Pub Date : 2023-01-01DOI: 10.1080/08830185.2021.1974020
Ioannis M Koukourakis, Michael I Koukourakis
Since its first clinical application, 120 years ago, radiotherapy evolved into a major anti-cancer treatment modality, offering high cure rates in many human malignancies. During the past ten years, the establishment of immune checkpoint inhibitors (ICIs) in cancer therapeutics has vigorously reintroduced the immune system's role in the outcome of radiotherapy and, conversely, the role of radio-vaccination in the efficacy of immunotherapy. The knowledge and clinical experience that founded the current era of immuno-radiotherapy started alongside with the birth of radiotherapy, and evolved through exhaustive experimental work, clinical trials on active specific immunotherapy, frustrating attempts to validate the importance of cytokine administration with radiotherapy, and, finally, the encouraging ICI-based clinical trials that opened the door to a far more encouraging perspective; radio-vaccination, through its old and new methods, is rising as a research field that promises to cure, previously incurable, disease. In this critical review, we focus on the scientific knowledge gathered through more than a century of research on radiotherapy interactions with the immune system. Understanding the origins of this promising therapeutic approach will substantially contribute to developing new immuno-radiotherapy policies in the fight against cancer.
{"title":"Combining the past and present to advance immuno-radiotherapy of cancer.","authors":"Ioannis M Koukourakis, Michael I Koukourakis","doi":"10.1080/08830185.2021.1974020","DOIUrl":"https://doi.org/10.1080/08830185.2021.1974020","url":null,"abstract":"<p><p>Since its first clinical application, 120 years ago, radiotherapy evolved into a major anti-cancer treatment modality, offering high cure rates in many human malignancies. During the past ten years, the establishment of immune checkpoint inhibitors (ICIs) in cancer therapeutics has vigorously reintroduced the immune system's role in the outcome of radiotherapy and, conversely, the role of radio-vaccination in the efficacy of immunotherapy. The knowledge and clinical experience that founded the current era of immuno-radiotherapy started alongside with the birth of radiotherapy, and evolved through exhaustive experimental work, clinical trials on active specific immunotherapy, frustrating attempts to validate the importance of cytokine administration with radiotherapy, and, finally, the encouraging ICI-based clinical trials that opened the door to a far more encouraging perspective; radio-vaccination, through its old and new methods, is rising as a research field that promises to cure, previously incurable, disease. In this critical review, we focus on the scientific knowledge gathered through more than a century of research on radiotherapy interactions with the immune system. Understanding the origins of this promising therapeutic approach will substantially contribute to developing new immuno-radiotherapy policies in the fight against cancer.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"42 1","pages":"26-42"},"PeriodicalIF":5.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9454021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01Epub Date: 2022-06-06DOI: 10.1080/08830185.2022.2083614
George Siopis
Accumulating data emphasize a strong link between obesity and the severity of coronavirus disease-2019 (COVID-19), including mortality. Obesity interferes with several components of the immune system including lymphoid tissue's integrity, leukocytes' development and function, complement system's activation, and the coordination of innate and adaptive immune responses. Overall, obesity results in a less efficient immune response to infectious agents. Severe acute respiratory syndrome coronavirus 2 exploits this weakened immune system in people with obesity to precipitate COVID-19, and in some cases death. It is therefore the author's recommendation that obesity should be viewed as another form of acquired immunodeficiency syndrome and be treated with the appropriate seriousness. Unlike the previously described acquired immunodeficiency syndrome (AIDS) that is caused by the Human Immunodeficiency Virus (HIV), obesity is a comorbidity-acquired immunodeficiency syndrome. People with AIDS do not die from HIV, but may die from opportunistic pathogens such as Mycobacterium tuberculosis. However, AIDS is ascribed its due importance in the course of deterioration of the patient. Similarly, obesity should be acknowledged further as a risk factor for mortality from COVID-19. Obesity is a modifiable condition and even in people with a strong genetic predisposition, lifestyle modifications can reverse obesity, and even moderate weight loss can improve the inflammatory milieu. Strong public health actions are warranted to promote lifestyle measures to reduce the burden from overweight and obesity that currently affect more than one-third of the global population, with projections alarming this may reach 55-80% within the next thirty years.
{"title":"Obesity: A comorbidity-acquired immunodeficiency syndrome (CAIDS).","authors":"George Siopis","doi":"10.1080/08830185.2022.2083614","DOIUrl":"10.1080/08830185.2022.2083614","url":null,"abstract":"<p><p>Accumulating data emphasize a strong link between obesity and the severity of coronavirus disease-2019 (COVID-19), including mortality. Obesity interferes with several components of the immune system including lymphoid tissue's integrity, leukocytes' development and function, complement system's activation, and the coordination of innate and adaptive immune responses. Overall, obesity results in a less efficient immune response to infectious agents. Severe acute respiratory syndrome coronavirus 2 exploits this weakened immune system in people with obesity to precipitate COVID-19, and in some cases death. It is therefore the author's recommendation that obesity should be viewed as another form of acquired immunodeficiency syndrome and be treated with the appropriate seriousness. Unlike the previously described acquired immunodeficiency syndrome (AIDS) that is caused by the Human Immunodeficiency Virus (HIV), obesity is a comorbidity-acquired immunodeficiency syndrome. People with AIDS do not die from HIV, but may die from opportunistic pathogens such as Mycobacterium tuberculosis. However, AIDS is ascribed its due importance in the course of deterioration of the patient. Similarly, obesity should be acknowledged further as a risk factor for mortality from COVID-19. Obesity is a modifiable condition and even in people with a strong genetic predisposition, lifestyle modifications can reverse obesity, and even moderate weight loss can improve the inflammatory milieu. Strong public health actions are warranted to promote lifestyle measures to reduce the burden from overweight and obesity that currently affect more than one-third of the global population, with projections alarming this may reach 55-80% within the next thirty years.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"1 1","pages":"415-429"},"PeriodicalIF":5.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43216955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Metabolism could be served as a guiding force for immunity, and macrophages undergo drastic metabolic reprogramming during inflammatory processes, including enhancing glycolysis and reshaping the tricarboxylic acid cycle (TCA) cycle. The disrupted TCA cycle facilitates itaconate accumulation, consistent with the significant up-regulation of immune response gene 1 (IRG1) in activated macrophages. IRG1 catalyzes the decarboxylation of cis-aconitate to synthesize itaconate, and notably, the IRG1-Itaconate axis has excellent potential to link macrophages' immunity and metabolism. Here, we review vital molecules that affect the activation of the IRG1-Itaconate axis, including interferon regulatory factor 1/9 (IRF1/9), transcription 1 and 3 (STAT1/3), CCAAT enhancer-binding protein β (C/EBPβ), and the protein kinase C (PKC). We then focus on how the IRG1-Itaconate axis regulates the inflammatory pathway in macrophages, proposed to involve kelch-like ECH-associated protein 1 (Keap1), NOD-, LRR- and pyrin domain-containing 3 (NLRP3), gasdermin D (GSDMD), activating transcription factor 3 (ATF3), receptor-interacting protein kinase-3 (RIPK3), et al. In addition, we provide an overview of the way the axis participates in the metabolism of macrophages. Eventually, we summarize current connections between the IRG1-Itaconate axis and inflammatory diseases, bringing light to new therapeutic opportunities in inflammatory diseases.
{"title":"The IRG1-Itaconate axis: A regulatory hub for immunity and metabolism in macrophages.","authors":"Yangguang Li, Wenbin Gong, Weizhen Li, Peizhao Liu, Juanhan Liu, Haiyang Jiang, Tao Zheng, Jie Wu, Xiuwen Wu, Yun Zhao, Jianan Ren","doi":"10.1080/08830185.2022.2067153","DOIUrl":"https://doi.org/10.1080/08830185.2022.2067153","url":null,"abstract":"<p><p>Metabolism could be served as a guiding force for immunity, and macrophages undergo drastic metabolic reprogramming during inflammatory processes, including enhancing glycolysis and reshaping the tricarboxylic acid cycle (TCA) cycle. The disrupted TCA cycle facilitates itaconate accumulation, consistent with the significant up-regulation of immune response gene 1 (IRG1) in activated macrophages. IRG1 catalyzes the decarboxylation of cis-aconitate to synthesize itaconate, and notably, the IRG1-Itaconate axis has excellent potential to link macrophages' immunity and metabolism. Here, we review vital molecules that affect the activation of the IRG1-Itaconate axis, including interferon regulatory factor 1/9 (IRF1/9), transcription 1 and 3 (STAT1/3), CCAAT enhancer-binding protein β (C/EBPβ), and the protein kinase C (PKC). We then focus on how the IRG1-Itaconate axis regulates the inflammatory pathway in macrophages, proposed to involve kelch-like ECH-associated protein 1 (Keap1), NOD-, LRR- and pyrin domain-containing 3 (NLRP3), gasdermin D (GSDMD), activating transcription factor 3 (ATF3), receptor-interacting protein kinase-3 (RIPK3), et al. In addition, we provide an overview of the way the axis participates in the metabolism of macrophages. Eventually, we summarize current connections between the IRG1-Itaconate axis and inflammatory diseases, bringing light to new therapeutic opportunities in inflammatory diseases.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"42 5","pages":"364-378"},"PeriodicalIF":5.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10156060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Exosomes are widely distributed extracellular vesicles (EVs), which are currently a major research hotspot for researchers based on their wide range of sources, stable membrane structure, low immunogenicity, and containing a variety of biomolecules. A large number of literatures have shown that exosomes and exosome cargoes (especially microRNAs) play an important role in the activation of inflammation, development of tumor, differentiation of cells, regulation of immunity and so on. Studies have found that exosomes can stimulate the immune response of the body and participate in the occurrence and development of various diseases, including autoimmune diseases. Furthermore, the potential of exosomes as therapeutic tools in various diseases has also attracted much attention. Autoimmune thyroid disease (AITD) is one of the most common autoimmune diseases, mainly composed of Graves' disease (GD) and Hashimoto's thyroiditis (HT), which affects the health of many people and has a genetic predisposition, but its pathogenesis is still being explored. Starting from the relevant biological characteristics of exosomes, this review summarizes the current research status of exosomes and the association between exosomes and some diseases, with a focus on the situation of AITD and the potential role of exosomes (including substances in their vesicles) in AITD in combination with the current published literature, aiming to provide new directions for the pathogenesis, diagnosis or therapy of AITD.Supplemental data for this article is available online at.
{"title":"Research progress on the role and mechanism of action of exosomes in autoimmune thyroid disease.","authors":"Yuping Chen, Bingtian Dong, Lichun Huang, Jingxiong Zhou, Huibin Huang","doi":"10.1080/08830185.2022.2057482","DOIUrl":"https://doi.org/10.1080/08830185.2022.2057482","url":null,"abstract":"<p><p>Exosomes are widely distributed extracellular vesicles (EVs), which are currently a major research hotspot for researchers based on their wide range of sources, stable membrane structure, low immunogenicity, and containing a variety of biomolecules. A large number of literatures have shown that exosomes and exosome cargoes (especially microRNAs) play an important role in the activation of inflammation, development of tumor, differentiation of cells, regulation of immunity and so on. Studies have found that exosomes can stimulate the immune response of the body and participate in the occurrence and development of various diseases, including autoimmune diseases. Furthermore, the potential of exosomes as therapeutic tools in various diseases has also attracted much attention. Autoimmune thyroid disease (AITD) is one of the most common autoimmune diseases, mainly composed of Graves' disease (GD) and Hashimoto's thyroiditis (HT), which affects the health of many people and has a genetic predisposition, but its pathogenesis is still being explored. Starting from the relevant biological characteristics of exosomes, this review summarizes the current research status of exosomes and the association between exosomes and some diseases, with a focus on the situation of AITD and the potential role of exosomes (including substances in their vesicles) in AITD in combination with the current published literature, aiming to provide new directions for the pathogenesis, diagnosis or therapy of AITD.Supplemental data for this article is available online at.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"42 5","pages":"334-346"},"PeriodicalIF":5.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10158756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1080/08830185.2021.2022661
Avik Dutta, Harini Venkataganesh, Paul E Love
Epigenetic regulators are pivotal factors that influence and control T cell development. Recent findings continue to reveal additional elements of epigenetic modifications that play significant and crucial roles at different stages of T cell development. Through gaining a better understanding of the various epigenetic factors that influence the formation and survival of maturing T cells, new therapies can potentially be developed to combat diseases caused by dysregulated epigenetic chromatin modifications. In this review, we summarize the recent studies which shed light on the epigenetic regulation of T cell development especially at the critical stage of β-selection.
{"title":"Epigenetic regulation of T cell development.","authors":"Avik Dutta, Harini Venkataganesh, Paul E Love","doi":"10.1080/08830185.2021.2022661","DOIUrl":"https://doi.org/10.1080/08830185.2021.2022661","url":null,"abstract":"<p><p>Epigenetic regulators are pivotal factors that influence and control T cell development. Recent findings continue to reveal additional elements of epigenetic modifications that play significant and crucial roles at different stages of T cell development. Through gaining a better understanding of the various epigenetic factors that influence the formation and survival of maturing T cells, new therapies can potentially be developed to combat diseases caused by dysregulated epigenetic chromatin modifications. In this review, we summarize the recent studies which shed light on the epigenetic regulation of T cell development especially at the critical stage of β-selection.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"42 1","pages":"82-90"},"PeriodicalIF":5.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9447619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1080/08830185.2022.2044807
Lucia Treppiccione, Diomira Luongo, Francesco Maurano, Mauro Rossi
Celiac disease (CD) is an autoimmune disease that occurs in genetically predisposed individuals following the ingestion of gluten. Its prevalence is rising worldwide. A gluten-free (GF) diet is mandatory for the management of CD. However, several issues persist regarding the nutritional quality of GF products. Importantly, deep knowledge about the pathogenic mechanisms in CD highlights the central role of CD4+ T cell-mediated immunity in CD. Furthermore, intestinal T regulatory cells are functional in CD, but cytokines such as IL-15, produced under inflammatory conditions, hamper their activity. This paves the way for the development of immunomodulatory strategies to the GF diet. From this perspective, microbiological approaches were considered able to modulate the gluten-specific immune response. Interestingly, gliadin peptide-based immunotherapy to abolish the inflammatory CD4+T cell-mediated response has been explored in CD patients. Furthermore, different biotechnological approaches based on the use of chemically/enzymatically modified gluten molecules have been proved effective in different models of CD. However, the choice of the right age in infants to introduce the antigen and thus induce tolerance still remains an important issue to solve. Addressing all these points should help to design an effective intervention strategy for preventing CD.
{"title":"Next generation strategies to recover immunological tolerance in celiac disease.","authors":"Lucia Treppiccione, Diomira Luongo, Francesco Maurano, Mauro Rossi","doi":"10.1080/08830185.2022.2044807","DOIUrl":"https://doi.org/10.1080/08830185.2022.2044807","url":null,"abstract":"<p><p>Celiac disease (CD) is an autoimmune disease that occurs in genetically predisposed individuals following the ingestion of gluten. Its prevalence is rising worldwide. A gluten-free (GF) diet is mandatory for the management of CD. However, several issues persist regarding the nutritional quality of GF products. Importantly, deep knowledge about the pathogenic mechanisms in CD highlights the central role of CD4<sup>+</sup> T cell-mediated immunity in CD. Furthermore, intestinal T regulatory cells are functional in CD, but cytokines such as IL-15, produced under inflammatory conditions, hamper their activity. This paves the way for the development of immunomodulatory strategies to the GF diet. From this perspective, microbiological approaches were considered able to modulate the gluten-specific immune response. Interestingly, gliadin peptide-based immunotherapy to abolish the inflammatory CD4<sup>+</sup>T cell-mediated response has been explored in CD patients. Furthermore, different biotechnological approaches based on the use of chemically/enzymatically modified gluten molecules have been proved effective in different models of CD. However, the choice of the right age in infants to introduce the antigen and thus induce tolerance still remains an important issue to solve. Addressing all these points should help to design an effective intervention strategy for preventing CD.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"42 3","pages":"237-245"},"PeriodicalIF":5.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9447626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1080/08830185.2022.2044808
Allen N Fooks, Lisa Y Beppu, Adolfo B Frias, Louise M D'Cruz
Rising obesity levels, worldwide, are resulting in substantial increases in cardiovascular disease, diabetes, kidney disease, musculoskeletal disorders, and certain cancers, and obesity-associated illnesses are estimated to cause ∼4 million deaths worldwide per year. A common theme in this disease epidemic is the chronic systemic inflammation that accompanies obesity. CD4+ Foxp3+ regulatory T cells residing in visceral adipose tissues (VAT Tregs) are a unique immune cell population that play essential functions in restricting obesity-associated systemic inflammation through regulation of adipose tissue homeostasis. The distinct transcriptional program that defines VAT Tregs has been described, but directly linking VAT Treg differentiation and function to improving insulin sensitivity has proven more complex. Here we review new findings which have clarified how VAT Tregs differentiate, and how distinct VAT Treg subsets regulate VAT homeostasis, energy expenditure, and insulin sensitivity.
{"title":"Adipose tissue regulatory T cells: differentiation and function.","authors":"Allen N Fooks, Lisa Y Beppu, Adolfo B Frias, Louise M D'Cruz","doi":"10.1080/08830185.2022.2044808","DOIUrl":"https://doi.org/10.1080/08830185.2022.2044808","url":null,"abstract":"<p><p>Rising obesity levels, worldwide, are resulting in substantial increases in cardiovascular disease, diabetes, kidney disease, musculoskeletal disorders, and certain cancers, and obesity-associated illnesses are estimated to cause ∼4 million deaths worldwide per year. A common theme in this disease epidemic is the chronic systemic inflammation that accompanies obesity. CD4<sup>+</sup> Foxp3<sup>+</sup> regulatory T cells residing in visceral adipose tissues (VAT Tregs) are a unique immune cell population that play essential functions in restricting obesity-associated systemic inflammation through regulation of adipose tissue homeostasis. The distinct transcriptional program that defines VAT Tregs has been described, but directly linking VAT Treg differentiation and function to improving insulin sensitivity has proven more complex. Here we review new findings which have clarified how VAT Tregs differentiate, and how distinct VAT Treg subsets regulate VAT homeostasis, energy expenditure, and insulin sensitivity.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"42 5","pages":"323-333"},"PeriodicalIF":5.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402810/pdf/nihms-1791587.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10509923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-28DOI: 10.1080/08830185.2022.2080820
Qiqi Zhang, Cheng Zu, Yong-xian Hu, He Huang
Abstract This review discusses the major concerns and changes emerged during the rapidly extended clinical application of chimeric antigen receptor (CAR) T therapy based on our experience and understanding. In the past decades, the CAR-T cells have been questioned, sequentially, about their capability of inducing initial remission, their safety profile, their ability to sustain long-term persistence and response, and their potential to be industrialized. Significant advances, novel targeting strategies, innovative molecular structure, fine tuning of both CAR-T and host immune system, combination with other therapies, streamlined manufacturing, and etc., have been made to overcome these challenges. Although not perfectly resolved, rational pathways have been proposed to pass through the barriers. Here, we present the recent achievements on these pathways, and look into the possible future directions.
{"title":"CAR-T cells for cancer immunotherapy—the barriers ahead and the paths through","authors":"Qiqi Zhang, Cheng Zu, Yong-xian Hu, He Huang","doi":"10.1080/08830185.2022.2080820","DOIUrl":"https://doi.org/10.1080/08830185.2022.2080820","url":null,"abstract":"Abstract This review discusses the major concerns and changes emerged during the rapidly extended clinical application of chimeric antigen receptor (CAR) T therapy based on our experience and understanding. In the past decades, the CAR-T cells have been questioned, sequentially, about their capability of inducing initial remission, their safety profile, their ability to sustain long-term persistence and response, and their potential to be industrialized. Significant advances, novel targeting strategies, innovative molecular structure, fine tuning of both CAR-T and host immune system, combination with other therapies, streamlined manufacturing, and etc., have been made to overcome these challenges. Although not perfectly resolved, rational pathways have been proposed to pass through the barriers. Here, we present the recent achievements on these pathways, and look into the possible future directions.","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"41 1","pages":"567 - 581"},"PeriodicalIF":5.0,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42092642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-05-04DOI: 10.1080/08830185.2022.2061764
H. Kumar
Cellular metabolism is a complex biological process governed by numerous biochemical reactions that maintain various cellular processes essential for cell survival and continuity of life. It is not only important for the maintenance of host physiology, but also plays a crucial role in shaping the host’s defense system. The dynamicity of various immune components, immune responses and immune homeostasis during steady state or infection depends on the metabolic state of immune cells. Recently, it has been shown that various metabolite and metabolic enzymes play a pivotal role in the development of host immunity. This issue of International Reviews of Immunology focuses on the amino acid, sugar and lipid metabolisms and metabolic enzymes involved in host immunity during microbial infection and in different noninfectious defenses such as cancer, metabolic diseases and autoimmune diseases (Figure 1). Cancer is caused by multiple factors both intrinsic and extrinsic. Intrinsic factors include irreparable DNA damage, loss of cell cycle regulation, dysregulation of immunity or metabolism etc. The extrinsic factors can be physical, chemical, biological or environmental. Additionally, some microbial infections by an oncogenic virus or bacterial infection can result in the development of cancer. In this issue, the article by Pirzadeh et al. discusses the role of Helicobacter pylori and a few amino acid metabolisms and metabolites in immune suppression, which subsequently results in gastric cancer. This article will be of interest to a broad readership in the fields of onco-immunology and infectious disease biology as well as researchers active at the junction between metabolism, immunology and cancer biology (Figure 1). The innate and adaptive immune systems are strongly linked through dendritic cells (DCs) and the function of DCs can affect the disease outcome in infection as well as immune homeostasis in steady state. The article by Sun et al. describes how the alteration of available biomolecules in the DC microenvironment during metabolic diseases substantially affects the function of DCs. The altered microenvironment may cause immunopathogenesis of multiple diseases or enhancement of existing diseases. Also, the molecules which skew the metabolic condition can be a potential therapeutic agent. This article will be beneficial to readers working on the metabolic aspects of immunity and to clinical nutritionists working on disease control through the regulation of food intake (Figure 1). Tryptophan metabolism and its metabolic product play a crucial role in various biological processes such as neurotransmission, stabilization of the circadian rhythm and synthesis of vitamin B3 which are essential for the normal physiology of the host. The article by Moein et al. elaborates the immunological role of tryptophan metabolite and its impact on inflammatory bowel disease and colorectal cancer. The article also discusses how the small molecule-based metabolic or
{"title":"How metabolism and metabolites shape immunity during disease","authors":"H. Kumar","doi":"10.1080/08830185.2022.2061764","DOIUrl":"https://doi.org/10.1080/08830185.2022.2061764","url":null,"abstract":"Cellular metabolism is a complex biological process governed by numerous biochemical reactions that maintain various cellular processes essential for cell survival and continuity of life. It is not only important for the maintenance of host physiology, but also plays a crucial role in shaping the host’s defense system. The dynamicity of various immune components, immune responses and immune homeostasis during steady state or infection depends on the metabolic state of immune cells. Recently, it has been shown that various metabolite and metabolic enzymes play a pivotal role in the development of host immunity. This issue of International Reviews of Immunology focuses on the amino acid, sugar and lipid metabolisms and metabolic enzymes involved in host immunity during microbial infection and in different noninfectious defenses such as cancer, metabolic diseases and autoimmune diseases (Figure 1). Cancer is caused by multiple factors both intrinsic and extrinsic. Intrinsic factors include irreparable DNA damage, loss of cell cycle regulation, dysregulation of immunity or metabolism etc. The extrinsic factors can be physical, chemical, biological or environmental. Additionally, some microbial infections by an oncogenic virus or bacterial infection can result in the development of cancer. In this issue, the article by Pirzadeh et al. discusses the role of Helicobacter pylori and a few amino acid metabolisms and metabolites in immune suppression, which subsequently results in gastric cancer. This article will be of interest to a broad readership in the fields of onco-immunology and infectious disease biology as well as researchers active at the junction between metabolism, immunology and cancer biology (Figure 1). The innate and adaptive immune systems are strongly linked through dendritic cells (DCs) and the function of DCs can affect the disease outcome in infection as well as immune homeostasis in steady state. The article by Sun et al. describes how the alteration of available biomolecules in the DC microenvironment during metabolic diseases substantially affects the function of DCs. The altered microenvironment may cause immunopathogenesis of multiple diseases or enhancement of existing diseases. Also, the molecules which skew the metabolic condition can be a potential therapeutic agent. This article will be beneficial to readers working on the metabolic aspects of immunity and to clinical nutritionists working on disease control through the regulation of food intake (Figure 1). Tryptophan metabolism and its metabolic product play a crucial role in various biological processes such as neurotransmission, stabilization of the circadian rhythm and synthesis of vitamin B3 which are essential for the normal physiology of the host. The article by Moein et al. elaborates the immunological role of tryptophan metabolite and its impact on inflammatory bowel disease and colorectal cancer. The article also discusses how the small molecule-based metabolic or ","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"41 1","pages":"297 - 298"},"PeriodicalIF":5.0,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42612879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Primary immunodeficiency (PID) or Inborn errors of immunity (IEI) refers to a heterogeneous group of disorders characterized by immune system impairment. Although patients with IEI manifest highly variable symptoms, the most common clinical manifestations are recurrent infections, autoimmunity and malignancies. Some patients present hematological abnormality including thrombocytopenia due to different pathogenic mechanisms. This review focuses on primary and secondary thrombocytopenia as a complication, which can occur in IEI. Based on the International Union of Immunological Societies phenotypic classification for IEI, the several innate and adaptive immunodeficiency disorders can lead to thrombocytopenia. This review, for the first time, describes manifestation, mechanism and therapeutic modalities for thrombocytopenia in different classes of IEI.
{"title":"Primary Immunodeficiency and Thrombocytopenia.","authors":"Maryam Mohtashami, Azadehsadat Razavi, Hassan Abolhassani, Asghar Aghamohammadi, Reza Yazdani","doi":"10.1080/08830185.2020.1868454","DOIUrl":"https://doi.org/10.1080/08830185.2020.1868454","url":null,"abstract":"<p><p>Primary immunodeficiency (PID) or Inborn errors of immunity (IEI) refers to a heterogeneous group of disorders characterized by immune system impairment. Although patients with IEI manifest highly variable symptoms, the most common clinical manifestations are recurrent infections, autoimmunity and malignancies. Some patients present hematological abnormality including thrombocytopenia due to different pathogenic mechanisms. This review focuses on primary and secondary thrombocytopenia as a complication, which can occur in IEI. Based on the International Union of Immunological Societies phenotypic classification for IEI, the several innate and adaptive immunodeficiency disorders can lead to thrombocytopenia. This review, for the first time, describes manifestation, mechanism and therapeutic modalities for thrombocytopenia in different classes of IEI.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"41 2","pages":"135-159"},"PeriodicalIF":5.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08830185.2020.1868454","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38837545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}