control of laser characteristics and acquisition procedure. A relatively low irradiance applied causes a negligible sample damage and allows for accumulation of large number of waveforms from one sample location. The procedure yields statistically well averaged data and allows a sensitive in-depth analysis. The quantitative analyses of isotopic composition can be performed with accuracy and precision better as 1% and 2%, for isotopic patterns of elements and clusters, respectively. The numerical integration methods would be preferred to achieve more accurate results. The measurements of Allende sample yield detection of Pb isotopic pattern, nevertheless cluster species are readily observed in spectrum and make the elemental analysis of other trace elements difficult due to isobaric interferences. These detections are of a considerable interest because of possible application of the instrument for in situ elemental and isotopic analysis and radiometric dating of solids.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"63 1","pages":"1-14"},"PeriodicalIF":0.0,"publicationDate":"2012-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81082248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}