Immunological processes, such as inflammation, can both cause tumor suppression and cancer progression. Moreover, deregulated levels of long non-coding RNA (lncRNA) expression in the brain may cause inflammation and lead to the growth of tumors. Like other biological processes, the immune system's role in cancer is complicated, varies, and can help or hurt the cancer's maintenance. According to research, inflammation and brain cancer are correlated via several signaling pathways. A variety of lncRNAs have recently been revealed to influence cancer by modulating inflammatory pathways. As a result, lncRNAs have the potential to influence carcinogenesis, tumor formation, or tumor suppression via an increase or decrease in inflammation functions. Although the study and targeting of lncRNAs have made great progress in the treatment of cancer, there are definitely limitations and challenges. Using new technologies like nanocarriers and cell-penetrating peptides (CPPs) to target treatments without hurting healthy body tissues has shown to be very effective. In this review article, we have collected significantly related lncRNAs and their inhibitory or stimulating roles in inflammation and brain cancer for the first time. However, there are limitations, such as side effects and damage to normal tissues. With the advancement of new targeting technologies, these lncRNAs may be candidates for the specific targeting therapy of brain cancers by limiting inflammation or stimulating the immune system against them in the future.
Regulatory T (Treg) cells are essential for maintaining self-immune tolerance. Reduced numbers or functions of Treg cells have been involved in the pathogenesis of various autoimmune diseases and allograft rejection. Therefore, the approaches that increase the pool or suppressive function of Treg cells in vivo could be a general strategy to treat different autoimmune diseases and allograft rejection. Interleukin-2 (IL-2) is essential for the development, survival, maintenance, and function of Treg cells, constitutively expressing the high-affinity receptor of IL-2 and sensitive response to IL-2 in vivo. And low-dose IL-2 therapy in vivo could restore the imbalance between autoimmune response and self-tolerance toward self-tolerance via promoting Treg cell expansion and inhibiting follicular helper T (Tfh) and IL-17-producing helper T (Th17) cell differentiation. Currently, low-dose IL-2 treatment is receiving extensive attention in autoimmune disease and transplantation treatment. In this review, we summarize the biology of IL-2/IL-2 receptor, the mechanisms of low-dose IL-2 therapy in autoimmune diseases, the application in the progress of different autoimmune diseases, including Systemic Lupus Erythematosus (SLE), Type 1 Diabetes (T1D), Rheumatoid Arthritis (RA), Autoimmune Hepatitis (AIH), Alopecia Areata (AA), Immune Thrombocytopenia (ITP) and Chronic graft-versus-host-disease (GVHD). We also discuss the future directions to optimize low-dose IL-2 treatments.
Dendritic cells (DCs) are professional antigen-presenting cells (APCs), including heterogenous populations with phenotypic and functional diversity that coordinate bridging innate and adaptive immunity. Signal transducer and activator of transcriptions (STAT) factors as key proteins in cytokine signaling were shown to play distinct roles in the maturation and antigen presentation of DCs and play a pivotal role in modulating immune responses mediated by DCs such as differentiation of T cells to T helper (Th) 1, Th2 or regulatory T (Treg) cells. This review sheds light on the importance of STAT transcription factors' signaling pathways in different subtypes of DCs and highlights their targeting potential usages for improving DC-based immunotherapies for patients who suffer from cancer or diverse autoimmune conditions according to the type of the STAT transcription factor and its specific activating or inhibitory agent.
Autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and inflammatory bowel disease (IBD) are caused by the body's immune response to autoantigens. The pathogenesis of autoimmune diseases is unclear. Numerous studies have demonstrated that RNA methylation plays a key role in disease progression, which is essential for post-transcriptional regulation and has gradually become a broad regulatory mechanism that controls gene expression in various physiological processes, including RNA nuclear output, translation, splicing, and noncoding RNA processing. Here, we outline the writers, erasers, and readers of RNA methylation, including N6-methyladenosine (m6A), 2'-O-methylation (Nm), 2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytidine (m5C) and N7-methylguanosine (m7G). As the role of RNA methylation modifications in the immune system and diseases is explained, the potential treatment value of these modifications has also been demonstrated. This review reports the relationship between RNA methylation and autoimmune diseases, highlighting the need for future research into the therapeutic potential of RNA modifications.
Th9 cells, a subset of T-helper cells producing interleukin-9 (IL-9), play a vital role in the adaptive immune response and have diverse effects in different diseases. Regulated by transcription factors like PU.1 and IRF4, and cytokines such as IL-4 and TGF-β, Th9 cells drive tissue inflammation. This review focuses on their emerging role in immunopathophysiology. Th9 cells exhibit immune-mediated cancer cell destruction, showing promise in glioma and cervical cancer treatment. However, their role in breast and lung cancer is intricate, requiring a deeper understanding of pro- and anti-tumor aspects. Th9 cells, along with IL-9, foster T cell and immune cell proliferation, contributing to autoimmune disorders. They are implicated in psoriasis, atopic dermatitis, and infections. In allergic reactions and asthma, Th9 cells fuel pro-inflammatory responses. Targeting Foxo1 may regulate innate and adaptive immune responses, alleviating disease symptoms. This comprehensive review outlines Th9 cells' evolving immunopathophysiological role, emphasizing the necessity for further research to grasp their effects and potential therapeutic applications across diseases.
Signal transducer and activator of transcription (STAT) 4 and STAT6 play a crucial role in immune cells by transducing signals from specific cytokine receptors, and inducing transcription of genes involved in cell-mediated and humoral immunity. These two different defense mechanisms against pathogens are regulated by two specific CD4+ T helper (Th) cells known as Th1 and Th2 cells. Many studies have shown that several diseases including cancer, inflammatory, autoimmune and allergic diseases are associated with a Th1/Th2 imbalance caused by increased or decreased expression/activity of STAT4 or STAT6 often due to genetic and epigenetic aberrances. An altered expression of STAT4 has been observed in different tumors and autoimmune diseases, while a dysregulation of STAT6 signaling pathway is frequently observed in allergic conditions, such as atopic dermatitis, allergic asthma, food allergy, and tumors such as Hodgkin and non-Hodgkin lymphomas. Recently, dysregulations of STAT4 and STAT6 expression have been observed in SARS-CoV2 and monkeypox infections, which are still public health emergencies in many countries. SARS-CoV-2 can induce an imbalance in Th1 and Th2 responses with a predominant activation of STAT6 in the cytosol and nuclei of pneumocytes that drives Th2 polarization and cytokine storm. In monkeypox infection the virus can promote an immune evasion by inducing a Th2 response that in turn inhibits the Th1 response essential for virus elimination. Furthermore, genetic variations of STAT4 that are associated with an increased risk of developing systemic lupus erythematosus seem to play a role in defense against SARS-CoV-2 infection.
Innate lymphoid cells are a mixed population of cells and critical regulators of our innate immune system. According to recent scientific literature, tissue resident innate lymphoid cell subtype 2 has been recognized as an important player of type 2 inflammatory responses, involved in different human malignancies like pancreatic, lung, acute myeloid leukemia, gastrointestinal tract cancer, etc. The current reports have revealed that, among the three main ILC sub types, subtype 2 (ILC 2), as the key regulator of initiating the type 2 inflammatory responses at the tumor microenvironment (TME). This activation of ILC-2 is a very important step for the specific downstream functioning of ILC-2. Priming of ILC-2 with different chemokines involves different cytokine secretion from the activated ILC-2 like IL-4, IL-5, IL-13, IL-9 which induce type 2 inflammatory responses involved in the complex interaction with other immune cells like NK cell, Cytotoxic T cell, MDSC and Treg cell. At the initial stage, ILC-2 activation through IL-33 may induce the anti-tumorigenic effect mediated by ILC-2/eosinophil axis. However, it is also evident that PDG2 (Prostaglandin D2)-mediated activation of ILC-2 induces the ILC-2/MDSC immune suppressive pro-tumorigenic niche at the TME. Here, in this review, we have summarized the function of ILC-2 on cancer immunity based on recent scientific work which indicates ILC-2 plays a dual role and orchestrates the immune responses toward type 2 immunity in different cancer settings.
Cholesterol is a key life-sustaining molecule which regulates membrane fluidity and serves as a signaling mediator. Cholesterol homeostasis is closely related to various pathological conditions including tumor, obesity, atherosclerosis, Alzheimer's disease and viral infection. Viral infection disrupts host cholesterol homeostasis, facilitating their own survival. Meanwhile, the host cells strive to reduce cholesterol accessibility to limit viral infection. This review focuses on the regulation of cholesterol metabolism and the role of cholesterol in viral infection, specifically providing an overview of cholesterol as a friend to promote viral entry, replication, assembly, release and immune evasion, which might inspire valuable thinking for pathogenesis and intervention of viral infection.