首页 > 最新文献

JCI insight最新文献

英文 中文
ROCK1 promotes B cell differentiation and proteostasis under stress through the heme-regulated proteins, BACH2 and HRI.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-04 DOI: 10.1172/jci.insight.180507
Juan Rivera-Correa, Sanjay Gupta, Edd Ricker, Danny Flores-Castro, Daniel Jenkins, Stephen Vulcano, Swati P Phalke, Tania Pannellini, Matthew M Miele, Zhuoning Li, Nahuel Zamponi, Young-Bum Kim, Yurii Chinenov, Eugenia Giannopoulou, Leandro Cerchietti, Alessandra B Pernis

The mechanisms utilized by differentiating B cells to withstand highly damaging conditions generated during severe infections, like the massive hemolysis that accompanies malaria, are poorly understood. Here, we demonstrate that ROCK1 regulates B cell differentiation in hostile environments replete with pathogen-associated molecular patterns (PAMPs) and high levels of heme by controlling 2 key heme-regulated molecules, BACH2 and heme-regulated eIF2α kinase (HRI). ROCK1 phosphorylates BACH2 and protects it from heme-driven degradation. As B cells differentiate, furthermore, ROCK1 restrains their pro-inflammatory potential and helps them handle the heightened stress imparted by the presence of PAMPs and heme by controlling HRI, a key regulator of the integrated stress response and cytosolic proteotoxicity. ROCK1 controls the interplay of HRI with HSP90 and limits the recruitment of HRI and HSP90 to unique p62/SQSTM1 complexes that also contain critical kinases like mTOR complex 1 and TBK1, and proteins involved in RNA metabolism, oxidative damage, and proteostasis like TDP-43. Thus, ROCK1 helps B cells cope with intense pathogen-driven destruction by coordinating the activity of key controllers of B cell differentiation and stress responses. These ROCK1-dependent mechanisms may be widely employed by cells to handle severe environmental stresses, and these findings may be relevant for immune-mediated and age-related neurodegenerative disorders.

{"title":"ROCK1 promotes B cell differentiation and proteostasis under stress through the heme-regulated proteins, BACH2 and HRI.","authors":"Juan Rivera-Correa, Sanjay Gupta, Edd Ricker, Danny Flores-Castro, Daniel Jenkins, Stephen Vulcano, Swati P Phalke, Tania Pannellini, Matthew M Miele, Zhuoning Li, Nahuel Zamponi, Young-Bum Kim, Yurii Chinenov, Eugenia Giannopoulou, Leandro Cerchietti, Alessandra B Pernis","doi":"10.1172/jci.insight.180507","DOIUrl":"10.1172/jci.insight.180507","url":null,"abstract":"<p><p>The mechanisms utilized by differentiating B cells to withstand highly damaging conditions generated during severe infections, like the massive hemolysis that accompanies malaria, are poorly understood. Here, we demonstrate that ROCK1 regulates B cell differentiation in hostile environments replete with pathogen-associated molecular patterns (PAMPs) and high levels of heme by controlling 2 key heme-regulated molecules, BACH2 and heme-regulated eIF2α kinase (HRI). ROCK1 phosphorylates BACH2 and protects it from heme-driven degradation. As B cells differentiate, furthermore, ROCK1 restrains their pro-inflammatory potential and helps them handle the heightened stress imparted by the presence of PAMPs and heme by controlling HRI, a key regulator of the integrated stress response and cytosolic proteotoxicity. ROCK1 controls the interplay of HRI with HSP90 and limits the recruitment of HRI and HSP90 to unique p62/SQSTM1 complexes that also contain critical kinases like mTOR complex 1 and TBK1, and proteins involved in RNA metabolism, oxidative damage, and proteostasis like TDP-43. Thus, ROCK1 helps B cells cope with intense pathogen-driven destruction by coordinating the activity of key controllers of B cell differentiation and stress responses. These ROCK1-dependent mechanisms may be widely employed by cells to handle severe environmental stresses, and these findings may be relevant for immune-mediated and age-related neurodegenerative disorders.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interleukin-21 and anti-α4β7 dual therapy during ART promotes immunological and microbiome responses in SIV-infected macaques.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-04 DOI: 10.1172/jci.insight.184491
Samuel D Johnson, Maria Pino, Arpan Acharya, Julien A Clain, Deepanwita Bose, Kevin Nguyen, Justin Harper, Francois Villinger, Mirko Paiardini, Siddappa N Byrareddy

Despite combination antiretroviral therapy (ART), HIV causes persistent gut barrier dysfunction, immune depletion, and dysbiosis. Further, ART interruption results in reservoir reactivation and rebound viremia. Both IL-21 and anti-α4β7 improve gut barrier functions, and we hypothesized combining them would synergize as a dual therapy to improve immunological outcomes in SIV-infected rhesus macaques (RMs). We found no significant differences in CD4+ T-cell reservoir size by intact proviral DNA assay. SIV rebounded in both dual-treated and control RMs following analytical therapy interruption (ATI), with time to rebound and initial rebound viremia comparable between groups; however, dual-treated RMs showed slightly better control of viral replication at the latest time points post-ATI. Additionally, following post-ATI, dual-treated RMs showed immunological benefits, including T-cell preservation and lower PD-1+ central memory T-cell (TCM) frequency. Notably, PD-1+ TCMs were associated with reservoir size, which predicted viral loads (VLs) post-ATI. Finally, 16S rRNA sequencing revealed better recovery from dysbiosis in treated animals, and the butyrate-producing Firmicute Roseburia predicted PD-1-expressing TCMs and VLs after ATI. PD-1+ TCMs and gut dysbiosis represent mechanisms of HIV persistence and pathogenesis, respectively. Therefore, combining IL-21 and anti-α4β7 may be an effective therapeutic strategy to improve immunological outcomes for people with HIV.

尽管采用了联合抗逆转录病毒疗法(ART),但艾滋病毒仍会导致持续的肠道屏障功能障碍、免疫耗竭和菌群失调。此外,抗逆转录病毒疗法的中断会导致储库再激活和病毒血症反弹。IL-21和抗α4β7都能改善肠道屏障功能,我们假设将它们结合起来作为一种双重疗法,能协同改善SIV感染的恒河猴(RMs)的免疫效果。通过完整的前病毒 DNA 检测,我们发现 CD4+ T 细胞储库的大小没有明显差异。分析治疗中断(ATI)后,经双重治疗的猕猴和对照组猕猴的SIV均出现反弹,反弹时间和初始反弹病毒血症在各组之间不相上下;但是,经双重治疗的猕猴在ATI后的最近时间点对病毒复制的控制稍好。此外,在ATI后,经过双重治疗的RM显示出免疫学优势,包括T细胞保存和较低的PD-1+中央记忆T细胞(TCM)频率。值得注意的是,PD-1+中枢记忆T细胞与储库大小有关,而储库大小可预测ATI后的病毒载量(VLs)。最后,16S rRNA 测序显示,接受治疗的动物能更好地从菌群失调中恢复过来,而产生丁酸盐的蔷薇韧菌能预测 ATI 后的 PD-1 表达中药和 VLs。PD-1+中药和肠道菌群失调分别代表了艾滋病毒的持续存在和发病机制。因此,将IL-21和抗α4β7结合起来可能是一种有效的治疗策略,可改善HIV感染者的免疫效果。
{"title":"Interleukin-21 and anti-α4β7 dual therapy during ART promotes immunological and microbiome responses in SIV-infected macaques.","authors":"Samuel D Johnson, Maria Pino, Arpan Acharya, Julien A Clain, Deepanwita Bose, Kevin Nguyen, Justin Harper, Francois Villinger, Mirko Paiardini, Siddappa N Byrareddy","doi":"10.1172/jci.insight.184491","DOIUrl":"https://doi.org/10.1172/jci.insight.184491","url":null,"abstract":"<p><p>Despite combination antiretroviral therapy (ART), HIV causes persistent gut barrier dysfunction, immune depletion, and dysbiosis. Further, ART interruption results in reservoir reactivation and rebound viremia. Both IL-21 and anti-α4β7 improve gut barrier functions, and we hypothesized combining them would synergize as a dual therapy to improve immunological outcomes in SIV-infected rhesus macaques (RMs). We found no significant differences in CD4+ T-cell reservoir size by intact proviral DNA assay. SIV rebounded in both dual-treated and control RMs following analytical therapy interruption (ATI), with time to rebound and initial rebound viremia comparable between groups; however, dual-treated RMs showed slightly better control of viral replication at the latest time points post-ATI. Additionally, following post-ATI, dual-treated RMs showed immunological benefits, including T-cell preservation and lower PD-1+ central memory T-cell (TCM) frequency. Notably, PD-1+ TCMs were associated with reservoir size, which predicted viral loads (VLs) post-ATI. Finally, 16S rRNA sequencing revealed better recovery from dysbiosis in treated animals, and the butyrate-producing Firmicute Roseburia predicted PD-1-expressing TCMs and VLs after ATI. PD-1+ TCMs and gut dysbiosis represent mechanisms of HIV persistence and pathogenesis, respectively. Therefore, combining IL-21 and anti-α4β7 may be an effective therapeutic strategy to improve immunological outcomes for people with HIV.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A randomized, double-blind, placebo controlled trial of IL-7 in critically ill COVID-19 patients.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-04 DOI: 10.1172/jci.insight.189150
Manu Shankar-Hari, Bruno Francois, Kenneth E Remy, Cristina Gutierrez, Stephen Pastores, Thomas Daix, Robin Jeannet, Jane Blood, Andrew H Walton, Reinaldo Salomao, Georg Auzinger, David Striker, Robert S Martin, Nitin J Anand, James Bosanquet, Teresa Blood, Scott Brakenridge, Lyle L Moldawer, Vidula Vachharajani, Cassian Yee, Felipe Dal-Pizzol, Michel Morre, Frederique Berbille, Marcel van den Brink, Richard Hotchkiss

Background: Lymphopenia and failure of lymphocytes to mount an early IFN-γ response correlate with increased mortality in COVID-19. Given the essential role of CD4 helper and CD8 cytotoxic cells in eliminating viral pathogens, this profound loss in lymphocytes may impair patients' ability to eliminate the virus. IL-7 is a pleiotropic cytokine that is obligatory for lymphocyte survival and optimal function.

Methods: We conducted a prospective, double-blind, randomized, placebo-controlled trial of CYT107, recombinant human IL-7, in 109 critically-ill lymphopenic COVID-19 patients. The primary endpoint was to assess CYT107's effect on lymphocyte recovery with secondary clinical endpoints including safety, ICU and hospital length-of-stay, incidence of secondary infections, and mortality.

Results: CYT107 was well-tolerated without precipitating a cytokine storm or worsening pulmonary function. Absolute lymphocyte counts increased in both groups without significant difference between CYT107 and placebo. COVID-19 patients receiving CYT107 but not concomitant antiviral medications, known inducers of lymphopenia, had a final lymphocyte count that was 43% greater than placebo (p=0.067). There were significantly fewer treatment-emergent adverse events in CYT107 versus placebo-treated patients (p<0.001), consistent with a beneficial drug effect. Importantly, CYT107 treated patients had 44% fewer hospital-acquired infections versus placebo-treated patients (p=0.014).

Conclusions: Given that hospital-acquired infections are responsible for a large percentage of COVID-19 deaths, this effect of CYT107 to decrease nosocomial infections could substantially reduce late morbidity and mortality in this highly lethal disease. The strong safety profile of CYT107 and its excellent tolerability provide support for trials of CYT107 in other potential pandemic respiratory viral infections.

Trial registration: NCT04379076, NCT04426201, NCT04442178, NCT04407689; NCT04927169.

{"title":"A randomized, double-blind, placebo controlled trial of IL-7 in critically ill COVID-19 patients.","authors":"Manu Shankar-Hari, Bruno Francois, Kenneth E Remy, Cristina Gutierrez, Stephen Pastores, Thomas Daix, Robin Jeannet, Jane Blood, Andrew H Walton, Reinaldo Salomao, Georg Auzinger, David Striker, Robert S Martin, Nitin J Anand, James Bosanquet, Teresa Blood, Scott Brakenridge, Lyle L Moldawer, Vidula Vachharajani, Cassian Yee, Felipe Dal-Pizzol, Michel Morre, Frederique Berbille, Marcel van den Brink, Richard Hotchkiss","doi":"10.1172/jci.insight.189150","DOIUrl":"https://doi.org/10.1172/jci.insight.189150","url":null,"abstract":"<p><strong>Background: </strong>Lymphopenia and failure of lymphocytes to mount an early IFN-γ response correlate with increased mortality in COVID-19. Given the essential role of CD4 helper and CD8 cytotoxic cells in eliminating viral pathogens, this profound loss in lymphocytes may impair patients' ability to eliminate the virus. IL-7 is a pleiotropic cytokine that is obligatory for lymphocyte survival and optimal function.</p><p><strong>Methods: </strong>We conducted a prospective, double-blind, randomized, placebo-controlled trial of CYT107, recombinant human IL-7, in 109 critically-ill lymphopenic COVID-19 patients. The primary endpoint was to assess CYT107's effect on lymphocyte recovery with secondary clinical endpoints including safety, ICU and hospital length-of-stay, incidence of secondary infections, and mortality.</p><p><strong>Results: </strong>CYT107 was well-tolerated without precipitating a cytokine storm or worsening pulmonary function. Absolute lymphocyte counts increased in both groups without significant difference between CYT107 and placebo. COVID-19 patients receiving CYT107 but not concomitant antiviral medications, known inducers of lymphopenia, had a final lymphocyte count that was 43% greater than placebo (p=0.067). There were significantly fewer treatment-emergent adverse events in CYT107 versus placebo-treated patients (p<0.001), consistent with a beneficial drug effect. Importantly, CYT107 treated patients had 44% fewer hospital-acquired infections versus placebo-treated patients (p=0.014).</p><p><strong>Conclusions: </strong>Given that hospital-acquired infections are responsible for a large percentage of COVID-19 deaths, this effect of CYT107 to decrease nosocomial infections could substantially reduce late morbidity and mortality in this highly lethal disease. The strong safety profile of CYT107 and its excellent tolerability provide support for trials of CYT107 in other potential pandemic respiratory viral infections.</p><p><strong>Trial registration: </strong>NCT04379076, NCT04426201, NCT04442178, NCT04407689; NCT04927169.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting fibroblast-endothelial interactions in LAM pathogenesis using 3D spheroid models and spatial transcriptomics.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-02-04 DOI: 10.1172/jci.insight.187899
Sinem Koc-Gunel, Emily C Liu, Lalit K Gautam, Ben A Calvert, Shubha Murthy, Noa C Harriott, Janna C Nawroth, Beiyun Zhou, Vera P Krymskaya, Amy L Ryan

Lymphangioleiomyomatosis (LAM) is a progressive lung disease with limited treatments, largely due to an incomplete understanding of its pathogenesis. Lymphatic endothelial cells (LECs) invade LAM cell clusters, which include HMB-45-positive epithelioid cells and smooth muscle α-actin-expressing LAM-associated fibroblasts (LAMFs). Recent evidence shows that LAMFs resemble cancer-associated fibroblasts, with LAMF-LEC interactions contributing to disease progression. To explore these mechanisms, we used spatial transcriptomics on LAM lung tissues and identified a gene cluster enriched in kinase signaling pathways linked to myofibroblasts and co-expressed with LEC markers. Kinase arrays revealed elevated PDGFR and FGFR in LAMFs. Using a 3D co-culture spheroid model of primary LAMFs and LECs, we observed increased invasion in LAMF-LEC spheroids compared to non-LAM fibroblasts. Treatment with sorafenib, a multikinase inhibitor, significantly reduced invasion, outperforming Rapamycin. We also confirmed TSC2-deficient renal angiomyolipoma cells (TSC2-null AML) as key VEGF-A secretors, which was suppressed by sorafenib in both TSC2-null AML cells and LAMFs. These findings highlight VEGF-A and bFGF as potential therapeutic targets and suggest multikinase inhibition as a promising strategy for LAM.

{"title":"Targeting fibroblast-endothelial interactions in LAM pathogenesis using 3D spheroid models and spatial transcriptomics.","authors":"Sinem Koc-Gunel, Emily C Liu, Lalit K Gautam, Ben A Calvert, Shubha Murthy, Noa C Harriott, Janna C Nawroth, Beiyun Zhou, Vera P Krymskaya, Amy L Ryan","doi":"10.1172/jci.insight.187899","DOIUrl":"10.1172/jci.insight.187899","url":null,"abstract":"<p><p>Lymphangioleiomyomatosis (LAM) is a progressive lung disease with limited treatments, largely due to an incomplete understanding of its pathogenesis. Lymphatic endothelial cells (LECs) invade LAM cell clusters, which include HMB-45-positive epithelioid cells and smooth muscle α-actin-expressing LAM-associated fibroblasts (LAMFs). Recent evidence shows that LAMFs resemble cancer-associated fibroblasts, with LAMF-LEC interactions contributing to disease progression. To explore these mechanisms, we used spatial transcriptomics on LAM lung tissues and identified a gene cluster enriched in kinase signaling pathways linked to myofibroblasts and co-expressed with LEC markers. Kinase arrays revealed elevated PDGFR and FGFR in LAMFs. Using a 3D co-culture spheroid model of primary LAMFs and LECs, we observed increased invasion in LAMF-LEC spheroids compared to non-LAM fibroblasts. Treatment with sorafenib, a multikinase inhibitor, significantly reduced invasion, outperforming Rapamycin. We also confirmed TSC2-deficient renal angiomyolipoma cells (TSC2-null AML) as key VEGF-A secretors, which was suppressed by sorafenib in both TSC2-null AML cells and LAMFs. These findings highlight VEGF-A and bFGF as potential therapeutic targets and suggest multikinase inhibition as a promising strategy for LAM.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerobic exercise prevents renal osteodystrophy via irisin-activated osteoblasts.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-01-30 DOI: 10.1172/jci.insight.184468
Meng Wu, Huilan Li, Xiaoting Sun, Rongrong Zhong, Linli Cai, Ruibo Chen, Madiya Madeniyet, Kana Ren, Zhen Peng, Yujie Yang, Weiqin Chen, Yanling Tu, Miaoxin Lai, Jinxiu Deng, Yuting Wu, Shumin Zhao, Qingyan Ruan, Mei Rao, Sisi Xie, Ying Ye, Jianxin Wan

Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common antiresorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed. Here, we report that clinically relevant aerobic exercise significantly prevents high-turnover renal osteodystrophy in CKD mice and patients with CKD without compromising renal function. Mechanistically, 4-week aerobic exercise in CKD mice increased expression of skeletal muscle PPARγ coactivator-1α (PGC-1α) and circulating irisin. Both exercise and irisin administration significantly activated osteoblasts, but not osteoclasts, via integrin αvβ5, thereby conferring bone quality benefits. Removal of irisin-influenced thermogenic adipose tissues or genetic ablation of uncoupling protein 1 did not alter the irisin-conferred antiosteodystrophy effect. Importantly, in a pilot clinical study, 12-week aerobic exercise in patients with high-grade CKD significantly increased circulating irisin and prevented osteodystrophy progression, without detectable renal burden. The combination of irisin and current antiresorptive agents effectively rescued renal osteodystrophy in mice. Our work provides mechanistic insights into the role of exercise and irisin in renal osteodystrophy, and it highlights a clinically relevant, low-cost, kidney-friendly therapy for patients with this devastating disease.

{"title":"Aerobic exercise prevents renal osteodystrophy via irisin-activated osteoblasts.","authors":"Meng Wu, Huilan Li, Xiaoting Sun, Rongrong Zhong, Linli Cai, Ruibo Chen, Madiya Madeniyet, Kana Ren, Zhen Peng, Yujie Yang, Weiqin Chen, Yanling Tu, Miaoxin Lai, Jinxiu Deng, Yuting Wu, Shumin Zhao, Qingyan Ruan, Mei Rao, Sisi Xie, Ying Ye, Jianxin Wan","doi":"10.1172/jci.insight.184468","DOIUrl":"10.1172/jci.insight.184468","url":null,"abstract":"<p><p>Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common antiresorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed. Here, we report that clinically relevant aerobic exercise significantly prevents high-turnover renal osteodystrophy in CKD mice and patients with CKD without compromising renal function. Mechanistically, 4-week aerobic exercise in CKD mice increased expression of skeletal muscle PPARγ coactivator-1α (PGC-1α) and circulating irisin. Both exercise and irisin administration significantly activated osteoblasts, but not osteoclasts, via integrin αvβ5, thereby conferring bone quality benefits. Removal of irisin-influenced thermogenic adipose tissues or genetic ablation of uncoupling protein 1 did not alter the irisin-conferred antiosteodystrophy effect. Importantly, in a pilot clinical study, 12-week aerobic exercise in patients with high-grade CKD significantly increased circulating irisin and prevented osteodystrophy progression, without detectable renal burden. The combination of irisin and current antiresorptive agents effectively rescued renal osteodystrophy in mice. Our work provides mechanistic insights into the role of exercise and irisin in renal osteodystrophy, and it highlights a clinically relevant, low-cost, kidney-friendly therapy for patients with this devastating disease.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of cognitive decline in long-duration type 1 diabetes by cognitive, neuroimaging, and pathological examinations.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-01-30 DOI: 10.1172/jci.insight.180226
Hetal S Shah, Matthew N DeSalvo, Anastasia Haidar, Surya Vishva Teja Jangolla, Marc Gregory Yu, Rebecca S Roque, Amanda Hayes, John Gauthier, Nolan Ziemniak, Elizabeth Viebranz, I-Hsien Wu, Kyoungmin Park, Ward Fickweiler, Tanvi J Chokshi, Tashrif Billah, Lipeng Ning, Atif Adam, Jennifer K Sun, Lloyd Paul Aiello, Yogesh Rathi, Mel B Feany, George L King

BACKGROUNDWe aimed to characterize factors associated with the under-studied complication of cognitive decline in aging people with long-duration type 1 diabetes (T1D).METHODSJoslin "Medalists" (n = 222; T1D ≥ 50 years) underwent cognitive testing. Medalists (n = 52) and age-matched nondiabetic controls (n = 20) underwent neuro- and retinal imaging. Brain pathology (n = 26) was examined. Relationships among clinical, cognitive, and neuroimaging parameters were evaluated.RESULTSCompared with controls, Medalists had worse psychomotor function and recall, which associated with female sex, lower visual acuity, reduced physical activity, longer diabetes duration, and higher inflammatory cytokines. On neuroimaging, compared with controls, Medalists had significantly lower total and regional brain volumes, equivalent to 9 years of accelerated aging, but small vessel disease markers did not differ. Reduced brain volumes associated with female sex, reduced psychomotor function, worse visual acuity, longer diabetes duration, and higher inflammation, but not with glycemic control. Worse cognitive function, lower brain volumes, and diabetic retinopathy correlated with thinning of the outer retinal nuclear layer. Worse baseline visual acuity associated with declining psychomotor function in longitudinal analysis. Brain volume mediated the association between visual acuity and psychomotor function by 57%. Brain pathologies showed decreased volumes, but predominantly mild vascular or Alzheimer's-related pathology.CONCLUSION To our knowledge, this is the first comprehensive study of cognitive function, neuroimaging, and pathology in aging T1D individuals demonstrated that cognitive decline was related to parenchymal rather than neurovascular abnormalities, unlike type 2 diabetes, suggestive of accelerated aging in T1D. Improving visual acuity could perhaps be an important preventive measure against cognitive decline in people with T1D.FUNDINGThe Beatson Foundation, NIH/NIDDK grants 3P30DK036836-34S1 and P30DK036836-37, and Mary Iacocca fellowships.

{"title":"Characterization of cognitive decline in long-duration type 1 diabetes by cognitive, neuroimaging, and pathological examinations.","authors":"Hetal S Shah, Matthew N DeSalvo, Anastasia Haidar, Surya Vishva Teja Jangolla, Marc Gregory Yu, Rebecca S Roque, Amanda Hayes, John Gauthier, Nolan Ziemniak, Elizabeth Viebranz, I-Hsien Wu, Kyoungmin Park, Ward Fickweiler, Tanvi J Chokshi, Tashrif Billah, Lipeng Ning, Atif Adam, Jennifer K Sun, Lloyd Paul Aiello, Yogesh Rathi, Mel B Feany, George L King","doi":"10.1172/jci.insight.180226","DOIUrl":"10.1172/jci.insight.180226","url":null,"abstract":"<p><p>BACKGROUNDWe aimed to characterize factors associated with the under-studied complication of cognitive decline in aging people with long-duration type 1 diabetes (T1D).METHODSJoslin \"Medalists\" (n = 222; T1D ≥ 50 years) underwent cognitive testing. Medalists (n = 52) and age-matched nondiabetic controls (n = 20) underwent neuro- and retinal imaging. Brain pathology (n = 26) was examined. Relationships among clinical, cognitive, and neuroimaging parameters were evaluated.RESULTSCompared with controls, Medalists had worse psychomotor function and recall, which associated with female sex, lower visual acuity, reduced physical activity, longer diabetes duration, and higher inflammatory cytokines. On neuroimaging, compared with controls, Medalists had significantly lower total and regional brain volumes, equivalent to 9 years of accelerated aging, but small vessel disease markers did not differ. Reduced brain volumes associated with female sex, reduced psychomotor function, worse visual acuity, longer diabetes duration, and higher inflammation, but not with glycemic control. Worse cognitive function, lower brain volumes, and diabetic retinopathy correlated with thinning of the outer retinal nuclear layer. Worse baseline visual acuity associated with declining psychomotor function in longitudinal analysis. Brain volume mediated the association between visual acuity and psychomotor function by 57%. Brain pathologies showed decreased volumes, but predominantly mild vascular or Alzheimer's-related pathology.CONCLUSION To our knowledge, this is the first comprehensive study of cognitive function, neuroimaging, and pathology in aging T1D individuals demonstrated that cognitive decline was related to parenchymal rather than neurovascular abnormalities, unlike type 2 diabetes, suggestive of accelerated aging in T1D. Improving visual acuity could perhaps be an important preventive measure against cognitive decline in people with T1D.FUNDINGThe Beatson Foundation, NIH/NIDDK grants 3P30DK036836-34S1 and P30DK036836-37, and Mary Iacocca fellowships.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal integration of blood RNA and ctDNA reflects response to immunotherapy in metastatic urothelial cancer.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-01-30 DOI: 10.1172/jci.insight.186062
Sandra van Wilpe, Davide Croci, Sara S Fonseca Costa, Iris Baw Te Paske, Sofie H Tolmeijer, Jolique van Ipenburg, Leonie I Kroeze, Simona Pavan, Sylvain Monnier-Benoit, Guido Coccia, Noushin Hadadi, Irma M Oving, Tineke J Smilde, Theo van Voorthuizen, Marieke Berends, Mira D Franken, Marjolijn Jl Ligtenberg, Sahar Hosseinian Ehrensberger, Laura Ciarloni, Pedro Romero, Niven Mehra

Background: Previously, we demonstrated that changes in circulating tumor DNA (ctDNA) are promising biomarkers for early response prediction (ERP) to immune checkpoint inhibitors (ICIs) in metastatic urothelial cancer (mUC). In this study, we investigated the value of whole-blood immunotranscriptomics for ERP-ICI and integrated both biomarkers into a multimodal model to boost accuracy.

Methods: Blood samples of 93 patients were collected at baseline and after 2-6 weeks of ICI for ctDNA (n = 88) and immunotranscriptome (n = 79) analyses. ctDNA changes were dichotomized into increase or no increase, the latter including patients with undetectable ctDNA. For RNA model development, the cohort was split into discovery (n = 29), test (n = 29), and validation sets (n = 21). Finally, RNA- and ctDNA-based predictions were integrated in a multimodal model. Clinical benefit (CB) was defined as progression-free survival beyond 6 months.

Results: Sensitivity (SN) and specificity (SP) of ctDNA increase for predicting non-CB (N-CB) was 59% and 92%, respectively. Immunotranscriptome analysis revealed upregulation of T cell activation, proliferation, and interferon signaling during treatment in the CB group, in contrast with N-CB patients. Based on these differences, a 10-gene RNA model was generated, reaching an SN and SP of 73% and 79%, respectively, in the test and 67% and 67% in the validation set for predicting N-CB. Multimodal model integration led to superior performance, with an SN and SP of 79% and 100%, respectively, in the validation cohort.

Conclusion: The combination of whole-blood immunotranscriptome and ctDNA in a multimodal model showed promise for ERP-ICI in mUC and accurately identified patients with N-CB.

Funding: Eurostars grant E! 114908 - PRECISE, Paul Speth Foundation (Bullseye project).

{"title":"Multimodal integration of blood RNA and ctDNA reflects response to immunotherapy in metastatic urothelial cancer.","authors":"Sandra van Wilpe, Davide Croci, Sara S Fonseca Costa, Iris Baw Te Paske, Sofie H Tolmeijer, Jolique van Ipenburg, Leonie I Kroeze, Simona Pavan, Sylvain Monnier-Benoit, Guido Coccia, Noushin Hadadi, Irma M Oving, Tineke J Smilde, Theo van Voorthuizen, Marieke Berends, Mira D Franken, Marjolijn Jl Ligtenberg, Sahar Hosseinian Ehrensberger, Laura Ciarloni, Pedro Romero, Niven Mehra","doi":"10.1172/jci.insight.186062","DOIUrl":"10.1172/jci.insight.186062","url":null,"abstract":"<p><strong>Background: </strong>Previously, we demonstrated that changes in circulating tumor DNA (ctDNA) are promising biomarkers for early response prediction (ERP) to immune checkpoint inhibitors (ICIs) in metastatic urothelial cancer (mUC). In this study, we investigated the value of whole-blood immunotranscriptomics for ERP-ICI and integrated both biomarkers into a multimodal model to boost accuracy.</p><p><strong>Methods: </strong>Blood samples of 93 patients were collected at baseline and after 2-6 weeks of ICI for ctDNA (n = 88) and immunotranscriptome (n = 79) analyses. ctDNA changes were dichotomized into increase or no increase, the latter including patients with undetectable ctDNA. For RNA model development, the cohort was split into discovery (n = 29), test (n = 29), and validation sets (n = 21). Finally, RNA- and ctDNA-based predictions were integrated in a multimodal model. Clinical benefit (CB) was defined as progression-free survival beyond 6 months.</p><p><strong>Results: </strong>Sensitivity (SN) and specificity (SP) of ctDNA increase for predicting non-CB (N-CB) was 59% and 92%, respectively. Immunotranscriptome analysis revealed upregulation of T cell activation, proliferation, and interferon signaling during treatment in the CB group, in contrast with N-CB patients. Based on these differences, a 10-gene RNA model was generated, reaching an SN and SP of 73% and 79%, respectively, in the test and 67% and 67% in the validation set for predicting N-CB. Multimodal model integration led to superior performance, with an SN and SP of 79% and 100%, respectively, in the validation cohort.</p><p><strong>Conclusion: </strong>The combination of whole-blood immunotranscriptome and ctDNA in a multimodal model showed promise for ERP-ICI in mUC and accurately identified patients with N-CB.</p><p><strong>Funding: </strong>Eurostars grant E! 114908 - PRECISE, Paul Speth Foundation (Bullseye project).</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143065817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fibroblast growth factor-inducible 14 regulates satellite cell self-renewal and expansion during skeletal muscle repair.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-01-28 DOI: 10.1172/jci.insight.187825
Meiricris Tomaz da Silva, Aniket S Joshi, Ashok Kumar

Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) were increased in satellite cells after muscle injury. Conditional ablation of Fn14 in Pax7-expressing satellite cells drastically reduced their expansion and skeletal muscle regeneration following injury. Fn14 was required for satellite cell self-renewal and proliferation as well as to prevent precocious differentiation. Targeted deletion of Fn14 inhibited Notch signaling but led to the spurious activation of STAT3 signaling in regenerating skeletal muscle and in cultured muscle progenitor cells. Silencing of STAT3 improved proliferation and inhibited premature differentiation of Fn14-deficient satellite cells. Furthermore, conditional ablation of Fn14 in satellite cells exacerbated myopathy in the mdx mouse model of Duchenne muscular dystrophy (DMD), whereas its overexpression improved the engraftment of exogenous muscle progenitor cells into the dystrophic muscle of mdx mice. Altogether, our study highlights the crucial role of Fn14 in the regulation of satellite cell fate and function and suggests that Fn14 can be a potential molecular target to improve muscle regeneration in muscular disorders.

{"title":"Fibroblast growth factor-inducible 14 regulates satellite cell self-renewal and expansion during skeletal muscle repair.","authors":"Meiricris Tomaz da Silva, Aniket S Joshi, Ashok Kumar","doi":"10.1172/jci.insight.187825","DOIUrl":"10.1172/jci.insight.187825","url":null,"abstract":"<p><p>Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) were increased in satellite cells after muscle injury. Conditional ablation of Fn14 in Pax7-expressing satellite cells drastically reduced their expansion and skeletal muscle regeneration following injury. Fn14 was required for satellite cell self-renewal and proliferation as well as to prevent precocious differentiation. Targeted deletion of Fn14 inhibited Notch signaling but led to the spurious activation of STAT3 signaling in regenerating skeletal muscle and in cultured muscle progenitor cells. Silencing of STAT3 improved proliferation and inhibited premature differentiation of Fn14-deficient satellite cells. Furthermore, conditional ablation of Fn14 in satellite cells exacerbated myopathy in the mdx mouse model of Duchenne muscular dystrophy (DMD), whereas its overexpression improved the engraftment of exogenous muscle progenitor cells into the dystrophic muscle of mdx mice. Altogether, our study highlights the crucial role of Fn14 in the regulation of satellite cell fate and function and suggests that Fn14 can be a potential molecular target to improve muscle regeneration in muscular disorders.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A single-cell atlas of normal and KRASG12D-malformed lymphatic vessels.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-01-28 DOI: 10.1172/jci.insight.185181
Lorenzo M Fernandes, Danielle Griswold-Wheeler, Jeffrey D Tresemer, Angelica Vallejo, Neda Vishlaghi, Benjamin Levi, Abigail Shapiro, Joshua P Scallan, Michael T Dellinger

Somatic activating mutations in KRAS can cause complex lymphatic anomalies (CLAs). However, the specific processes that drive KRAS-mediated CLAs have yet to be fully elucidated. Here, we used single-cell RNA sequencing to construct an atlas of normal and KrasG12D-malformed lymphatic vessels. We identified 6 subtypes of lymphatic endothelial cells (LECs) in the lungs of adult wild-type mice (Ptx3, capillary, collecting, valve, mixed, and proliferating). To determine when the LEC subtypes were specified during development, we integrated our data with data from 4 stages of development. We found that proliferating and Ptx3 LECs were prevalent during early lymphatic development and that collecting and valve LECs emerged later in development. Additionally, we discovered that the proportion of Ptx3 LECs decreased as the lymphatic network matured but remained high in KrasG12D mice. We also observed that the proportion of collecting and valve LECs was lower in KrasG12D mice than in wild-type mice. Last, we found that immature lymphatic vessels in young mice were more sensitive to the pathologic effects of KrasG12D than mature lymphatic vessels in older mice. Together, our results expand the current model for the development of the lymphatic system and suggest that KRAS mutations impair the maturation of lymphatic vessels.

{"title":"A single-cell atlas of normal and KRASG12D-malformed lymphatic vessels.","authors":"Lorenzo M Fernandes, Danielle Griswold-Wheeler, Jeffrey D Tresemer, Angelica Vallejo, Neda Vishlaghi, Benjamin Levi, Abigail Shapiro, Joshua P Scallan, Michael T Dellinger","doi":"10.1172/jci.insight.185181","DOIUrl":"10.1172/jci.insight.185181","url":null,"abstract":"<p><p>Somatic activating mutations in KRAS can cause complex lymphatic anomalies (CLAs). However, the specific processes that drive KRAS-mediated CLAs have yet to be fully elucidated. Here, we used single-cell RNA sequencing to construct an atlas of normal and KrasG12D-malformed lymphatic vessels. We identified 6 subtypes of lymphatic endothelial cells (LECs) in the lungs of adult wild-type mice (Ptx3, capillary, collecting, valve, mixed, and proliferating). To determine when the LEC subtypes were specified during development, we integrated our data with data from 4 stages of development. We found that proliferating and Ptx3 LECs were prevalent during early lymphatic development and that collecting and valve LECs emerged later in development. Additionally, we discovered that the proportion of Ptx3 LECs decreased as the lymphatic network matured but remained high in KrasG12D mice. We also observed that the proportion of collecting and valve LECs was lower in KrasG12D mice than in wild-type mice. Last, we found that immature lymphatic vessels in young mice were more sensitive to the pathologic effects of KrasG12D than mature lymphatic vessels in older mice. Together, our results expand the current model for the development of the lymphatic system and suggest that KRAS mutations impair the maturation of lymphatic vessels.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CD34hi subset of synovial fibroblasts contributes to fibrotic phenotype of human knee osteoarthritis.
IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-01-23 DOI: 10.1172/jci.insight.183690
Junya Miyahara, Yasunori Omata, Ryota Chijimatsu, Hiroyuki Okada, Hisatoshi Ishikura, Junya Higuchi, Naohiro Tachibana, Kosei Nagata, Shoichiro Tani, Kenichi Kono, Kohei Kawaguchi, Ryota Yamagami, Hiroshi Inui, Shuji Taketomi, Yasuhide Iwanaga, Asuka Terashima, Fumiko Yano, Masahide Seki, Yutaka Suzuki, Roland Baron, Sakae Tanaka, Taku Saito

Osteoarthritis (OA) shows various clinical manifestations depending on the status of its joint components. We aimed to identify the synovial cell subsets responsible for OA pathophysiology by comprehensive analyses of human synovium samples in single-cell resolution. Two distinct OA synovial tissue groups were classified by gene expression profiles in RNA-Seq: inflammatory and fibrotic. The inflammatory group exhibited high expression of inflammatory cytokines, histologically inflammatory infiltrate, and a more severe pain score. The fibrotic group showed higher expression of fibroblast growth factor (FGFs) and bone morphogenetic proteins (BMPs), showed histologically perivascular fibrosis, and showed a lower pain score. In single-cell RNA-Seq (scRNA-Seq) of synovial cells, MERTKloCD206lo macrophages and CD34hi fibroblasts were associated with the inflammatory and fibrotic groups, respectively. Among the 3 fibroblast subsets, CD34loTHY1lo and CD34loTHY1hi fibroblasts were influenced by synovial immune cells, whereas CD34hi fibroblasts were influenced by mural and endothelial cells. Particularly, in CD34hi fibroblast subsets, CD34hiCD70hi fibroblasts promoted proliferation of Tregs, potentially suppressing synovitis and protecting articular cartilage. Elucidation of the mechanisms underlying the regulation of these synovial cell subsets may lead to novel strategies for OA therapeutics.

{"title":"CD34hi subset of synovial fibroblasts contributes to fibrotic phenotype of human knee osteoarthritis.","authors":"Junya Miyahara, Yasunori Omata, Ryota Chijimatsu, Hiroyuki Okada, Hisatoshi Ishikura, Junya Higuchi, Naohiro Tachibana, Kosei Nagata, Shoichiro Tani, Kenichi Kono, Kohei Kawaguchi, Ryota Yamagami, Hiroshi Inui, Shuji Taketomi, Yasuhide Iwanaga, Asuka Terashima, Fumiko Yano, Masahide Seki, Yutaka Suzuki, Roland Baron, Sakae Tanaka, Taku Saito","doi":"10.1172/jci.insight.183690","DOIUrl":"10.1172/jci.insight.183690","url":null,"abstract":"<p><p>Osteoarthritis (OA) shows various clinical manifestations depending on the status of its joint components. We aimed to identify the synovial cell subsets responsible for OA pathophysiology by comprehensive analyses of human synovium samples in single-cell resolution. Two distinct OA synovial tissue groups were classified by gene expression profiles in RNA-Seq: inflammatory and fibrotic. The inflammatory group exhibited high expression of inflammatory cytokines, histologically inflammatory infiltrate, and a more severe pain score. The fibrotic group showed higher expression of fibroblast growth factor (FGFs) and bone morphogenetic proteins (BMPs), showed histologically perivascular fibrosis, and showed a lower pain score. In single-cell RNA-Seq (scRNA-Seq) of synovial cells, MERTKloCD206lo macrophages and CD34hi fibroblasts were associated with the inflammatory and fibrotic groups, respectively. Among the 3 fibroblast subsets, CD34loTHY1lo and CD34loTHY1hi fibroblasts were influenced by synovial immune cells, whereas CD34hi fibroblasts were influenced by mural and endothelial cells. Particularly, in CD34hi fibroblast subsets, CD34hiCD70hi fibroblasts promoted proliferation of Tregs, potentially suppressing synovitis and protecting articular cartilage. Elucidation of the mechanisms underlying the regulation of these synovial cell subsets may lead to novel strategies for OA therapeutics.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 2","pages":""},"PeriodicalIF":6.3,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143023380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
JCI insight
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1