Pub Date : 2024-09-02DOI: 10.1016/j.irbm.2024.100858
Grant A. Chesbro , Jessica A. Peterson , Rebecca D. Larson , Christopher D. Black
Objectives: The nociceptive flexion reflex (NFR) is used as a pseudo-objective measure of pain that is measured using electromyography (EMG). EMG signals can be analyzed using nonlinear methods to identify complex changes in physiological systems. Physiological complexity has been shown to allow a wider range of adaptable states for the system to deal with stressors. The purpose of this study was to examine changes in complexity and entropy of EMG signals from the biceps femoris during non-noxious stimuli and noxious stimuli that evoked the NFR before and after acute inflammation. Methods and Materials: Twelve healthy participants (25.17y ± 3.43) underwent the NFR protocol. EMG signal complexity was calculated using Hurst Exponent (H), determinism (DET), and recurrence rate (RR), and Sample Entropy (SampEn). Results: RR (∼200%), DET (∼70%), and H (∼35%) were higher and SampEn was reduced (∼50%) during the noxious stimulus that evoked the NFR compared to non-noxious stimuli. No significant differences were found for any of the complexity and entropy measures before and after exercise-induced inflammation (). Reduced complexity (increased H, DET, and RR) and increased regularity (SampEn) reflect reduced adaptability to stressors. Conclusions: Nonlinear methods such as complexity and entropy measures could be useful in understanding how a healthy neuromuscular system responds to disturbances. The reductions in complexity following a noxious stimulus could reflect the neuromuscular system adapting to environmental conditions to prevent damage or injury to the body.
{"title":"A Nonlinear Analysis of Nociceptive Flexion Reflex Changes Before and After Acute Inflammation","authors":"Grant A. Chesbro , Jessica A. Peterson , Rebecca D. Larson , Christopher D. Black","doi":"10.1016/j.irbm.2024.100858","DOIUrl":"10.1016/j.irbm.2024.100858","url":null,"abstract":"<div><p><strong>Objectives:</strong> The nociceptive flexion reflex (NFR) is used as a pseudo-objective measure of pain that is measured using electromyography (EMG). EMG signals can be analyzed using nonlinear methods to identify complex changes in physiological systems. Physiological complexity has been shown to allow a wider range of adaptable states for the system to deal with stressors. The purpose of this study was to examine changes in complexity and entropy of EMG signals from the biceps femoris during non-noxious stimuli and noxious stimuli that evoked the NFR before and after acute inflammation. <strong>Methods and Materials:</strong> Twelve healthy participants (25.17y ± 3.43) underwent the NFR protocol. EMG signal complexity was calculated using Hurst Exponent (H), determinism (DET), and recurrence rate (RR), and Sample Entropy (SampEn). <strong>Results:</strong> RR (∼200%), DET (∼70%), and H (∼35%) were higher and SampEn was reduced (∼50%) during the noxious stimulus that evoked the NFR compared to non-noxious stimuli. No significant differences were found for any of the complexity and entropy measures before and after exercise-induced inflammation (<span><math><mi>p</mi><mo><</mo><mn>0.05</mn></math></span>). Reduced complexity (increased H, DET, and RR) and increased regularity (SampEn) reflect reduced adaptability to stressors. <strong>Conclusions:</strong> Nonlinear methods such as complexity and entropy measures could be useful in understanding how a healthy neuromuscular system responds to disturbances. The reductions in complexity following a noxious stimulus could reflect the neuromuscular system adapting to environmental conditions to prevent damage or injury to the body.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"45 5","pages":"Article 100858"},"PeriodicalIF":5.6,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142161961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1016/j.irbm.2024.100853
Hala Bouazizi , Isabelle Brunette , Jean Meunier
Objective
In ophthalmology, there is a need to explore the relationships between clinical parameters of the cornea and the corneal shape. This study explores the paradigm of machine learning with nonlinear regression methods to verify whether corneal shapes can effectively be predicted from clinical data only, in an attempt to better assess and visualize their effects on the corneal shape.
Methods
The dimensionality of a database of normal anterior corneal surfaces was first reduced by Zernike modeling into short vectors of 12 to 20 coefficients used as targets. The associated structural, refractive and demographic corneal parameters were used as predictors. The nonlinear regression methods were borrowed from the scikit-learn library. All possible regression models (method + predictors + targets) were pre-tested in an exploratory step and those that performed better than linear regression were fully tested with 10-fold validation. The best model was selected based on mean RMSE scores measuring the distance between the predicted corneal surfaces of a model and the raw (non-modeled) true surfaces. The quality of the best model's predictions was visually assessed thanks to atlases of average elevation maps that displayed the centroids of the predicted and true surfaces on a number of clinical variables.
Results
The best model identified was gradient boosting regression using all available clinical parameters to predict 16 Zernike coefficients. The predicted and true corneal surfaces represented in average elevation maps were remarkably similar. The most explicative predictor was the radius of the best-fit sphere, and departures from that sphere were mostly explained by the eye side and by refractive parameters (axis and cylinder).
Conclusion
It is possible to make a reasonably good prediction of the normal corneal shape solely from a set of clinical parameters. In so doing, one can visualize their effects on the corneal shape and identify its most important contributors.
{"title":"Predicting the Shape of Corneas from Clinical Data with Machine Learning Models","authors":"Hala Bouazizi , Isabelle Brunette , Jean Meunier","doi":"10.1016/j.irbm.2024.100853","DOIUrl":"10.1016/j.irbm.2024.100853","url":null,"abstract":"<div><h3>Objective</h3><p>In ophthalmology, there is a need to explore the relationships between clinical parameters of the cornea and the corneal shape. This study explores the paradigm of machine learning with nonlinear regression methods to verify whether corneal shapes can effectively be predicted from clinical data only, in an attempt to better assess and visualize their effects on the corneal shape.</p></div><div><h3>Methods</h3><p>The dimensionality of a database of normal anterior corneal surfaces was first reduced by Zernike modeling into short vectors of 12 to 20 coefficients used as targets. The associated structural, refractive and demographic corneal parameters were used as predictors. The nonlinear regression methods were borrowed from the scikit-learn library. All possible regression models (method + predictors + targets) were pre-tested in an exploratory step and those that performed better than linear regression were fully tested with 10-fold validation. The best model was selected based on mean RMSE scores measuring the distance between the predicted corneal surfaces of a model and the raw (non-modeled) true surfaces. The quality of the best model's predictions was visually assessed thanks to atlases of average elevation maps that displayed the centroids of the predicted and true surfaces on a number of clinical variables.</p></div><div><h3>Results</h3><p>The best model identified was gradient boosting regression using all available clinical parameters to predict 16 Zernike coefficients. The predicted and true corneal surfaces represented in average elevation maps were remarkably similar. The most explicative predictor was the radius of the best-fit sphere, and departures from that sphere were mostly explained by the eye side and by refractive parameters (axis and cylinder).</p></div><div><h3>Conclusion</h3><p>It is possible to make a reasonably good prediction of the normal corneal shape solely from a set of clinical parameters. In so doing, one can visualize their effects on the corneal shape and identify its most important contributors.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"45 5","pages":"Article 100853"},"PeriodicalIF":5.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1016/j.irbm.2024.100854
Vivian Chia-Rong Hsieh, Meng-Yu Liu, Hsueh-Chun Lin
Background and Objective
Utilizing artificial intelligence (AI), a clinical decision support system (CDSS), can help physicians anticipate possible complications of cirrhosis patients before prescribing more accurate treatments. This study aimed to establish a prototype of AI-CDSS modeling using electronic health records to predict five complications for cirrhosis patients who were controlled for oral antiviral drugs, lamivudine (LAM) or entecavir (ETV).
Methods
Our modeling attained a web-based AI-CDSS with four steps – data extraction, sample normalization, AI-enabled machine learning (ML), and system integration. We designed the extract-transform-load (ETL) procedure to filter the analytics features from a clinical database. The data training process applied 10-fold cross-validation to verify diverse ML models due to possible feature patterns with medications for predicting the complications. In addition, we applied both statistical means and standard deviations of the realistic datasets to create the simulative datasets, which contained sufficient and balanced data to train the most efficient models for evaluation. The modeling combined multiple ML methods, such as support vector machine (SVM), random forest (RF), extreme gradient boosting, naive Bayes, and logistic regression, for training fourteen features to generate the AI-CDSS's prediction functionality.
Results
The models achieving an accuracy of 0.8 after cross-validations would be qualified for the AI-CDSS. SVM and RF models using realistic data predicted jaundice with an accuracy of over 0.82. Furthermore, the SVM models using simulative data reached an accuracy of over 0.85 when predicting patients with jaundice. Our approaches implied that the simulative datasets based on the same distributions as that of the features in the realistic dataset were adequate for training the ML models. The RF model could reach an AUC of up to 0.82 for multiple complications by testing with the un-trained data. Finally, we successfully installed twenty models of the suitable ML methods in the AI-CDSS to predict five complications for cirrhosis patients prescribed with LAM or ETV.
Conclusions
Our modeling integrated a self-developed AI-CDSS with the approved ML models to predict cirrhosis complications for aiding clinical decision making.
背景和目的利用人工智能(AI)--临床决策支持系统(CDSS),可以帮助医生在开出更准确的治疗处方之前预测肝硬化患者可能出现的并发症。本研究旨在利用电子健康记录建立人工智能-CDSS建模原型,以预测接受口服抗病毒药物拉米夫定(LAM)或恩替卡韦(ETV)治疗的肝硬化患者的五种并发症。方法我们的建模实现了基于网络的人工智能-CDSS,包括四个步骤--数据提取、样本规范化、人工智能机器学习(ML)和系统集成。我们设计了提取-转换-加载(ETL)程序,从临床数据库中筛选分析特征。在数据训练过程中,我们采用了 10 倍交叉验证,以验证因可能的特征模式而产生的多种 ML 模型,这些特征模式与预测并发症的药物有关。此外,我们还采用了现实数据集的统计均值和标准差来创建模拟数据集,其中包含足够且均衡的数据,以训练最有效的评估模型。建模结合了多种 ML 方法,如支持向量机 (SVM)、随机森林 (RF)、极梯度提升、天真贝叶斯和逻辑回归,用于训练 14 个特征,以生成 AI-CDSS 的预测功能。使用现实数据的 SVM 和 RF 模型预测黄疸的准确率超过了 0.82。此外,使用模拟数据的 SVM 模型预测黄疸患者的准确率超过了 0.85。我们的方法表明,基于与现实数据集特征相同分布的模拟数据集足以训练 ML 模型。通过使用未训练数据进行测试,射频模型对多种并发症的 AUC 可高达 0.82。最后,我们成功地在 AI-CDSS 中安装了 20 个合适的 ML 方法模型,用于预测肝硬化患者服用 LAM 或 ETV 后的五种并发症。
{"title":"AI-Enabled Clinical Decision Support System Modeling for the Prediction of Cirrhosis Complications","authors":"Vivian Chia-Rong Hsieh, Meng-Yu Liu, Hsueh-Chun Lin","doi":"10.1016/j.irbm.2024.100854","DOIUrl":"10.1016/j.irbm.2024.100854","url":null,"abstract":"<div><h3>Background and Objective</h3><p>Utilizing artificial intelligence (AI), a clinical decision support system (CDSS), can help physicians anticipate possible complications of cirrhosis patients before prescribing more accurate treatments. This study aimed to establish a prototype of AI-CDSS modeling using electronic health records to predict five complications for cirrhosis patients who were controlled for oral antiviral drugs, lamivudine (LAM) or entecavir (ETV).</p></div><div><h3>Methods</h3><p>Our modeling attained a web-based AI-CDSS with four steps – data extraction, sample normalization, AI-enabled machine learning (ML), and system integration. We designed the extract-transform-load (ETL) procedure to filter the analytics features from a clinical database. The data training process applied 10-fold cross-validation to verify diverse ML models due to possible feature patterns with medications for predicting the complications. In addition, we applied both statistical means and standard deviations of the realistic datasets to create the simulative datasets, which contained sufficient and balanced data to train the most efficient models for evaluation. The modeling combined multiple ML methods, such as support vector machine (SVM), random forest (RF), extreme gradient boosting, naive Bayes, and logistic regression, for training fourteen features to generate the AI-CDSS's prediction functionality.</p></div><div><h3>Results</h3><p>The models achieving an accuracy of 0.8 after cross-validations would be qualified for the AI-CDSS. SVM and RF models using realistic data predicted jaundice with an accuracy of over 0.82. Furthermore, the SVM models using simulative data reached an accuracy of over 0.85 when predicting patients with jaundice. Our approaches implied that the simulative datasets based on the same distributions as that of the features in the realistic dataset were adequate for training the ML models. The RF model could reach an AUC of up to 0.82 for multiple complications by testing with the un-trained data. Finally, we successfully installed twenty models of the suitable ML methods in the AI-CDSS to predict five complications for cirrhosis patients prescribed with LAM or ETV.</p></div><div><h3>Conclusions</h3><p>Our modeling integrated a self-developed AI-CDSS with the approved ML models to predict cirrhosis complications for aiding clinical decision making.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"45 5","pages":"Article 100854"},"PeriodicalIF":5.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142087309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.irbm.2024.100852
Mustafa Kahraman , Hatice Vildan Dudukcu , Serkan Kurt , Huseyin Yildiz , Nizamettin Aydin , Ummu Mutlu , Ramazan Cakmak , Elif Beyza Boz , Hasan Ediz Ozbek , Mehmet Ali Erturk , Gokhan Ozogur , Hatice Nizam Ozogur , Muhammed Ali Aydin , Kubilay Karsidag , Sukru Ozturk , Ilhan Satman , Mehmet Akif Karan
Accurate and timely injection of insulin doses in accordance with the treatment protocol is very important in the follow-up of insulin-dependent diabetes patients. In this study, a new smart mobile apparatus (SMA) has been developed. The SMA can be attached to insulin pens and record and transfer data by detecting the patient's dose of insulin and the time at which it was provided. The SMA can detect the dose determined in the insulin pen through linear capacitive sensors. Electronic parts and sensor mechanism are located on the designed SMA body. The insulin pen's two-part mechanical construction of the body senses movement during dosage adjustment while also making sure the dose information is recorded in the control unit. The dose and time information recorded in the SMA internal memory are transmitted to the patient's smartphone via the developed mobile application. The developed SMA prototypes were evaluated by a team of doctors in a hospital setting for three months. As a result of the three-month study, it was observed that the insulin dose and administration times could be accurately sent to the smartphone application via SMA. The SMA was created in the laboratory environment and was prepared for pilot research with insulin-dependent diabetes patients in a hospital setting. It was observed that the SMA prototype successfully identified and recorded the dose and timing of the patient's self-administered insulin.
在胰岛素依赖型糖尿病患者的随访过程中,按照治疗方案准确及时地注射胰岛素剂量非常重要。本研究开发了一种新型智能移动设备(SMA)。SMA 可以安装在胰岛素笔上,通过检测病人的胰岛素剂量和注射时间来记录和传输数据。SMA 可通过线性电容传感器检测胰岛素笔中确定的剂量。电子部件和传感器机构位于设计的 SMA 本体上。胰岛素笔的笔身由两部分机械结构组成,可在调整剂量时感知移动,同时确保剂量信息被记录到控制单元中。记录在 SMA 内部存储器中的剂量和时间信息将通过开发的移动应用程序传输到患者的智能手机上。一个医生团队在医院环境中对所开发的 SMA 原型进行了为期三个月的评估。三个月的研究结果表明,胰岛素剂量和给药时间可通过 SMA 准确发送到智能手机应用程序。SMA 是在实验室环境中创建的,准备在医院环境中对胰岛素依赖型糖尿病患者进行试点研究。据观察,SMA 原型成功识别并记录了患者自行注射胰岛素的剂量和时间。
{"title":"Synchronized Diabetes Monitoring System: Development of Smart Mobile Apparatus for Diabetes Using Insulin","authors":"Mustafa Kahraman , Hatice Vildan Dudukcu , Serkan Kurt , Huseyin Yildiz , Nizamettin Aydin , Ummu Mutlu , Ramazan Cakmak , Elif Beyza Boz , Hasan Ediz Ozbek , Mehmet Ali Erturk , Gokhan Ozogur , Hatice Nizam Ozogur , Muhammed Ali Aydin , Kubilay Karsidag , Sukru Ozturk , Ilhan Satman , Mehmet Akif Karan","doi":"10.1016/j.irbm.2024.100852","DOIUrl":"10.1016/j.irbm.2024.100852","url":null,"abstract":"<div><p>Accurate and timely injection of insulin doses in accordance with the treatment protocol is very important in the follow-up of insulin-dependent diabetes patients. In this study, a new smart mobile apparatus (SMA) has been developed. The SMA can be attached to insulin pens and record and transfer data by detecting the patient's dose of insulin and the time at which it was provided. The SMA can detect the dose determined in the insulin pen through linear capacitive sensors. Electronic parts and sensor mechanism are located on the designed SMA body. The insulin pen's two-part mechanical construction of the body senses movement during dosage adjustment while also making sure the dose information is recorded in the control unit. The dose and time information recorded in the SMA internal memory are transmitted to the patient's smartphone via the developed mobile application. The developed SMA prototypes were evaluated by a team of doctors in a hospital setting for three months. As a result of the three-month study, it was observed that the insulin dose and administration times could be accurately sent to the smartphone application via SMA. The SMA was created in the laboratory environment and was prepared for pilot research with insulin-dependent diabetes patients in a hospital setting. It was observed that the SMA prototype successfully identified and recorded the dose and timing of the patient's self-administered insulin.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"45 5","pages":"Article 100852"},"PeriodicalIF":5.6,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.irbm.2024.100851
Kawtar Ghiatt , Auguste L.W. Koh , Léa Scapucciati , Kiyoka Kinugawa , John McPhee , Ning Jiang , Sofiane Boudaoud
Introduction
Aging is associated with muscle decline, which alters both functional and anatomical properties of the neuromuscular system. These modifications can be reflected in high-density surface electromyography (HD-sEMG) signals. This study examines how age and sex impact the shape of the amplitude Probability Density Function (PDF) of HD-sEMG signals.
Materials and Methods
Monopolar HD-sEMG signals were collected from the Biceps Brachii in a cohort of 17 individuals: 10 women (mean age: 22.9 ± 3.6 years) and 7 men (mean age: 24.4 ± 2.5 years) in the younger group, and 10 women (mean age: 69.8 ± 4.8 years) and 7 men (mean age: 72.8 ± 2.7 years) in the elderly group. The recordings were conducted during an elbow flexion at both 20% and 40% maximum voluntary contraction. The signal amplitude was evaluated using root means square amplitude (RMSA) and the PDF shape of each HD-sEMG signal was assessed through skewness, excess Kurtosis, and robust functional statistics. These shape distance metrics evaluate the departure from Gaussianity related to muscle aging. a) We conducted a comparison study of the HD-sEMG PDF shapes between younger and elderly individuals. b) Evaluating differences between men and women. c) Considering monopolar and Laplacian electrode configurations that are sensitive to different muscle regions.
Results
A) The HD-sEMG PDFs of elderly subjects demonstrated a lower departure from Gaussianity than their younger counterparts. B) Women exhibited lower RMSA values than men, and, on average, a lower departure from Gaussianity whatever the age and contraction level C) Trends of departure from Gaussianity with contraction level, seems to be influenced by the electrode configuration. In fact, a decrease in Gaussianity departure is observed with monopolar recordings where an increase is observed with Laplacian one, clearly indicating different muscle region assessment.
Discussion
The findings highlight the influence of factors such aging, sex, contraction level and electrode montage on the shape of the HD-sEMG PDF, emphasizing the significance of using this descriptor for monitoring and better assessment of muscle aging.
{"title":"Gaussianity Evaluation of HD-sEMG Signals with Aging and Sex During Low and Moderate Isometric Contractions of the Biceps Brachii","authors":"Kawtar Ghiatt , Auguste L.W. Koh , Léa Scapucciati , Kiyoka Kinugawa , John McPhee , Ning Jiang , Sofiane Boudaoud","doi":"10.1016/j.irbm.2024.100851","DOIUrl":"10.1016/j.irbm.2024.100851","url":null,"abstract":"<div><h3>Introduction</h3><p>Aging is associated with muscle decline, which alters both functional and anatomical properties of the neuromuscular system. These modifications can be reflected in high-density surface electromyography (HD-sEMG) signals. This study examines how age and sex impact the shape of the amplitude Probability Density Function (PDF) of HD-sEMG signals.</p></div><div><h3>Materials and Methods</h3><p>Monopolar HD-sEMG signals were collected from the Biceps Brachii in a cohort of 17 individuals: 10 women (mean age: 22.9 ± 3.6 years) and 7 men (mean age: 24.4 ± 2.5 years) in the younger group, and 10 women (mean age: 69.8 ± 4.8 years) and 7 men (mean age: 72.8 ± 2.7 years) in the elderly group. The recordings were conducted during an elbow flexion at both 20% and 40% maximum voluntary contraction. The signal amplitude was evaluated using root means square amplitude (RMSA) and the PDF shape of each HD-sEMG signal was assessed through skewness, excess Kurtosis, and robust functional statistics. These shape distance metrics evaluate the departure from Gaussianity related to muscle aging. a) We conducted a comparison study of the HD-sEMG PDF shapes between younger and elderly individuals. b) Evaluating differences between men and women. c) Considering monopolar and Laplacian electrode configurations that are sensitive to different muscle regions.</p></div><div><h3>Results</h3><p>A) The HD-sEMG PDFs of elderly subjects demonstrated a lower departure from Gaussianity than their younger counterparts. B) Women exhibited lower RMSA values than men, and, on average, a lower departure from Gaussianity whatever the age and contraction level C) Trends of departure from Gaussianity with contraction level, seems to be influenced by the electrode configuration. In fact, a decrease in Gaussianity departure is observed with monopolar recordings where an increase is observed with Laplacian one, clearly indicating different muscle region assessment.</p></div><div><h3>Discussion</h3><p>The findings highlight the influence of factors such aging, sex, contraction level and electrode montage on the shape of the HD-sEMG PDF, emphasizing the significance of using this descriptor for monitoring and better assessment of muscle aging.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"45 5","pages":"Article 100851"},"PeriodicalIF":5.6,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.irbm.2024.100850
Nicolas Portal , Catherine Achard , Saud Khan , Vincent Nguyen , Mikael Prigent , Mohamed Zarai , Khaoula Bouazizi , Johanne Sylvain , Alban Redheuil , Gilles Montalescot , Nadjia Kachenoura , Thomas Dietenbeck
Context
Deep learning algorithms have been widely used for cardiac image segmentation. However, most of these architectures rely on convolutions that hardly model long-range dependencies, limiting their ability to extract contextual information. Moreover, the traditional U-net architecture suffers from the difference of semantic information between feature maps of the encoder and decoder (also known as the semantic gap).
Material and method
To address this issue, a new network architecture relying on attention mechanism was introduced. Swin Filtering Blocks (SFB), that use Swin Transformer blocks in a cross-attention manner, were added between the encoder and the decoder to filter information coming from the encoder based on the feature map from the decoder. Attention was also employed at the lowest resolution in the form of a transformer layer to increase the receptive field of the network.
We conducted experiments to assess both generalization capability and to evaluate how training on all frames of the cardiac cycle rather than only the end-diastole and end-systole impacts strain and segmentation performances.
Results and conclusion
Visual inspection of feature maps suggested that Swin Filtering Blocks contribute to the reduction of the semantic gap. Performing attention between all patches using a transformer layer brought higher performance than convolutions. Training the model with all phases of the cardiac cycle resulted in slightly more accurate segmentations while leading to a more noticeable improvement for strain estimation. A limited decrease in performance was observed when testing on out-of-distribution data, but the gap widens for the most apical slices.
{"title":"Attention-Based Neural Network for Cardiac MRI Segmentation: Application to Strain and Volume Computation","authors":"Nicolas Portal , Catherine Achard , Saud Khan , Vincent Nguyen , Mikael Prigent , Mohamed Zarai , Khaoula Bouazizi , Johanne Sylvain , Alban Redheuil , Gilles Montalescot , Nadjia Kachenoura , Thomas Dietenbeck","doi":"10.1016/j.irbm.2024.100850","DOIUrl":"10.1016/j.irbm.2024.100850","url":null,"abstract":"<div><h3>Context</h3><p>Deep learning algorithms have been widely used for cardiac image segmentation. However, most of these architectures rely on convolutions that hardly model long-range dependencies, limiting their ability to extract contextual information. Moreover, the traditional U-net architecture suffers from the difference of semantic information between feature maps of the encoder and decoder (also known as the semantic gap).</p></div><div><h3>Material and method</h3><p>To address this issue, a new network architecture relying on attention mechanism was introduced. Swin Filtering Blocks (SFB), that use Swin Transformer blocks in a cross-attention manner, were added between the encoder and the decoder to filter information coming from the encoder based on the feature map from the decoder. Attention was also employed at the lowest resolution in the form of a transformer layer to increase the receptive field of the network.</p><p>We conducted experiments to assess both generalization capability and to evaluate how training on all frames of the cardiac cycle rather than only the end-diastole and end-systole impacts strain and segmentation performances.</p></div><div><h3>Results and conclusion</h3><p>Visual inspection of feature maps suggested that Swin Filtering Blocks contribute to the reduction of the semantic gap. Performing attention between all patches using a transformer layer brought higher performance than convolutions. Training the model with all phases of the cardiac cycle resulted in slightly more accurate segmentations while leading to a more noticeable improvement for strain estimation. A limited decrease in performance was observed when testing on out-of-distribution data, but the gap widens for the most apical slices.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"45 4","pages":"Article 100850"},"PeriodicalIF":5.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1959031824000319/pdfft?md5=45a62576b482068e95734d0020169441&pid=1-s2.0-S1959031824000319-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141772929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.irbm.2024.100849
Yedukondala Rao Veeranki , Hugo F. Posada-Quintero , Ramakrishnan Swaminathan
Background
Emotion assessment plays a vital role in understanding and enhancing various aspects of human life, from mental well-being and social interactions to decision-making processes. Electrodermal Activity (EDA) is widely used for emotion assessment, as it is highly sensitive to sympathetic nervous system activity. While numerous existing approaches are available for EDA-based emotion assessment, they often fall short in capturing the dynamic non-linear variations and time-varying characteristics of EDA. These limitations hinder their effectiveness in accurately classifying emotional states along the Arousal and Valence dimensions. This study aims to address these shortcomings by introducing Transition Network Analysis (TNA) as a novel approach to EDA-based emotion assessment.
Methods
To explore the dynamic non-linear variations in EDA and their impact on the classification of Arousal and Valence dimensions, we decomposed EDA data into its phasic and tonic components. The phasic information is represented over a transition network. From the transition network, we extracted seven features. These features were subsequently used for classification purposes employing four different machine learning classifiers: logistic regression, multi-layer perceptron, random forest, and support vector machine (SVM). The performance of each classifier was evaluated using Leave-One-Subject-Out cross-validation. The study evaluated the performance of these classifiers in characterizing emotional dimensions.
Results
The results of this research reveal significant variations in Degree Centrality and Closeness Centrality within the transition network features, enabling effective characterization of Arousal and Valence dimensions. Among the classifiers, the SVM achieved F1 scores of 71% and 72% for Arousal and Valence classification, respectively.
Significance
This study holds significant implications as it not only enhances our understanding of EDA's non-linear dynamics but also demonstrates the potential of TNA in addressing the limitations of existing techniques for EDA-based emotion assessment. The findings open exciting opportunities for the advancement of wearable EDA monitoring devices in naturalistic settings, bridging a critical gap in the field of affective computing. Furthermore, this research underlines the importance of recognizing the limitations in current EDA-based emotion assessment methods and suggests an innovative path forward in the pursuit of more accurate and comprehensive emotional state classification.
{"title":"Transition Network-Based Analysis of Electrodermal Activity Signals for Emotion Recognition","authors":"Yedukondala Rao Veeranki , Hugo F. Posada-Quintero , Ramakrishnan Swaminathan","doi":"10.1016/j.irbm.2024.100849","DOIUrl":"10.1016/j.irbm.2024.100849","url":null,"abstract":"<div><h3>Background</h3><p>Emotion assessment plays a vital role in understanding and enhancing various aspects of human life, from mental well-being and social interactions to decision-making processes. Electrodermal Activity (EDA) is widely used for emotion assessment, as it is highly sensitive to sympathetic nervous system activity. While numerous existing approaches are available for EDA-based emotion assessment, they often fall short in capturing the dynamic non-linear variations and time-varying characteristics of EDA. These limitations hinder their effectiveness in accurately classifying emotional states along the Arousal and Valence dimensions. This study aims to address these shortcomings by introducing Transition Network Analysis (TNA) as a novel approach to EDA-based emotion assessment.</p></div><div><h3>Methods</h3><p>To explore the dynamic non-linear variations in EDA and their impact on the classification of Arousal and Valence dimensions, we decomposed EDA data into its phasic and tonic components. The phasic information is represented over a transition network. From the transition network, we extracted seven features. These features were subsequently used for classification purposes employing four different machine learning classifiers: logistic regression, multi-layer perceptron, random forest, and support vector machine (SVM). The performance of each classifier was evaluated using Leave-One-Subject-Out cross-validation. The study evaluated the performance of these classifiers in characterizing emotional dimensions.</p></div><div><h3>Results</h3><p>The results of this research reveal significant variations in Degree Centrality and Closeness Centrality within the transition network features, enabling effective characterization of Arousal and Valence dimensions. Among the classifiers, the SVM achieved F1 scores of 71% and 72% for Arousal and Valence classification, respectively.</p></div><div><h3>Significance</h3><p>This study holds significant implications as it not only enhances our understanding of EDA's non-linear dynamics but also demonstrates the potential of TNA in addressing the limitations of existing techniques for EDA-based emotion assessment. The findings open exciting opportunities for the advancement of wearable EDA monitoring devices in naturalistic settings, bridging a critical gap in the field of affective computing. Furthermore, this research underlines the importance of recognizing the limitations in current EDA-based emotion assessment methods and suggests an innovative path forward in the pursuit of more accurate and comprehensive emotional state classification.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"45 4","pages":"Article 100849"},"PeriodicalIF":5.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141772930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1016/j.irbm.2024.100848
Zemeng Li , Xiaochun Wang , Shuyang Wang , You Zhou , Xinqi Yu , Jianjun Ji , Jun Yang , Song Lin , Sheng Zhou
Objective
This study aims to evaluate the impact of image factors on the performance of deep learning models used for ophthalmic ultrasound image diagnosis.
Methods
A total of 3,373 ophthalmic ultrasound images are used to deeply evaluate the influence of image factors on the performance of deep learning classification models. Inceptionv3, Xception, and the fusion model Inceptionv3-Xception are used to explore how brightness, contrast, gain, noise, size, format, pseudo-color seven image-related factors affect the classification performance of the model.
Results
Inceptionv3-Xception has advantages in the recognition accuracy of various image factors. When the image brightness changes, the model's performance shows a downward trend (0.5 vs. 1 vs. 1.8, ACC 95.73 vs. 97.06 vs. 93.54, P < 0.05). When the image contrast changes, the model's performance is comparable (0.5 vs. 1 vs. 1.2, ACC 96.23 vs. 96.95 vs. 97.45, P > 0.05). When the image gain drops to 50 dB, the model's accuracy decreases significantly (50 dB vs. 105 dB, ACC 96.49 vs. 97.57, P < 0.05). When Gaussian noise is added to the image, the model's performance gradually decreases (0.02 vs. 0, ACC 89.48vs97.06, P < 0.05). When the image size drops to 25% of the original image, the model's performance decreases significantly (25% vs. 100%, ACC 93.18 vs. 97.06, P < 0.01). When the image format changes, the model's recognition accuracy is similar (JPG vs. BMP vs. PNG, ACC 96.98 vs. 97.06 vs. 97.06, P > 0.05). The accuracy of the model in recognizing pseudo-color images decreases significantly compared to grayscale images (grayscale vs. pseudo-color, ACC 35.96 vs. 97.06).
Conclusion
These results indicate that image quality greatly influences the model training process, and acquiring high-quality images is an important prerequisite for high recognition performance of the model. This study offers valuable insights for the improvement of other robust deep learning models for ophthalmic ultrasound image recognition.
本研究旨在评估图像因素对用于眼科超声图像诊断的深度学习模型性能的影响。本研究共使用了 3,373 幅眼科超声图像,以深入评估图像因素对深度学习分类模型性能的影响。使用 Inceptionv3、Xception 和融合模型 Inceptionv3-Xception 探索亮度、对比度、增益、噪声、大小、格式、伪彩色七个图像相关因素如何影响模型的分类性能。Inceptionv3-Xception 在各种图像因素的识别准确率方面具有优势。当图像亮度发生变化时,模型的性能呈下降趋势(0.5 vs. 1 vs. 1.8, ACC 95.73 vs. 97.06 vs. 93.54, P < 0.05)。当图像对比度发生变化时,模型的性能相当(0.5 vs. 1 vs. 1.2,ACC 96.23 vs. 96.95 vs. 97.45,P > 0.05)。当图像增益下降到 50 dB 时,模型的准确性显著下降(50 dB vs. 105 dB, ACC 96.49 vs. 97.57, P < 0.05)。当图像中加入高斯噪声时,模型的性能逐渐下降(0.02 vs. 0, ACC 89.48vs97.06, P < 0.05)。当图像大小下降到原始图像的 25% 时,模型的性能显著下降(25% vs. 100%, ACC 93.18 vs. 97.06, P < 0.01)。当图像格式发生变化时,模型的识别准确率相似(JPG vs. BMP vs. PNG, ACC 96.98 vs. 97.06 vs. 97.06, P > 0.05)。与灰度图像相比,模型识别伪彩色图像的准确率明显下降(灰度 vs. 伪彩色,ACC 35.96 vs. 97.06)。这些结果表明,图像质量在很大程度上影响着模型的训练过程,而获取高质量的图像是模型获得高识别性能的重要前提。这项研究为改进眼科超声图像识别的其他鲁棒深度学习模型提供了宝贵的启示。
{"title":"Influence of Image Factors on the Performance of Ophthalmic Ultrasound Deep Learning Model","authors":"Zemeng Li , Xiaochun Wang , Shuyang Wang , You Zhou , Xinqi Yu , Jianjun Ji , Jun Yang , Song Lin , Sheng Zhou","doi":"10.1016/j.irbm.2024.100848","DOIUrl":"10.1016/j.irbm.2024.100848","url":null,"abstract":"<div><h3>Objective</h3><p>This study aims to evaluate the impact of image factors on the performance of deep learning models used for ophthalmic ultrasound image diagnosis.</p></div><div><h3>Methods</h3><p>A total of 3,373 ophthalmic ultrasound images are used to deeply evaluate the influence of image factors on the performance of deep learning classification models. Inceptionv3, Xception, and the fusion model Inceptionv3-Xception are used to explore how brightness, contrast, gain, noise, size, format, pseudo-color seven image-related factors affect the classification performance of the model.</p></div><div><h3>Results</h3><p>Inceptionv3-Xception has advantages in the recognition accuracy of various image factors. When the image brightness changes, the model's performance shows a downward trend (0.5 vs. 1 vs. 1.8, ACC 95.73 vs. 97.06 vs. 93.54, P < 0.05). When the image contrast changes, the model's performance is comparable (0.5 vs. 1 vs. 1.2, ACC 96.23 vs. 96.95 vs. 97.45, P > 0.05). When the image gain drops to 50 dB, the model's accuracy decreases significantly (50 dB vs. 105 dB, ACC 96.49 vs. 97.57, P < 0.05). When Gaussian noise is added to the image, the model's performance gradually decreases (0.02 vs. 0, ACC 89.48vs97.06, P < 0.05). When the image size drops to 25% of the original image, the model's performance decreases significantly (25% vs. 100%, ACC 93.18 vs. 97.06, P < 0.01). When the image format changes, the model's recognition accuracy is similar (JPG vs. BMP vs. PNG, ACC 96.98 vs. 97.06 vs. 97.06, P > 0.05). The accuracy of the model in recognizing pseudo-color images decreases significantly compared to grayscale images (grayscale vs. pseudo-color, ACC 35.96 vs. 97.06).</p></div><div><h3>Conclusion</h3><p>These results indicate that image quality greatly influences the model training process, and acquiring high-quality images is an important prerequisite for high recognition performance of the model. This study offers valuable insights for the improvement of other robust deep learning models for ophthalmic ultrasound image recognition.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"45 4","pages":"Article 100848"},"PeriodicalIF":5.6,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1959031824000290/pdfft?md5=d2db3fd118a09a6347da8a8332f055bd&pid=1-s2.0-S1959031824000290-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141609818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.1016/j.irbm.2024.100844
Objectives
Segmentation of cranial bones in magnetic resonance images (MRIs) is a challenging and indispensable task to study neonatal brain development and injury. This paper presents a new approach for creating subject-specific probability maps of the scalp, skull and cerebrospinal fluid (CSF) from retrospective bimodal (MR and CT) images acquired from neonates in the gestational age range of 39 to 42 weeks. These maps are subsequently employed for the segmentation of cranial bones in cerebral MRIs from neonates in the same age range.
Material and methods
Retrospective MR and CT of neonates with normal head in the gestational age range of 39-42 weeks were preprocessed, segmented semi-automatically and employed as atlas data. For an input MR image acquired from a subject under study, a preprocessing stage and three main processing blocks were performed: First, subject-specific head and intracranial templates and CSF probability map were created using retrospective MR atlas data. Second, the CT atlas data were coregistered to MR templates and the resulted deformation matrices were fed to the next block to create subject-specific scalp and skull probability maps. Finally, some novel performance measures were presented to evaluate the performance of subject-specific CSF, scalp and skull probability maps for skull and intracranial segmentation in neonatal MRIs.
Results
The subject-specific probability maps were employed for brain tissue extraction and compared with two public methods such as Brain Extraction Tool (BET) and Brain Surface Extractor (BSE). They were also applied for cranial bone extraction. Then, the similarity in shape between the frontal and occipital sutures (which had been reconstructed from segmented cranial bones) and the ground truth landmarks was evaluated. For this purpose, modified versions of the Dice similarity coefficient (DSC) were used. Finally, a retrospective bimodal (MR-CT) data acquired from a neonate within a short time interval was used for evaluation. After co-alignment of the two images, the DSC and modified Hausdorff distance (MHD) were used to compare the similarity of cranial bones in the MR and CT images.
Conclusion
Significant improvements were achieved compared to conventional methods which rely solely on MR image intensities. These advancements hold promise for enhancing neurodevelopmental studies in neonates. The algorithm for creating subject-specific atlases is publicly accessible through a graphical user interface at medvispy.ee.kntu.ac.ir.
{"title":"Subject-Specific Probability Maps of Scalp, Skull and Cerebrospinal Fluid for Cranial Bones Segmentation in Neonatal Cerebral MRIs","authors":"","doi":"10.1016/j.irbm.2024.100844","DOIUrl":"10.1016/j.irbm.2024.100844","url":null,"abstract":"<div><h3>Objectives</h3><p>Segmentation of cranial bones in magnetic resonance images (MRIs) is a challenging and indispensable task to study neonatal brain development and injury. This paper presents a new approach for creating subject-specific probability maps of the scalp, skull and cerebrospinal fluid (CSF) from retrospective bimodal (MR and CT) images acquired from neonates in the gestational age range of 39 to 42 weeks. These maps are subsequently employed for the segmentation of cranial bones in cerebral MRIs from neonates in the same age range.</p></div><div><h3>Material and methods</h3><p>Retrospective MR and CT of neonates with normal head in the gestational age range of 39-42 weeks were preprocessed, segmented semi-automatically and employed as atlas data. For an input MR image acquired from a subject under study, a preprocessing stage and three main processing blocks were performed: First, subject-specific head and intracranial templates and CSF probability map were created using retrospective MR atlas data. Second, the CT atlas data were coregistered to MR templates and the resulted deformation matrices were fed to the next block to create subject-specific scalp and skull probability maps. Finally, some novel performance measures were presented to evaluate the performance of subject-specific CSF, scalp and skull probability maps for skull and intracranial segmentation in neonatal MRIs.</p></div><div><h3>Results</h3><p>The subject-specific probability maps were employed for brain tissue extraction and compared with two public methods such as Brain Extraction Tool (BET) and Brain Surface Extractor (BSE). They were also applied for cranial bone extraction. Then, the similarity in shape between the frontal and occipital sutures (which had been reconstructed from segmented cranial bones) and the ground truth landmarks was evaluated. For this purpose, modified versions of the Dice similarity coefficient (DSC) were used. Finally, a retrospective bimodal (MR-CT) data acquired from a neonate within a short time interval was used for evaluation. After co-alignment of the two images, the DSC and modified Hausdorff distance (MHD) were used to compare the similarity of cranial bones in the MR and CT images.</p></div><div><h3>Conclusion</h3><p>Significant improvements were achieved compared to conventional methods which rely solely on MR image intensities. These advancements hold promise for enhancing neurodevelopmental studies in neonates. The algorithm for creating subject-specific atlases is publicly accessible through a graphical user interface at <span><span>medvispy.ee.kntu.ac.ir</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"45 4","pages":"Article 100844"},"PeriodicalIF":5.6,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141507485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1016/j.irbm.2024.100842
Vipin Prakash Yadav , Kamlesh Kumar Sharma
Introduction
Neonatal seizure is a common neurologic disorder in neonates. The diagnosis of a neonatal seizure can be made clinically or with an EEG. However, the clinical diagnosis of neonatal seizures is difficult, particularly in critically ill infants, because of the multitude of epileptic and nonepileptic clinical manifestations. On the other hand neonatal seizure can be effectively detected using EEG recordings. Hence, there is a need for an electroencephalograph (EEG) based automatic diagnosis framework for neonatal seizure.
Methods
This work proposed a wavelet scattering transform (WST) and histogram-based nearest component analysis (HBNCA) based framework for classifying seizures and non-seizure neonate's EEG signals. The WST converts EEG signals into its translation invariant and deformation stable representation. The HBNCA method is deployed to find the effective wavelet scattering coefficients (WSC) for classifying seizures and non-seizures EEG signals. Then, various classifiers are used to identify the effectiveness of the features.
Results
The proposed framework is managed to get an average accuracy of 98.59% and 97.83% for a 1-second duration of EEG signal for repeated random subsampling validation (RRSV) and leave one out cross-validation (LOOCV), respectively.
Conclusions
The results are compared with the other state of art methods. The accurate classification from the 1-second duration of the EEG signal shows the potential of the proposed framework for reliable neonatal seizure classification.
{"title":"Automatic Classification Framework for Neonatal Seizure Using Wavelet Scattering Transform and Nearest Component Analysis","authors":"Vipin Prakash Yadav , Kamlesh Kumar Sharma","doi":"10.1016/j.irbm.2024.100842","DOIUrl":"https://doi.org/10.1016/j.irbm.2024.100842","url":null,"abstract":"<div><h3>Introduction</h3><p>Neonatal seizure is a common neurologic disorder in neonates. The diagnosis of a neonatal seizure can be made clinically or with an EEG. However, the clinical diagnosis of neonatal seizures is difficult, particularly in critically ill infants, because of the multitude of epileptic and nonepileptic clinical manifestations. On the other hand neonatal seizure can be effectively detected using EEG recordings. Hence, there is a need for an electroencephalograph (EEG) based automatic diagnosis framework for neonatal seizure.</p></div><div><h3>Methods</h3><p>This work proposed a wavelet scattering transform (WST) and histogram-based nearest component analysis (HBNCA) based framework for classifying seizures and non-seizure neonate's EEG signals. The WST converts EEG signals into its translation invariant and deformation stable representation. The HBNCA method is deployed to find the effective wavelet scattering coefficients (WSC) for classifying seizures and non-seizures EEG signals. Then, various classifiers are used to identify the effectiveness of the features.</p></div><div><h3>Results</h3><p>The proposed framework is managed to get an average accuracy of 98.59% and 97.83% for a 1-second duration of EEG signal for repeated random subsampling validation (RRSV) and leave one out cross-validation (LOOCV), respectively.</p></div><div><h3>Conclusions</h3><p>The results are compared with the other state of art methods. The accurate classification from the 1-second duration of the EEG signal shows the potential of the proposed framework for reliable neonatal seizure classification.</p></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"45 4","pages":"Article 100842"},"PeriodicalIF":5.6,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}