Pub Date : 2023-07-25DOI: 10.3390/inventions8040096
A. Ruano, M. Ruano
This work proposes a procedure for the multi-objective design of a robust forecasting ensemble of data-driven models. Starting with a data-selection algorithm, a multi-objective genetic algorithm is then executed, performing topology and feature selection, as well as parameter estimation. From the set of non-dominated or preferential models, a smaller sub-set is chosen to form the ensemble. Prediction intervals for the ensemble are obtained using the covariance method. This procedure is illustrated in the design of four different models, required for energy management systems. Excellent results were obtained by this methodology, superseding the existing alternatives. Further research will incorporate a robustness criterion in MOGA, and will incorporate the prediction intervals in predictive control techniques.
{"title":"Designing Robust Forecasting Ensembles of Data-Driven Models with a Multi-Objective Formulation: An Application to Home Energy Management Systems","authors":"A. Ruano, M. Ruano","doi":"10.3390/inventions8040096","DOIUrl":"https://doi.org/10.3390/inventions8040096","url":null,"abstract":"This work proposes a procedure for the multi-objective design of a robust forecasting ensemble of data-driven models. Starting with a data-selection algorithm, a multi-objective genetic algorithm is then executed, performing topology and feature selection, as well as parameter estimation. From the set of non-dominated or preferential models, a smaller sub-set is chosen to form the ensemble. Prediction intervals for the ensemble are obtained using the covariance method. This procedure is illustrated in the design of four different models, required for energy management systems. Excellent results were obtained by this methodology, superseding the existing alternatives. Further research will incorporate a robustness criterion in MOGA, and will incorporate the prediction intervals in predictive control techniques.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46650832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-21DOI: 10.3390/inventions8040095
V. Shcherba, I. Bulgakova
A mathematical model of the working processes occurring in the gas cap has been developed on the basic fundamental laws of conservation of energy, mass and motion, and the equation of state, both taking into account the change in the mass of the gas due to phase transitions and the solubility of the gas in the liquid, and without taking them into account with a dividing element. In addition, there was developed a mathematical model of the liquid flow from the gas cap through a pipeline of constant cross section. It was found from the results of a numerical experiment that to reduce the feed irregularity, it is necessary to increase the length of the pipeline and the crankshaft revolutions, in addition to the known ratio of the volume of gas in the cap to the working volume of the pump; an increase in discharge pressure and an increase in the diameter of the connecting pipeline increases the feed irregularity.
{"title":"Mathematical Model of the Working Processes of the Gas Cap of a Piston Pump Installed in the Discharge Line","authors":"V. Shcherba, I. Bulgakova","doi":"10.3390/inventions8040095","DOIUrl":"https://doi.org/10.3390/inventions8040095","url":null,"abstract":"A mathematical model of the working processes occurring in the gas cap has been developed on the basic fundamental laws of conservation of energy, mass and motion, and the equation of state, both taking into account the change in the mass of the gas due to phase transitions and the solubility of the gas in the liquid, and without taking them into account with a dividing element. In addition, there was developed a mathematical model of the liquid flow from the gas cap through a pipeline of constant cross section. It was found from the results of a numerical experiment that to reduce the feed irregularity, it is necessary to increase the length of the pipeline and the crankshaft revolutions, in addition to the known ratio of the volume of gas in the cap to the working volume of the pump; an increase in discharge pressure and an increase in the diameter of the connecting pipeline increases the feed irregularity.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46930619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-21DOI: 10.3390/inventions8040094
Viktor Vititin, M. Kalyagin, Valentin Kolesnichenko
An unmanned aerial vehicle (UAV)-integrated control system is a set of functionally independent subsystems of the ground and space segments interacting with each other under the conditions of the stochastic nature of the external environment. There is an approach to evaluating its effectiveness based on a generalized multiplicative criterion, which takes into account the features of this system to the maximum extent. It is proposed to single out two particular criteria that characterize the reliability of a UAV and the effectiveness of the control system in relation to it. At the same time, the generalized criterion is a multiplicative convolution based not on the triangular-norm (t-norm) of the particular criterion, but of its correspondence functions, which in a certain way reflect its significance. It is shown that in the particular case of linear dependence of the correspondence functions, the generalized criterion coincides with the classical multiplicative convolution in the form of product of event probabilities. The proposed approach with minimal changes can be adapted to assess the effectiveness of data management systems in heterogeneous networks, process control systems, projects, logistics, etc.
{"title":"Evaluation of Unmanned-Aerial-Vehicle-Integrated Control System Efficiency on the Basis of Generalized Multiplicative Criterion","authors":"Viktor Vititin, M. Kalyagin, Valentin Kolesnichenko","doi":"10.3390/inventions8040094","DOIUrl":"https://doi.org/10.3390/inventions8040094","url":null,"abstract":"An unmanned aerial vehicle (UAV)-integrated control system is a set of functionally independent subsystems of the ground and space segments interacting with each other under the conditions of the stochastic nature of the external environment. There is an approach to evaluating its effectiveness based on a generalized multiplicative criterion, which takes into account the features of this system to the maximum extent. It is proposed to single out two particular criteria that characterize the reliability of a UAV and the effectiveness of the control system in relation to it. At the same time, the generalized criterion is a multiplicative convolution based not on the triangular-norm (t-norm) of the particular criterion, but of its correspondence functions, which in a certain way reflect its significance. It is shown that in the particular case of linear dependence of the correspondence functions, the generalized criterion coincides with the classical multiplicative convolution in the form of product of event probabilities. The proposed approach with minimal changes can be adapted to assess the effectiveness of data management systems in heterogeneous networks, process control systems, projects, logistics, etc.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41960677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-20DOI: 10.3390/inventions8040093
N. Rosa, N. Soares, J. Costa, A. Lopes
This paper presents a numerical model for simulating melting and solidification driven by natural convection, and validates it against a previous experiment. The experiment involved filling a rectangular aluminum enclosure with RT28HC Phase Change Material (PCM) to 95% of its capacity. To investigate the thermal behavior of the PCM during phase change, the enclosure underwent independent heating and cooling procedures. The simulation was conducted using ANSYS CFX®, and the additional heat source (AHS) method was implemented in conjunction with the Boussinesq approximation to account for the latent heat during melting and solidification driven by natural convection. This allowed the calculation of temperature fields, the melted fraction, and fluid dynamics during phase change. The momentum equations were modified to include a source term that accounted for a gradual decrease in fluid velocity as the PCM transitions from solid to liquid. To account for density variation, an artificial specific heat curve was implemented based on the assumption that the product of density and specific heat remains constant during phase change. The proposed numerical model achieved good agreement with the experimental data, with an average root mean square error of 2.6% and 3.7% for temperature profiles during charging and discharging simulations, respectively. This model can be easily implemented in ANSYS CFX® and accurately predicts charging and discharging kinetics, as well as stored/released energy, without any numerical convergence issues.
{"title":"Validation of a Simplified Numerical Model for Predicting Solid–Liquid Phase Change with Natural Convection in Ansys CFX","authors":"N. Rosa, N. Soares, J. Costa, A. Lopes","doi":"10.3390/inventions8040093","DOIUrl":"https://doi.org/10.3390/inventions8040093","url":null,"abstract":"This paper presents a numerical model for simulating melting and solidification driven by natural convection, and validates it against a previous experiment. The experiment involved filling a rectangular aluminum enclosure with RT28HC Phase Change Material (PCM) to 95% of its capacity. To investigate the thermal behavior of the PCM during phase change, the enclosure underwent independent heating and cooling procedures. The simulation was conducted using ANSYS CFX®, and the additional heat source (AHS) method was implemented in conjunction with the Boussinesq approximation to account for the latent heat during melting and solidification driven by natural convection. This allowed the calculation of temperature fields, the melted fraction, and fluid dynamics during phase change. The momentum equations were modified to include a source term that accounted for a gradual decrease in fluid velocity as the PCM transitions from solid to liquid. To account for density variation, an artificial specific heat curve was implemented based on the assumption that the product of density and specific heat remains constant during phase change. The proposed numerical model achieved good agreement with the experimental data, with an average root mean square error of 2.6% and 3.7% for temperature profiles during charging and discharging simulations, respectively. This model can be easily implemented in ANSYS CFX® and accurately predicts charging and discharging kinetics, as well as stored/released energy, without any numerical convergence issues.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44818079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-19DOI: 10.3390/inventions8040092
Marina Rudenko, Y. Plugatar, Vadim Korzin, A. Kazak, Nadezhda I. Gallini, Natalia Gorbunova
This study explores the application of computer vision for enhancing the selection of rootstock-graft combinations and detecting diseases in grape seedlings. Computer vision has various applications in viticulture, but publications and research have not reported the use of computer vision in rootstock-graft selection, which defines the novelty of this research. This paper presents elements of the technology for applying computer vision to rootstock-graft combinations and includes an analysis of grape seedling cuttings. This analysis allows for a more accurate determination of the compatibility between rootstock and graft, as well as the detection of potential seedling diseases. The utilization of computer vision to automate the grafting process of grape cuttings offers significant benefits in terms of increased efficiency, improved quality, and reduced costs. This technology can replace manual labor and ensure economic efficiency and reliability, among other advantages. It also facilitates monitoring the development of seedlings to determine the appropriate planting time. Image processing algorithms play a vital role in automatically determining seedling characteristics such as trunk diameter and the presence of any damage. Furthermore, computer vision can aid in the identification of diseases and defects in seedlings, which is crucial for assessing their overall quality. The automation of these processes offers several advantages, including increased efficiency, improved quality, and reduced costs through the reduction of manual labor and waste. To fulfill these objectives, a unique robotic assembly line is planned for the grafting of grape cuttings. This line will be equipped with two conveyor belts, a delta robot, and a computer vision system. The use of computer vision in automating the grafting process for grape cuttings offers significant benefits in terms of efficiency, quality improvement, and cost reduction. By incorporating image processing algorithms and advanced robotics, this technology has the potential to revolutionize the viticulture industry. Thanks to training a computer vision system to analyze data on rootstock and graft grape varieties, it is possible to reduce the number of defects by half. The implementation of a semi-automated computer vision system can improve crossbreeding efficiency by 90%. Reducing the time spent on pairing selection is also a significant advantage. While manual selection takes between 1 and 2 min, reducing the time to 30 s using the semi-automated system, and the prospect of further automation reducing the time to 10–15 s, will significantly increase the productivity and efficiency of the process. In addition to the aforementioned benefits, the integration of computer vision technology in grape grafting processes brings several other advantages. One notable advantage is the increased accuracy and precision in pairing selection. Computer vision algorithms can analyze a wide range of factors, including
{"title":"The Use of Computer Vision to Improve the Affinity of Rootstock-Graft Combinations and Identify Diseases of Grape Seedlings","authors":"Marina Rudenko, Y. Plugatar, Vadim Korzin, A. Kazak, Nadezhda I. Gallini, Natalia Gorbunova","doi":"10.3390/inventions8040092","DOIUrl":"https://doi.org/10.3390/inventions8040092","url":null,"abstract":"This study explores the application of computer vision for enhancing the selection of rootstock-graft combinations and detecting diseases in grape seedlings. Computer vision has various applications in viticulture, but publications and research have not reported the use of computer vision in rootstock-graft selection, which defines the novelty of this research. This paper presents elements of the technology for applying computer vision to rootstock-graft combinations and includes an analysis of grape seedling cuttings. This analysis allows for a more accurate determination of the compatibility between rootstock and graft, as well as the detection of potential seedling diseases. The utilization of computer vision to automate the grafting process of grape cuttings offers significant benefits in terms of increased efficiency, improved quality, and reduced costs. This technology can replace manual labor and ensure economic efficiency and reliability, among other advantages. It also facilitates monitoring the development of seedlings to determine the appropriate planting time. Image processing algorithms play a vital role in automatically determining seedling characteristics such as trunk diameter and the presence of any damage. Furthermore, computer vision can aid in the identification of diseases and defects in seedlings, which is crucial for assessing their overall quality. The automation of these processes offers several advantages, including increased efficiency, improved quality, and reduced costs through the reduction of manual labor and waste. To fulfill these objectives, a unique robotic assembly line is planned for the grafting of grape cuttings. This line will be equipped with two conveyor belts, a delta robot, and a computer vision system. The use of computer vision in automating the grafting process for grape cuttings offers significant benefits in terms of efficiency, quality improvement, and cost reduction. By incorporating image processing algorithms and advanced robotics, this technology has the potential to revolutionize the viticulture industry. Thanks to training a computer vision system to analyze data on rootstock and graft grape varieties, it is possible to reduce the number of defects by half. The implementation of a semi-automated computer vision system can improve crossbreeding efficiency by 90%. Reducing the time spent on pairing selection is also a significant advantage. While manual selection takes between 1 and 2 min, reducing the time to 30 s using the semi-automated system, and the prospect of further automation reducing the time to 10–15 s, will significantly increase the productivity and efficiency of the process. In addition to the aforementioned benefits, the integration of computer vision technology in grape grafting processes brings several other advantages. One notable advantage is the increased accuracy and precision in pairing selection. Computer vision algorithms can analyze a wide range of factors, including ","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42538554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-18DOI: 10.3390/inventions8040091
Simona Cariello, D. Sanalitro, Alessandro Micali, A. Buscarino, M. Bucolo
In this work, we propose a brain–computer-interface (BCI)-based smart-home interface which leverages motor imagery (MI) signals to operate home devices in real-time. The idea behind MI-BCI is that different types of MI activities will activate various brain regions. Therefore, after recording the user’s electroencephalogram (EEG) data, two approaches, i.e., Regularized Common Spatial Pattern (RCSP) and Linear Discriminant Analysis (LDA), analyze these data to classify users’ imagined tasks. In such a way, the user can perform the intended action. In the proposed framework, EEG signals were recorded by using the EMOTIV helmet and OpenVibe, a free and open-source platform that has been utilized for EEG signal feature extraction and classification. After being classified, such signals are then converted into control commands, and the open communication protocol for building automation KNX (“Konnex”) is proposed for the tasks’ execution, i.e., the regulation of two switching devices. The experimental results from the training and testing stages provide evidence of the effectiveness of the users’ intentions classification, which has subsequently been used to operate the proposed home automation system, allowing users to operate two light bulbs.
{"title":"Brain–Computer-Interface-Based Smart-Home Interface by Leveraging Motor Imagery Signals","authors":"Simona Cariello, D. Sanalitro, Alessandro Micali, A. Buscarino, M. Bucolo","doi":"10.3390/inventions8040091","DOIUrl":"https://doi.org/10.3390/inventions8040091","url":null,"abstract":"In this work, we propose a brain–computer-interface (BCI)-based smart-home interface which leverages motor imagery (MI) signals to operate home devices in real-time. The idea behind MI-BCI is that different types of MI activities will activate various brain regions. Therefore, after recording the user’s electroencephalogram (EEG) data, two approaches, i.e., Regularized Common Spatial Pattern (RCSP) and Linear Discriminant Analysis (LDA), analyze these data to classify users’ imagined tasks. In such a way, the user can perform the intended action. In the proposed framework, EEG signals were recorded by using the EMOTIV helmet and OpenVibe, a free and open-source platform that has been utilized for EEG signal feature extraction and classification. After being classified, such signals are then converted into control commands, and the open communication protocol for building automation KNX (“Konnex”) is proposed for the tasks’ execution, i.e., the regulation of two switching devices. The experimental results from the training and testing stages provide evidence of the effectiveness of the users’ intentions classification, which has subsequently been used to operate the proposed home automation system, allowing users to operate two light bulbs.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43792295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-13DOI: 10.3390/inventions8040090
Umapathi Krishnamoorthy, Ushaa Pitchaikani, Eugen Rusu, H. H. Fayek
Renewable and distributed energy generation includes wind turbines, fuel cells, solar cells, and batteries. These distributed energy sources need special power converters in order to connect them to the grid and make the generated power available for public use. Solar energy is the most readily available energy source; hence, if utilized properly, it can power up both domestic and industrial loads. Solar cells produce DC power, and this should be converted to an AC source with the help of inverters. A multi-level inverter for an application is selected based on a trade-off between cost, complexity, losses, and total harmonic distortion (THD). A packed U-cell (PUC) topology is composed of power switches and voltage sources connected in a series-parallel fashion. This basic unit can be extended to a greater number of output voltage levels. The significance of this design is the reduced use of power switches, gate drivers, protection circuits, and capacitors. The converter presented in this paper is a 31-level topology switched by a variable switching frequency-based model predictive controller that helps in achieving optimal output with reduced harmonics to a great extent. The gate driver circuit is also optimized in terms of power consumption and size complexity. A comparison of the 9-level and the 31-level PUC inverters is carried out to study the impact of the number of levels on the total harmonic distortion. The simulation results depict that the total harmonic distortion (THD) for a nominal modulation index of 0.8 is 11.54% and 3.27% for the 9-level multi-level inverter (MLI) and the 31-level modified packed U-cell multi-level inverter (MPUC-MLI), respectively. The reduction in THD is attributed to the increased number of steps in the output when using the model predictive controller.
{"title":"Performance Analysis of Harmonic-Reduced Modified PUC Multi-Level Inverter Based on an MPC Algorithm","authors":"Umapathi Krishnamoorthy, Ushaa Pitchaikani, Eugen Rusu, H. H. Fayek","doi":"10.3390/inventions8040090","DOIUrl":"https://doi.org/10.3390/inventions8040090","url":null,"abstract":"Renewable and distributed energy generation includes wind turbines, fuel cells, solar cells, and batteries. These distributed energy sources need special power converters in order to connect them to the grid and make the generated power available for public use. Solar energy is the most readily available energy source; hence, if utilized properly, it can power up both domestic and industrial loads. Solar cells produce DC power, and this should be converted to an AC source with the help of inverters. A multi-level inverter for an application is selected based on a trade-off between cost, complexity, losses, and total harmonic distortion (THD). A packed U-cell (PUC) topology is composed of power switches and voltage sources connected in a series-parallel fashion. This basic unit can be extended to a greater number of output voltage levels. The significance of this design is the reduced use of power switches, gate drivers, protection circuits, and capacitors. The converter presented in this paper is a 31-level topology switched by a variable switching frequency-based model predictive controller that helps in achieving optimal output with reduced harmonics to a great extent. The gate driver circuit is also optimized in terms of power consumption and size complexity. A comparison of the 9-level and the 31-level PUC inverters is carried out to study the impact of the number of levels on the total harmonic distortion. The simulation results depict that the total harmonic distortion (THD) for a nominal modulation index of 0.8 is 11.54% and 3.27% for the 9-level multi-level inverter (MLI) and the 31-level modified packed U-cell multi-level inverter (MPUC-MLI), respectively. The reduction in THD is attributed to the increased number of steps in the output when using the model predictive controller.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49601134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-05DOI: 10.3390/inventions8040089
A. Rufer
Hydrogen powered vehicles use high-pressure reservoirs from which the gas is transferred to the low-pressure fuel-cell via a classical pressure reduction valve. In these systems no expansion work is recovered and the question is addressed of the potential to increase global efficiency by using an expansion machine between the reservoir and the electrochemical reactor. This paper investigates the feasibility of such an expansion machine, and evaluates the mechanical constraints in terms of forces, torques and produced power by numeric simulation. It further evaluates the energetic contribution to the whole conversion chain from the hydrogen reservoir to the common electrical network on board. A low-energy contribution of the expansion system addresses the question of the real benefit of such an investment.
{"title":"Expansion Work Recovery of Hydrogen for a FC-Truck-Tentative Design of an Expansion Machine","authors":"A. Rufer","doi":"10.3390/inventions8040089","DOIUrl":"https://doi.org/10.3390/inventions8040089","url":null,"abstract":"Hydrogen powered vehicles use high-pressure reservoirs from which the gas is transferred to the low-pressure fuel-cell via a classical pressure reduction valve. In these systems no expansion work is recovered and the question is addressed of the potential to increase global efficiency by using an expansion machine between the reservoir and the electrochemical reactor. This paper investigates the feasibility of such an expansion machine, and evaluates the mechanical constraints in terms of forces, torques and produced power by numeric simulation. It further evaluates the energetic contribution to the whole conversion chain from the hydrogen reservoir to the common electrical network on board. A low-energy contribution of the expansion system addresses the question of the real benefit of such an investment.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45403100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-04DOI: 10.3390/inventions8040088
Enrique González-Plaza, David García, J. Prieto
Stirling engines are currently of interest due to their adaptability to a wide range of energy sources. Since simple tools are needed to guide the sizing of prototypes in preliminary studies, this paper proposes two groups of simple models to estimate the maximum power in Stirling engines with a kinematic drive mechanism. The models are based on regression or ANN techniques, using data from 34 engines over a wide range of operating conditions. To facilitate the generalisation and interpretation of results, all models are expressed by dimensionless variables. The first group models use three input variables and 23 data points for correlation construction or training purposes, while another 66 data points are used for testing. Models in the second group use eight inputs and 18 data points for correlation construction or training, while another 36 data points are used for testing. The three-input models provide estimations of the maximum brake power with an acceptable accuracy for feasibility studies. Using three-input models, the predictions of the maximum indicated power are very accurate, while those of the maximum brake power are less accurate, but acceptable for the preliminary design stage. In general, the best results are achieved with ANN models, although they only employ one hidden layer.
{"title":"A Revision of Empirical Models of Stirling Engine Performance Using Simple Artificial Neural Networks","authors":"Enrique González-Plaza, David García, J. Prieto","doi":"10.3390/inventions8040088","DOIUrl":"https://doi.org/10.3390/inventions8040088","url":null,"abstract":"Stirling engines are currently of interest due to their adaptability to a wide range of energy sources. Since simple tools are needed to guide the sizing of prototypes in preliminary studies, this paper proposes two groups of simple models to estimate the maximum power in Stirling engines with a kinematic drive mechanism. The models are based on regression or ANN techniques, using data from 34 engines over a wide range of operating conditions. To facilitate the generalisation and interpretation of results, all models are expressed by dimensionless variables. The first group models use three input variables and 23 data points for correlation construction or training purposes, while another 66 data points are used for testing. Models in the second group use eight inputs and 18 data points for correlation construction or training, while another 36 data points are used for testing. The three-input models provide estimations of the maximum brake power with an acceptable accuracy for feasibility studies. Using three-input models, the predictions of the maximum indicated power are very accurate, while those of the maximum brake power are less accurate, but acceptable for the preliminary design stage. In general, the best results are achieved with ANN models, although they only employ one hidden layer.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46153481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-03DOI: 10.3390/inventions8040087
A. Gvozdarev, T. Artemova, Aleksandra M. Alishchuk, M. Kazakova
The research studies hyper-Rayleigh behavior of a wireless communication system functioning in the presence of the generalized multipath fading. Although the initial metric (hyper-Rayleigh mode (HRM)) is quite informative, it is defined only asymptotically (i.e., for the infinitely increasing SNR). In spite of mathematical simplifications brought by such a definition (i.e., in this case most of the performance characteristics defining the HRM can be easily evaluated), it sufficiently limits its applications since, evidently, the real-life systems function in the presence of a finite (and usually not very high) SNR. The study presents a novel approach to the fading channel analysis (i.e., finite signal-to-noise ratio hyper-Rayleigh mode (fHRM)). The proposed metric (fHRM) is studied on the newly presented channel model-fluctuating double-Rayleigh with Line-of-Sight (fdRLoS) fading model. To accomplish this, the novel expressions for two channel-dependent system characteristics (i.e., the Amount of Fading (AoF) and the Outage Probability (OP)) were derived in exact form valid for arbitrary fading parameters. Based on the derived expressions, the finite SNR hyper-Rayleigh map is obtained, which helps to identify the parameters’ values corresponding to the specific propagation scenarios, which were further deployed to analyze the problem of the communication link physical layer security quantified in terms of the probability of strictly positive secrecy capacity (SPSC). Numerical verification of the derived closed-form expressions was performed. Several peculiarities of the system performance are observed and discussed.
{"title":"Closed-Form Hyper-Rayleigh Mode Analysis of the Fluctuating Double-Rayleigh with Line-of-Sight Fading Channel","authors":"A. Gvozdarev, T. Artemova, Aleksandra M. Alishchuk, M. Kazakova","doi":"10.3390/inventions8040087","DOIUrl":"https://doi.org/10.3390/inventions8040087","url":null,"abstract":"The research studies hyper-Rayleigh behavior of a wireless communication system functioning in the presence of the generalized multipath fading. Although the initial metric (hyper-Rayleigh mode (HRM)) is quite informative, it is defined only asymptotically (i.e., for the infinitely increasing SNR). In spite of mathematical simplifications brought by such a definition (i.e., in this case most of the performance characteristics defining the HRM can be easily evaluated), it sufficiently limits its applications since, evidently, the real-life systems function in the presence of a finite (and usually not very high) SNR. The study presents a novel approach to the fading channel analysis (i.e., finite signal-to-noise ratio hyper-Rayleigh mode (fHRM)). The proposed metric (fHRM) is studied on the newly presented channel model-fluctuating double-Rayleigh with Line-of-Sight (fdRLoS) fading model. To accomplish this, the novel expressions for two channel-dependent system characteristics (i.e., the Amount of Fading (AoF) and the Outage Probability (OP)) were derived in exact form valid for arbitrary fading parameters. Based on the derived expressions, the finite SNR hyper-Rayleigh map is obtained, which helps to identify the parameters’ values corresponding to the specific propagation scenarios, which were further deployed to analyze the problem of the communication link physical layer security quantified in terms of the probability of strictly positive secrecy capacity (SPSC). Numerical verification of the derived closed-form expressions was performed. Several peculiarities of the system performance are observed and discussed.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":" ","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44011628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}