Indirect spectrophotometric method is described for quantification of five of 1,4-dihydropyridine (1,4-DHP) drugs using N-bromosuccinimide (NBS) with the aid of indigo carmine (INC) dye. The method is based on addition of known excess of NBS to an acidified solution of 1,4-DHP drugs and determining the residual of NBS through its ability to bleach the colour of the used dye; the amount of NBS that reacted corresponded to the amount of drugs. Beer’s law is obeyed in the concentration range 1.25–13.00 μg/mL. Good correlation coefficients (0.998-0.999) were found between the absorbance values and the corresponding concentrations. Limits of detections ranged from 0.141 to 0.500 μg/mL. The proposed method was successfully applied to the analysis of dosage forms; percent of recoveries ranged from 97.31 to 99.46% without interference from any common excipients. The statistical comparison by Student’s t-test and variance ratio F-test showed no significant difference between the proposed and official or reported methods.
{"title":"Spectrophotometric Method for Determination of Five 1,4-Dihydropyridine Drugs Using N-Bromosuccinimide and Indigo Carmine Dye","authors":"M. Hamd, S. M. Derayea, O. Abdelmageed, H. Askal","doi":"10.1155/2013/243059","DOIUrl":"https://doi.org/10.1155/2013/243059","url":null,"abstract":"Indirect spectrophotometric method is described for quantification of five of 1,4-dihydropyridine (1,4-DHP) drugs using N-bromosuccinimide (NBS) with the aid of indigo carmine (INC) dye. The method is based on addition of known excess of NBS to an acidified solution of 1,4-DHP drugs and determining the residual of NBS through its ability to bleach the colour of the used dye; the amount of NBS that reacted corresponded to the amount of drugs. Beer’s law is obeyed in the concentration range 1.25–13.00 μg/mL. Good correlation coefficients (0.998-0.999) were found between the absorbance values and the corresponding concentrations. Limits of detections ranged from 0.141 to 0.500 μg/mL. The proposed method was successfully applied to the analysis of dosage forms; percent of recoveries ranged from 97.31 to 99.46% without interference from any common excipients. The statistical comparison by Student’s t-test and variance ratio F-test showed no significant difference between the proposed and official or reported methods.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"12 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2013-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82427629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Milošević, M. Logar, A. V. Poharc-Logar, N. Jaksic
The crystallographic directions of the crystal toward the vector of polarized light can accurately be positioned, so the information that we gain from polarized spectra can be consistently interpreted according to known crystal structure. The orientation and optical properties of the methylene blue (MB) crystals were analyzed by XRD, XRPD, and polarized VIS-NIR spectroscopy. Cationic dye, MB, was polymerized into crystals on a glass slate. The blue color crystals showed pronounced dichroism, twin lamellar structure and bladed to fibrous habit. According to XRD data, [010] direction lies perpendicular to the crystal surface, so we recognized it as (0k0) face, while [100] and [001] directions coincide with crystal elongation and crystal thickness respectively. In this paper, the polarized spectra of MB crystal are presented, measured with the aim of acquisition of referent values, which could be helpful for the identification of MB molecular aggregation.
{"title":"Orientation and Optical Polarized Spectra (380–900 nm) of Methylene Blue Crystals on a Glass Surface","authors":"M. Milošević, M. Logar, A. V. Poharc-Logar, N. Jaksic","doi":"10.1155/2013/923739","DOIUrl":"https://doi.org/10.1155/2013/923739","url":null,"abstract":"The crystallographic directions of the crystal toward the vector of polarized light can accurately be positioned, so the information that we gain from polarized spectra can be consistently interpreted according to known crystal structure. The orientation and optical properties of the methylene blue (MB) crystals were analyzed by XRD, XRPD, and polarized VIS-NIR spectroscopy. Cationic dye, MB, was polymerized into crystals on a glass slate. The blue color crystals showed pronounced dichroism, twin lamellar structure and bladed to fibrous habit. According to XRD data, [010] direction lies perpendicular to the crystal surface, so we recognized it as (0k0) face, while [100] and [001] directions coincide with crystal elongation and crystal thickness respectively. In this paper, the polarized spectra of MB crystal are presented, measured with the aim of acquisition of referent values, which could be helpful for the identification of MB molecular aggregation.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"19 1","pages":"152-157"},"PeriodicalIF":0.0,"publicationDate":"2013-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89076789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Parmar, S. Baldania, D. Shah, U. Chhalotiya, N. Parmar
A simple, precise, accurate, and economical spectrophotometric method has been developed for simultaneous estimation of levocetirizine dihydrochloride (LCT) and phenylephrine hydrochloride (PHE) by employing first-order derivative spectrophotometric method. The first-order derivative absorption at 240 nm (zero crossing point of PHE) was used for quantification of LCT and 283.2 nm (zero crossing point of LCT) for quantification of PHE. The linearity was established over the concentration range of 4–24 μg/mL and 8–48 μg/mL for LCT and PHE with correlation coefficients () 0.9964 and 0.9972, respectively. The mean % recoveries were found to be in the range of 99.14%–100.43% for LCT and 98.73%–100.83% for PHE. The proposed method has been validated as per ICH guideline and successfully applied for the simultaneous estimation of LCT and PHE in combined tablet dosage form.
{"title":"Development and Validation of First-Order Derivative Spectrophotometry for Simultaneous Determination of Levocetirizine Dihydrochloride and Phenylephrine Hydrochloride in Pharmaceutical Dosage Form","authors":"K. Parmar, S. Baldania, D. Shah, U. Chhalotiya, N. Parmar","doi":"10.1155/2013/502310","DOIUrl":"https://doi.org/10.1155/2013/502310","url":null,"abstract":"A simple, precise, accurate, and economical spectrophotometric method has been developed for simultaneous estimation of levocetirizine dihydrochloride (LCT) and phenylephrine hydrochloride (PHE) by employing first-order derivative spectrophotometric method. The first-order derivative absorption at 240 nm (zero crossing point of PHE) was used for quantification of LCT and 283.2 nm (zero crossing point of LCT) for quantification of PHE. The linearity was established over the concentration range of 4–24 μg/mL and 8–48 μg/mL for LCT and PHE with correlation coefficients () 0.9964 and 0.9972, respectively. The mean % recoveries were found to be in the range of 99.14%–100.43% for LCT and 98.73%–100.83% for PHE. The proposed method has been validated as per ICH guideline and successfully applied for the simultaneous estimation of LCT and PHE in combined tablet dosage form.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2013-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88530935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
From the four high-resolution FTIR absorbance spectra recorded at a spectral resolution of 0.0063 cm−1, 123 line intensities belonging to the band of 12C2H4 were measured and fit. The upper state rovibrational constants up to sextic terms determined using a Watson's -reduced Hamiltonian model in representation were used to calculate the line intensities of the band. Results of the experimental fit of the line intensities agree well with those obtained by calculations.
{"title":"Line Intensity Measurements of the Band of Ethylene (12C2H4)","authors":"G. Lebron, T. L. Tan","doi":"10.1155/2013/492092","DOIUrl":"https://doi.org/10.1155/2013/492092","url":null,"abstract":"From the four high-resolution FTIR absorbance spectra recorded at a spectral resolution of 0.0063 cm−1, 123 line intensities belonging to the band of 12C2H4 were measured and fit. The upper state rovibrational constants up to sextic terms determined using a Watson's -reduced Hamiltonian model in representation were used to calculate the line intensities of the band. Results of the experimental fit of the line intensities agree well with those obtained by calculations.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"55 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2013-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86402693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Wernitz, C. Eichhorn, T. Marynowski, G. Herdrich
For atmospheric reentries at high enthalpies ablative heat shield materials are used, such as those for probes entering the atmosphere of Saturn’s moon Titan, such as Cassini-Huygens in December, 2004. The characterization of such materials in a nitrogen/methane atmosphere is of interest. A European ablative material, AQ60, has been investigated in plasma wind tunnel tests at the IRS plasma wind tunnel PWK1 using the magnetoplasma dynamic generator RD5 as plasma source in a nitrogen/methane atmosphere. The dimensions of the samples are 45 mm in length with a diameter of 39 mm. The actual ablator has a thickness of 40 mm. The ablator is mounted on an aluminium substructure. The experiments were conducted at two different heat flux regimes, 1.4 MW/m2 and 0.3 MW/m2. In this paper, results of emission spectroscopy at these plasma conditions in terms of plasma species’ temperatures will be presented, including the investigation of the free-stream species, N2 and , and the major erosion product C2, at a wavelength range around 500 nm–600 nm.
{"title":"Plasma Wind Tunnel Investigation of European Ablators in Nitrogen/Methane Using Emission Spectroscopy","authors":"R. Wernitz, C. Eichhorn, T. Marynowski, G. Herdrich","doi":"10.1155/2013/764321","DOIUrl":"https://doi.org/10.1155/2013/764321","url":null,"abstract":"For atmospheric reentries at high enthalpies ablative heat shield materials are used, such as those for probes entering the atmosphere of Saturn’s moon Titan, such as Cassini-Huygens in December, 2004. The characterization of such materials in a nitrogen/methane atmosphere is of interest. A European ablative material, AQ60, has been investigated in plasma wind tunnel tests at the IRS plasma wind tunnel PWK1 using the magnetoplasma dynamic generator RD5 as plasma source in a nitrogen/methane atmosphere. The dimensions of the samples are 45 mm in length with a diameter of 39 mm. The actual ablator has a thickness of 40 mm. The ablator is mounted on an aluminium substructure. The experiments were conducted at two different heat flux regimes, 1.4 MW/m2 and 0.3 MW/m2. In this paper, results of emission spectroscopy at these plasma conditions in terms of plasma species’ temperatures will be presented, including the investigation of the free-stream species, N2 and , and the major erosion product C2, at a wavelength range around 500 nm–600 nm.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"32 1","pages":"138-146"},"PeriodicalIF":0.0,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85475120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Briauna Hawthorne, Haiyan Fan-Hagenstein, Elizabeth D. Wood, Jessica M. Smith, T. Hanks
Halogen bonding between pyridine and heptafluoro-2-iodopropane (iso-C3F7I)/heptafluoro-1-iodopropane (1-C3F7I) was studied using a combination of FTIR and 19F NMR. The ring breathing vibration of pyridine underwent a blue shift upon the formation of halogen bonds with both iso-C3F7I and 1-C3F7I. The magnitudes of the shifts and the equilibrium constants for the halogen-bonded complex formation were found to depend not only on the structure of the halocarbon, but also on the solvent. The halogen bond also affected the Cα-F (C-F bond on the center carbon) bending and stretching vibrations in iso-C3F7I. These spectroscopic effects show some solvent dependence, but more importantly, they suggest the possibility of intermolecular halogen bonding among iso-C3F7I molecules. The systems were also examined by 19F NMR in various solvents (cyclohexane, hexane, chloroform, acetone, and acetonitrile). NMR dilution experiments support the existence of the intermolecular self-halogen bonding in both iso-C3F7I and 1-C3F7I. The binding constants for the pyridine/perfluoroalkyl iodide halogen bonding complexes formed in various solvents were obtained through NMR titration experiments. Quantum chemical calculations were used to support the FTIR and 19F NMR observations.
{"title":"Study of the Halogen Bonding between Pyridine and Perfluoroalkyl Iodide in Solution Phase Using the Combination of FTIR and 19F NMR","authors":"Briauna Hawthorne, Haiyan Fan-Hagenstein, Elizabeth D. Wood, Jessica M. Smith, T. Hanks","doi":"10.1155/2013/216518","DOIUrl":"https://doi.org/10.1155/2013/216518","url":null,"abstract":"Halogen bonding between pyridine and heptafluoro-2-iodopropane (iso-C3F7I)/heptafluoro-1-iodopropane (1-C3F7I) was studied using a combination of FTIR and 19F NMR. The ring breathing vibration of pyridine underwent a blue shift upon the formation of halogen bonds with both iso-C3F7I and 1-C3F7I. The magnitudes of the shifts and the equilibrium constants for the halogen-bonded complex formation were found to depend not only on the structure of the halocarbon, but also on the solvent. The halogen bond also affected the Cα-F (C-F bond on the center carbon) bending and stretching vibrations in iso-C3F7I. These spectroscopic effects show some solvent dependence, but more importantly, they suggest the possibility of intermolecular halogen bonding among iso-C3F7I molecules. The systems were also examined by 19F NMR in various solvents (cyclohexane, hexane, chloroform, acetone, and acetonitrile). NMR dilution experiments support the existence of the intermolecular self-halogen bonding in both iso-C3F7I and 1-C3F7I. The binding constants for the pyridine/perfluoroalkyl iodide halogen bonding complexes formed in various solvents were obtained through NMR titration experiments. Quantum chemical calculations were used to support the FTIR and 19F NMR observations.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"2013 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2013-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91381436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Modi, N. H. Vasoya, V. Lakhani, T. K. Pathak, P. Nambissan
Positron lifetime and Doppler broadening measurements were carried out on nanocrystalline (grain size ~60–65 nm) samples of the Cr3
对Cr3纳米晶(粒径~60 ~ 65 nm)样品进行了正电子寿命和多普勒展宽测量
{"title":"Crystal Defects and Cation Redistribution Study on Nanocrystalline Cobalt-Ferri-Chromites by Positron Annihilation Spectroscopy","authors":"K. Modi, N. H. Vasoya, V. Lakhani, T. K. Pathak, P. Nambissan","doi":"10.1155/2013/272846","DOIUrl":"https://doi.org/10.1155/2013/272846","url":null,"abstract":"Positron lifetime and Doppler broadening measurements were carried out on nanocrystalline (grain size ~60–65 nm) samples of the Cr3","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"50 2 1","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2013-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89271646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Classification and prediction problems using spectral data lead to high-dimensional data sets. Spectral data are, however, different from most other high-dimensional data sets in that information usually varies smoothly with wavelength, suggesting that fitted models should also vary smoothly with wavelength. Functional data analysis, widely used in the analysis of spectral data, meets this objective by changing perspective from the raw spectra to approximations using smooth basis functions. This paper explores linear regression and linear discriminant analysis fitted directly to the spectral data, imposing penalties on the values and roughness of the fitted coefficients, and shows by example that this can lead to better fits than existing standard methodologies.
{"title":"Smoothed Linear Modeling for Smooth Spectral Data","authors":"D. Hawkins, Edgard M. Maboudou-Tchao","doi":"10.1155/2013/604548","DOIUrl":"https://doi.org/10.1155/2013/604548","url":null,"abstract":"Classification and prediction problems using spectral data lead to high-dimensional data sets. Spectral data are, however, different from most other high-dimensional data sets in that information usually varies smoothly with wavelength, suggesting that fitted models should also vary smoothly with wavelength. Functional data analysis, widely used in the analysis of spectral data, meets this objective by changing perspective from the raw spectra to approximations using smooth basis functions. This paper explores linear regression and linear discriminant analysis fitted directly to the spectral data, imposing penalties on the values and roughness of the fitted coefficients, and shows by example that this can lead to better fits than existing standard methodologies.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"108 1","pages":"108-115"},"PeriodicalIF":0.0,"publicationDate":"2013-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78076356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Wagner, B. Steen, G. Johansson, E. Zanghellini, P. Jacobsson, P. Johansson
Anthropogenic emissions of carbon dioxide (CO2) have been identified as a major contributor to climate change. An attractive approach to tackle the increasing levels of CO2 in the atmosphere is direct extraction via absorption of CO2 from ambient air, to be subsequently desorbed and processed under controlled conditions. The feasibility of this approach depends on the sorbent material that should combine a long lifetime with nontoxicity, high selectivity for CO2, and favorable thermodynamic cycling properties. Adsorbents based on pore-expanded mesoporous silica grafted with amines have previously been found to combine high CO2 adsorption capacity at low partial pressures with operational stability under highly defined laboratory conditions. Here we examine the real potential and functionality of these materials by using more realistic conditions using both pure CO2, synthetic air, and, most importantly, ambient air. Through a combination of thermogravimetric analysis and Fourier transform infrared (TGA-FTIR) spectroscopy we address the primary functionality and by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy the observed degradation of the material on a molecular level.
{"title":"Carbon Dioxide Capture from Ambient Air Using Amine-Grafted Mesoporous Adsorbents","authors":"A. Wagner, B. Steen, G. Johansson, E. Zanghellini, P. Jacobsson, P. Johansson","doi":"10.1155/2013/690186","DOIUrl":"https://doi.org/10.1155/2013/690186","url":null,"abstract":"Anthropogenic emissions of carbon dioxide (CO2) have been identified as a major contributor to climate change. An attractive approach to tackle the increasing levels of CO2 in the atmosphere is direct extraction via absorption of CO2 from ambient air, to be subsequently desorbed and processed under controlled conditions. The feasibility of this approach depends on the sorbent material that should combine a long lifetime with nontoxicity, high selectivity for CO2, and favorable thermodynamic cycling properties. Adsorbents based on pore-expanded mesoporous silica grafted with amines have previously been found to combine high CO2 adsorption capacity at low partial pressures with operational stability under highly defined laboratory conditions. Here we examine the real potential and functionality of these materials by using more realistic conditions using both pure CO2, synthetic air, and, most importantly, ambient air. Through a combination of thermogravimetric analysis and Fourier transform infrared (TGA-FTIR) spectroscopy we address the primary functionality and by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy the observed degradation of the material on a molecular level.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"93 1","pages":"116-123"},"PeriodicalIF":0.0,"publicationDate":"2013-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74985932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Jumeau, P. Bourson, M. Ferriol, F. Lahure, M. Ponçot, A. Dahoun
The possibilities of applications of vibrational spectroscopy techniques (Raman spectroscopy) in the analysis and characterization of polymers are more and more used and accurate. In this paper, our purpose is to characterize Low Density Poly(Ethylene) (LDPE) grades by Raman spectroscopy and in particular with CH2 Raman vibration modes. With temperature measurements, we determine different amorphous and crystalline Raman assignments. From these results and on the basis of the evolution of CH2 bending Raman vibration modes, we develop a phenomenological model in correlation with Differential Scanning Calorimetry and in particular with crystalline lamella thickness determination.
{"title":"Identification of LDPE Grades Focusing on Specific CH2 Raman Vibration Modes","authors":"R. Jumeau, P. Bourson, M. Ferriol, F. Lahure, M. Ponçot, A. Dahoun","doi":"10.1155/2013/720598","DOIUrl":"https://doi.org/10.1155/2013/720598","url":null,"abstract":"The possibilities of applications of vibrational spectroscopy techniques (Raman spectroscopy) in the analysis and characterization of polymers are more and more used and accurate. In this paper, our purpose is to characterize Low Density Poly(Ethylene) (LDPE) grades by Raman spectroscopy and in particular with CH2 Raman vibration modes. With temperature measurements, we determine different amorphous and crystalline Raman assignments. From these results and on the basis of the evolution of CH2 bending Raman vibration modes, we develop a phenomenological model in correlation with Differential Scanning Calorimetry and in particular with crystalline lamella thickness determination.","PeriodicalId":14329,"journal":{"name":"International Journal of Spectroscopy","volume":"18 1 1","pages":"124-129"},"PeriodicalIF":0.0,"publicationDate":"2013-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78486714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}