首页 > 最新文献

Journal of Applied Biomaterials & Functional Materials最新文献

英文 中文
Effect of composite resins with and without fiber-reinforcement on the fracture resistance of teeth with non-carious cervical lesions. 有纤维加固和无纤维加固的复合树脂对非龋性龋齿牙齿抗折性的影响。
IF 3.1 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1177/22808000241303327
Ahmet Hazar, Ecehan Hazar

Objective: Non-carious cervical lesions (NCCLs) are commonly observed in clinical dentistry, leading to tooth fractures, sensitivity, and compromised pulp vitality. Therefore, their restoration is essential for both the aesthetic and structural integrity of teeth. This study aimed to compare the fracture resistance of NCCLs restored using different materials: an injectable universal composite, flowable bulk-fill composites with or without fiber-reinforcement.

Methods: Seventy-five double-rooted maxillary premolars were selected for the study. Fifteen teeth were left intact as a control. A wedge-shaped cavity was prepared in the cervical region of the remaining sixty teeth, which were then divided into four groups (n = 15): unrestored, restored with an injectable composite, restored with a flowable bulk-fill composite (SDR® flow+), and restored with a flowable short-fiber-reinforced composite (everX Flow™). All teeth underwent fracture testing under oblique static loading at a 30° angle using a universal testing machine. Fracture patterns were classified as repairable, possibly repairable, or unrepairable. Data were analyzed using one-way analysis of variance, Pearson chi-square, and Tukey HSD post hoc tests (p = 0.05).

Results: Intact teeth exhibited the highest fracture resistance (743.481 N), while unrestored teeth showed the lowest (371.49 N) (p < 0.001). There was no significant difference in fracture resistance between the injectable composite (553.289 N) and SDR® flow+ (497.368 N) (p = 0.055). The everX Flow™ group displayed significantly higher fracture resistance (673.787 N) (p < 0.001) and a repairability rate of 60% within the restored groups. Unrestored (60%), injectable composite (53.3%), and SDR® flow+ (53.3%) groups were mostly unrepairable.

Conclusion: The everX Flow™ demonstrated improved fracture resistance and favorable fracture pattern for maxillary premolars with wedge-shaped NCCLs.

目的:非龋性牙颈部病变(NCCL)是临床牙科常见的病变,会导致牙齿断裂、敏感和牙髓活力受损。因此,为了牙齿的美观和结构的完整性,对其进行修复至关重要。本研究旨在比较使用不同材料修复的 NCCL 的抗折性:可注射的通用复合材料、带或不带纤维加固的可流动的大量填充复合材料:研究选择了 75 颗双根上颌前磨牙。十五颗牙齿作为对照,保持完好无损。在其余六十颗牙齿的牙颈部制备一个楔形空腔,然后将其分为四组(n = 15):未修复组、使用可注射复合材料修复组、使用可流动散装填充复合材料(SDR® flow+)修复组和使用可流动短纤维增强复合材料(everX Flow™)修复组。所有牙齿都使用万能试验机在 30° 角斜静态加载下进行了断裂测试。断裂形态分为可修复、可能修复和不可修复。数据分析采用单因素方差分析、Pearson chi-square和Tukey HSD事后检验(p = 0.05):结果:完好牙齿的抗折力最高(743.481 N),而未修复牙齿的抗折力最低(371.49 N)(p ® flow+ (497.368 N) (p = 0.055))。everX Flow™ 组显示出明显更高的抗折性(673.787 N)(p ® flow+ (53.3%) 组大多无法修复:everX Flow™ 对具有楔形 NCCL 的上颌前磨牙显示出更高的抗折性和良好的折断模式。
{"title":"Effect of composite resins with and without fiber-reinforcement on the fracture resistance of teeth with non-carious cervical lesions.","authors":"Ahmet Hazar, Ecehan Hazar","doi":"10.1177/22808000241303327","DOIUrl":"https://doi.org/10.1177/22808000241303327","url":null,"abstract":"<p><strong>Objective: </strong>Non-carious cervical lesions (NCCLs) are commonly observed in clinical dentistry, leading to tooth fractures, sensitivity, and compromised pulp vitality. Therefore, their restoration is essential for both the aesthetic and structural integrity of teeth. This study aimed to compare the fracture resistance of NCCLs restored using different materials: an injectable universal composite, flowable bulk-fill composites with or without fiber-reinforcement.</p><p><strong>Methods: </strong>Seventy-five double-rooted maxillary premolars were selected for the study. Fifteen teeth were left intact as a control. A wedge-shaped cavity was prepared in the cervical region of the remaining sixty teeth, which were then divided into four groups (<i>n</i> = 15): unrestored, restored with an injectable composite, restored with a flowable bulk-fill composite (SDR<sup>®</sup> flow+), and restored with a flowable short-fiber-reinforced composite (everX Flow™). All teeth underwent fracture testing under oblique static loading at a 30° angle using a universal testing machine. Fracture patterns were classified as repairable, possibly repairable, or unrepairable. Data were analyzed using one-way analysis of variance, Pearson chi-square, and Tukey HSD post hoc tests (<i>p</i> = 0.05).</p><p><strong>Results: </strong>Intact teeth exhibited the highest fracture resistance (743.481 N), while unrestored teeth showed the lowest (371.49 N) (<i>p</i> < 0.001). There was no significant difference in fracture resistance between the injectable composite (553.289 N) and SDR<sup>®</sup> flow+ (497.368 N) (<i>p</i> = 0.055). The everX Flow™ group displayed significantly higher fracture resistance (673.787 N) (<i>p</i> < 0.001) and a repairability rate of 60% within the restored groups. Unrestored (60%), injectable composite (53.3%), and SDR<sup>®</sup> flow+ (53.3%) groups were mostly unrepairable.</p><p><strong>Conclusion: </strong>The everX Flow™ demonstrated improved fracture resistance and favorable fracture pattern for maxillary premolars with wedge-shaped NCCLs.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241303327"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142739682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic HA-GO implant coating for enhanced osseointegration via macrophage M2 polarization-induced osteo-immunomodulation. 仿生 HA-GO 植入物涂层通过巨噬细胞 M2 极化诱导的骨免疫调节增强骨结合。
IF 3.1 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1177/22808000241266665
Wufanbieke Baheti, Xiaotao Chen, Mi La, Huiyu He

The pro-inflammatory/anti-inflammatory polarized phenotypes of macrophages (M1/M2) can be used to predict the success of implant integration. Hence, activating and inducing the transformation of immunocytes that promote tissue repair appears to be a highly promising strategy for facilitating osteo-anagenesis. In a previous study, titanium implants were coated with a graphene oxide-hydroxyapatite (GO-HA) nanocomposite via electrophoretic deposition, and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was found to be significantly enhanced when the GO content was 2wt%. However, the effectiveness of the GO-HA nanocomposite coating in modifying the in vivo immune microenvironment still remains unclear. In this study, the effects of GO-HA coatings on osteogenesis were investigated based on the GO-HA-mediated immune regulation of macrophages. The HA-2wt%GO nanocomposite coatings exhibited good biocompatibility and favored M2 macrophage polarization. Meanwhile, they could also significantly upregulate IL-10 (anti-inflammatory factor) expression and downregulate TNF-α (pro-inflammatory factor) expression. Additionally, the microenvironment, which was established by M2 macrophages, favored the osteogenesis of BMSCs both in vivo and in vitro. These findings show that the GO-HA nanocomposite coating is a promising surface-modification material. Hence, this study provides a reference for the development of next-generation osteoimmunomodulatory biomaterials.

巨噬细胞(M1/M2)的促炎/抗炎极化表型可用于预测植入物整合的成功与否。因此,激活和诱导促进组织修复的免疫细胞转化似乎是一种非常有前景的促进骨生成的策略。在之前的一项研究中,通过电泳沉积法将氧化石墨烯-羟基磷灰石(GO-HA)纳米复合材料涂覆在钛植入物上,发现当 GO 含量为 2wt% 时,骨髓间充质干细胞(BMSCs)的成骨分化能力明显增强。然而,GO-HA 纳米复合涂层在改变体内免疫微环境方面的效果仍不明确。本研究基于 GO-HA 介导的巨噬细胞免疫调节,研究了 GO-HA 涂层对成骨的影响。HA-2wt%GO纳米复合涂层具有良好的生物相容性,有利于M2巨噬细胞极化。同时,它们还能显著上调 IL-10(抗炎因子)的表达,下调 TNF-α(促炎因子)的表达。此外,由 M2 巨噬细胞建立的微环境有利于 BMSCs 在体内和体外的成骨。这些研究结果表明,GO-HA 纳米复合涂层是一种很有前景的表面修饰材料。因此,这项研究为开发下一代骨免疫调节生物材料提供了参考。
{"title":"Biomimetic HA-GO implant coating for enhanced osseointegration via macrophage M2 polarization-induced osteo-immunomodulation.","authors":"Wufanbieke Baheti, Xiaotao Chen, Mi La, Huiyu He","doi":"10.1177/22808000241266665","DOIUrl":"https://doi.org/10.1177/22808000241266665","url":null,"abstract":"<p><p>The pro-inflammatory/anti-inflammatory polarized phenotypes of macrophages (M1/M2) can be used to predict the success of implant integration. Hence, activating and inducing the transformation of immunocytes that promote tissue repair appears to be a highly promising strategy for facilitating osteo-anagenesis. In a previous study, titanium implants were coated with a graphene oxide-hydroxyapatite (GO-HA) nanocomposite via electrophoretic deposition, and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was found to be significantly enhanced when the GO content was 2wt%. However, the effectiveness of the GO-HA nanocomposite coating in modifying the in vivo immune microenvironment still remains unclear. In this study, the effects of GO-HA coatings on osteogenesis were investigated based on the GO-HA-mediated immune regulation of macrophages. The HA-2wt%GO nanocomposite coatings exhibited good biocompatibility and favored M2 macrophage polarization. Meanwhile, they could also significantly upregulate IL-10 (anti-inflammatory factor) expression and downregulate TNF-α (pro-inflammatory factor) expression. Additionally, the microenvironment, which was established by M2 macrophages, favored the osteogenesis of BMSCs both in vivo and in vitro. These findings show that the GO-HA nanocomposite coating is a promising surface-modification material. Hence, this study provides a reference for the development of next-generation osteoimmunomodulatory biomaterials.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241266665"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of polyimide MP-1™ wear particles on a rodent closed fracture healing model. 聚酰亚胺 MP-1™ 磨损颗粒对啮齿动物闭合性骨折愈合模型的影响。
IF 2.5 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1177/22808000241240296
Rema A Oliver, Tian Wang, Chris Christou, Alisa Buchman, Simha Sibony, William R Walsh

Joint replacements provide pain free movement for the injured or our aging population. Current prothesis mainly consist of hard metal on metal, or ceramic femoral head on ultra-high-molecular weight polyethylene (UHMWPE). In this study, a rodent fracture model was used to test the influence of wear debris from a high-performance polymer (polyimide MP-1™). Saline, MP-1™ Low Dose in Saline (1%), or MP-1 High Dose (2%) in Saline was injected directly into a standard closed unilateral femoral fracture in 12-week old Sprague Dawley rats (n = 25) for 1, 3 and 6 weeks. Endpoints included radiography, micro-computed tomography, mechanical testing and paraffin histology. No adverse effects from the wear particles were observed from the current study based on radiology, mechanical or histological data. Although the particles were present, histological analysis revealed a progression in healing between the Polyimide treated groups and the non-treated saline control groups over the duration of 1, 3, and 6 weeks, with no inhibition from the particles. The MP-1™ wear debris generated are larger than 1 µm thus are not able to be engulfed by macrophages and cause osteolysis. This family of polymers (polyimides) may be an ideal material to consider for articulating joints and other implants in the human body.

关节置换为伤员或老龄人口提供无痛运动。目前的假体主要由硬金属与金属或陶瓷股骨头与超高分子量聚乙烯(UHMWPE)组成。本研究使用啮齿动物骨折模型来测试高性能聚合物(聚酰亚胺 MP-1™)磨损碎片的影响。将生理盐水、生理盐水中的 MP-1™ 低剂量(1%)或生理盐水中的 MP-1 高剂量(2%)直接注射到 12 周大的 Sprague Dawley 大鼠(n = 25)的标准闭合性单侧股骨骨折处,注射时间分别为 1、3 和 6 周。终点包括射线照相术、微型计算机断层扫描、机械测试和石蜡组织学。根据放射学、机械学或组织学数据,目前的研究没有观察到磨损颗粒的不良影响。虽然存在微粒,但组织学分析表明,在 1、3 和 6 周的时间内,聚酰亚胺处理组和未经处理的生理盐水对照组的愈合情况都有所改善,微粒对愈合没有抑制作用。产生的 MP-1™ 磨损碎片大于 1 微米,因此无法被巨噬细胞吞噬,也就不会导致骨溶解。这一系列聚合物(聚酰亚胺)可能是用于人体关节和其他植入物的理想材料。
{"title":"The influence of polyimide MP-1™ wear particles on a rodent closed fracture healing model.","authors":"Rema A Oliver, Tian Wang, Chris Christou, Alisa Buchman, Simha Sibony, William R Walsh","doi":"10.1177/22808000241240296","DOIUrl":"10.1177/22808000241240296","url":null,"abstract":"<p><p>Joint replacements provide pain free movement for the injured or our aging population. Current prothesis mainly consist of hard metal on metal, or ceramic femoral head on ultra-high-molecular weight polyethylene (UHMWPE). In this study, a rodent fracture model was used to test the influence of wear debris from a high-performance polymer (polyimide MP-1™). Saline, MP-1™ Low Dose in Saline (1%), or MP-1 High Dose (2%) in Saline was injected directly into a standard closed unilateral femoral fracture in 12-week old Sprague Dawley rats (<i>n</i> = 25) for 1, 3 and 6 weeks. Endpoints included radiography, micro-computed tomography, mechanical testing and paraffin histology. No adverse effects from the wear particles were observed from the current study based on radiology, mechanical or histological data. Although the particles were present, histological analysis revealed a progression in healing between the Polyimide treated groups and the non-treated saline control groups over the duration of 1, 3, and 6 weeks, with no inhibition from the particles. The MP-1™ wear debris generated are larger than 1 µm thus are not able to be engulfed by macrophages and cause osteolysis. This family of polymers (polyimides) may be an ideal material to consider for articulating joints and other implants in the human body.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241240296"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140174841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of 5-fluorouracil/etoposide co-loaded electrospun nanofibrous scaffold for localized anti-melanoma therapy. 开发用于局部抗黑色素瘤治疗的 5-氟尿嘧啶/埃托泊苷共载电纺纳米纤维支架。
IF 3.1 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1177/22808000241284439
Shirin Shojaei, Mahtab Doostan, Hamidreza Mohammadi Motlagh, Seyedeh Sara Esnaashari, Hassan Maleki

Nanofibrous scaffolds have emerged as promising candidates for localized drug delivery systems in the treatment of cutaneous cancers. In this study, we prepared an electrospun nanofibrous scaffold incorporating 5-fluorouracil (5-FU) and etoposide (ETP) for chemotherapy targeting melanoma cutaneous cancer. The scaffold was composed of polyvinyl alcohol (PVA) and chitosan (CS), prepared via the electrospinning process and loaded with the chemotherapeutic agents. We conducted relevant physicochemical characterizations, assessed cytotoxicity, and evaluated apoptosis against melanoma A375 cells. The prepared 5-FU/ETP co-loaded PVA/CS scaffold exhibited nanofibers (NFs) with an average diameter of 321 ± 61 nm, defect-free and homogenous morphology. FTIR spectroscopy confirmed successful incorporation of chemotherapeutics into the scaffold. Additionally, the scaffold demonstrated a hydrophilic surface, proper mechanical strength, high porosity, and efficient liquid absorption capacity. Notably, sustained and controlled drug release was observed from the nanofibrous scaffold. Furthermore, the scaffold significantly increased cytotoxicity (95%) and apoptosis (74%) in A375 melanoma cells. Consequently, the prepared 5-FU/ETP co-loaded PVA/CS nanofibrous scaffold holds promise as a valuable system for localized eradication of cutaneous melanoma tumors and mitigation of adverse drug reactions associated with chemotherapy.

纳米纤维支架已成为治疗皮肤癌的局部给药系统的理想候选材料。在这项研究中,我们制备了一种电纺纳米纤维支架,其中含有 5-氟尿嘧啶(5-FU)和依托泊苷(ETP),用于针对黑色素瘤皮肤癌的化疗。该支架由聚乙烯醇(PVA)和壳聚糖(CS)组成,通过电纺工艺制备,并添加了化疗药物。我们进行了相关的物理化学表征,评估了细胞毒性,并评价了黑色素瘤 A375 细胞的凋亡情况。制备的 5-FU/ETP 共负载 PVA/CS 支架呈现出平均直径为 321 ± 61 nm 的纳米纤维(NF),形态无缺陷且均匀。傅立叶变换红外光谱证实了化疗药物成功加入支架。此外,该支架还具有亲水性表面、适当的机械强度、高孔隙率和高效的液体吸收能力。值得注意的是,从纳米纤维支架中观察到了持续、可控的药物释放。此外,该支架还显著提高了 A375 黑色素瘤细胞的细胞毒性(95%)和凋亡率(74%)。因此,制备的 5-FU/ETP 共负载 PVA/CS 纳米纤维支架有望成为局部根治皮肤黑色素瘤肿瘤和减轻化疗相关药物不良反应的重要系统。
{"title":"Development of 5-fluorouracil/etoposide co-loaded electrospun nanofibrous scaffold for localized anti-melanoma therapy.","authors":"Shirin Shojaei, Mahtab Doostan, Hamidreza Mohammadi Motlagh, Seyedeh Sara Esnaashari, Hassan Maleki","doi":"10.1177/22808000241284439","DOIUrl":"https://doi.org/10.1177/22808000241284439","url":null,"abstract":"<p><p>Nanofibrous scaffolds have emerged as promising candidates for localized drug delivery systems in the treatment of cutaneous cancers. In this study, we prepared an electrospun nanofibrous scaffold incorporating 5-fluorouracil (5-FU) and etoposide (ETP) for chemotherapy targeting melanoma cutaneous cancer. The scaffold was composed of polyvinyl alcohol (PVA) and chitosan (CS), prepared via the electrospinning process and loaded with the chemotherapeutic agents. We conducted relevant physicochemical characterizations, assessed cytotoxicity, and evaluated apoptosis against melanoma A375 cells. The prepared 5-FU/ETP co-loaded PVA/CS scaffold exhibited nanofibers (NFs) with an average diameter of 321 ± 61 nm, defect-free and homogenous morphology. FTIR spectroscopy confirmed successful incorporation of chemotherapeutics into the scaffold. Additionally, the scaffold demonstrated a hydrophilic surface, proper mechanical strength, high porosity, and efficient liquid absorption capacity. Notably, sustained and controlled drug release was observed from the nanofibrous scaffold. Furthermore, the scaffold significantly increased cytotoxicity (95%) and apoptosis (74%) in A375 melanoma cells. Consequently, the prepared 5-FU/ETP co-loaded PVA/CS nanofibrous scaffold holds promise as a valuable system for localized eradication of cutaneous melanoma tumors and mitigation of adverse drug reactions associated with chemotherapy.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241284439"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The microstructure, composition, physical properties, and bioactivity of calcium silicate cement prototypes for vital pulp therapies. 用于重要牙髓疗法的硅酸钙水泥原型的微观结构、成分、物理性质和生物活性。
IF 3.1 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1177/22808000241296663
Marina Vega-González, Rubén Abraham Domínguez-Pérez, Ana Edith Higareda-Mendoza, Ricardo Domínguez-Pérez, León Francisco Espinosa-Cristóbal, Roberto Gustavo Sánchez-Lara Y Tajonar

Hydraulic calcium silicate cements (HCSCs) are valuable for various dental procedures. However, several reports document inherent limitations and complaints about their high costs, hindering accessibility in low-and middle-income countries. This study aimed to characterize four low-cost HCSC prototypes to show their microstructure, composition, and fundamental physical properties. Four HCSC prototypes were formulated: 1- calcium silicate powder with 17.5 wt. % replacement of calcium tungstate, 2- calcium silicate powder with 17.5 wt. % replacement of zirconium oxide, 3- calcium silicate powder with 17.5 wt. % replacement of calcium tungstate and 2.5 wt. % of zirconium oxide and 4- calcium silicate powder with 10 wt. % replacement of calcium tungstate and 10 wt. % replacement of zirconium oxide. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction were used to assess their microstructure and composition. Additionally, radiopacity, setting time, solubility, pH, and in vitro bioactivity were evaluated at different time points and contrasted with controls (Mineral trioxide aggregate -MTA Angelus- and Intermediate restorative material -IRM-). Their production cost was significantly lower than commercially available HCSCs. All prototypes exhibited a microstructure and composition comparable to MTA Angelus. All the prototypes exhibited radiopacity exceeding 3 mm of aluminum and shorter initial and final setting times than MTA Angelus. The solubility of some prototypes closely adhered to the ISO standard recommendation of 3% after 1 day, and all promoted an alkaline pH and the formation of calcium/phosphate precipitates. These promising findings suggest the potential clinical application of these prototypes. However, further research is necessary to evaluate their mechanical and biological properties for definitive clinical use.

硅酸钙水门汀(HCSCs)对各种牙科手术都很有价值。然而,一些报告指出了其固有的局限性,并抱怨其成本过高,阻碍了中低收入国家的使用。本研究旨在表征四种低成本 HCSC 原型,以显示其微观结构、成分和基本物理性质。共配制了四种 HCSC 原型:1- 取代钨酸钙 17.5 wt.%的硅酸钙粉末;2- 取代氧化锆 17.5 wt.%的硅酸钙粉末;3- 取代钨酸钙 17.5 wt.%和氧化锆 2.5 wt.%的硅酸钙粉末;4- 取代钨酸钙 10 wt.%和氧化锆 10 wt.%的硅酸钙粉末。扫描电子显微镜、能量色散 X 射线光谱和 X 射线衍射被用来评估它们的微观结构和成分。此外,还在不同的时间点对其放射性、凝固时间、溶解度、pH 值和体外生物活性进行了评估,并与对照组(三氧化二铝矿物骨料 -MTA Angelus- 和中间修复材料 -IRM-)进行了对比。它们的生产成本明显低于市售的高密度聚合体。所有原型的微观结构和成分都与 MTA Angelus 相当。与 MTA Angelus 相比,所有原型的铝放射通量都超过了 3 毫米,初凝和终凝时间也更短。一些原型的溶解度与 ISO 标准建议的 1 天后 3% 的溶解度非常接近,并且所有原型都能促进 pH 值呈碱性和钙/磷酸盐沉淀的形成。这些令人鼓舞的研究结果表明,这些原型具有临床应用的潜力。不过,还需要进一步的研究来评估它们的机械和生物特性,以便最终用于临床。
{"title":"The microstructure, composition, physical properties, and bioactivity of calcium silicate cement prototypes for vital pulp therapies.","authors":"Marina Vega-González, Rubén Abraham Domínguez-Pérez, Ana Edith Higareda-Mendoza, Ricardo Domínguez-Pérez, León Francisco Espinosa-Cristóbal, Roberto Gustavo Sánchez-Lara Y Tajonar","doi":"10.1177/22808000241296663","DOIUrl":"https://doi.org/10.1177/22808000241296663","url":null,"abstract":"<p><p>Hydraulic calcium silicate cements (HCSCs) are valuable for various dental procedures. However, several reports document inherent limitations and complaints about their high costs, hindering accessibility in low-and middle-income countries. This study aimed to characterize four low-cost HCSC prototypes to show their microstructure, composition, and fundamental physical properties. Four HCSC prototypes were formulated: 1- calcium silicate powder with 17.5 wt. % replacement of calcium tungstate, 2- calcium silicate powder with 17.5 wt. % replacement of zirconium oxide, 3- calcium silicate powder with 17.5 wt. % replacement of calcium tungstate and 2.5 wt. % of zirconium oxide and 4- calcium silicate powder with 10 wt. % replacement of calcium tungstate and 10 wt. % replacement of zirconium oxide. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction were used to assess their microstructure and composition. Additionally, radiopacity, setting time, solubility, pH, and in vitro bioactivity were evaluated at different time points and contrasted with controls (Mineral trioxide aggregate -MTA Angelus- and Intermediate restorative material -IRM-). Their production cost was significantly lower than commercially available HCSCs. All prototypes exhibited a microstructure and composition comparable to MTA Angelus. All the prototypes exhibited radiopacity exceeding 3 mm of aluminum and shorter initial and final setting times than MTA Angelus. The solubility of some prototypes closely adhered to the ISO standard recommendation of 3% after 1 day, and all promoted an alkaline pH and the formation of calcium/phosphate precipitates. These promising findings suggest the potential clinical application of these prototypes. However, further research is necessary to evaluate their mechanical and biological properties for definitive clinical use.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241296663"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physical and mechanical properties assessment of glass ionomer cements modified with TiO2 and Mg-doped hydroxyapatite nanoparticles. 用二氧化钛和掺镁羟基磷灰石纳米颗粒改性的玻璃离聚体水门汀的物理和机械性能评估
IF 3.1 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1177/22808000241282184
Bojana Ramić, Milica Cvjetićanin, Branislav Bajkin, Milan Drobac, Marija Milanović, Dragan Rajnović, Veljko Krstonošić, Đorđe Veljović

High viscosity glass ionomer cements (GICs) are widely used in various clinical applications, being particularly effective in atraumatic restorative treatment (ART) due to the synergistic interaction between the material and the technique. However, the inadequate mechanical properties of GICs raise concerns regarding the predictability and longevity of these restorations in areas exposed to occlusal stress. Various modifications of the powder components have been proposed to improve the mechanical strength of GICs to withstand occlusal loading during mastication. In this in vitro study, we investigated whether the nanoparticles (NPs) added to commercially available GICs could fulfill this requirement, which would likely broaden the spectrum of their potential clinical applications. Two commercially available GIC powders (Fuji IX and Ketac Molar), modified by the addition of 5 wt.% TiO2, MgHAp100 or MgHAp1000 NPs, were incorporated into the corresponding liquid in an appropriate ratio, and the mixed cements were evaluated in terms of fracture toughness, flexural strength, Vickers microhardness and rheological tests and compared with the original material. Fuji IX containing 5 wt.% MgHAp100 NPs had lower flexural strength, while Ketac Molar with 5 wt.% TiO2 NPs showed increased fracture toughness. Vickers microhardness increased in Fuji IX following the addition of 5 wt.% TiO2 and MgHAp100 but decreased in Ketac Molar comprising 5 wt.% MgHAp100 (p < 0.05). Achieving a predictable bond between NPs and cement matrix, as well as ensuring a uniform distribution of the NPs within the cement, are critical prerequisites for enhancing the mechanical performance of the original cement.

高粘度玻璃离聚体水门汀(GIC)被广泛用于各种临床应用,由于材料和技术之间的协同作用,它在非创伤性修复治疗(ART)中尤其有效。然而,由于 GIC 的机械性能不足,人们担心这些修复体在咬合应力作用下的可预测性和使用寿命。为了提高 GIC 的机械强度以承受咀嚼时的咬合负荷,人们提出了对粉末成分进行各种改良的建议。在这项体外研究中,我们调查了添加到市售 GIC 中的纳米颗粒(NPs)是否能满足这一要求,这可能会扩大其潜在的临床应用范围。我们将两种市售的 GIC 粉末(Fuji IX 和 Ketac Molar)以适当的比例加入到相应的液体中,并通过添加 5 wt.% 的 TiO2、MgHAp100 或 MgHAp1000 NPs 对其进行改性,然后从断裂韧性、抗弯强度、维氏显微硬度和流变测试等方面对混合水门汀进行评估,并与原始材料进行比较。含有 5 wt.% MgHAp100 NPs 的 Fuji IX 的抗折强度较低,而含有 5 wt.% TiO2 NPs 的 Ketac Molar 的断裂韧性有所提高。添加 5 wt.% TiO2 和 MgHAp100 后,Fuji IX 的维氏硬度增加了,但含有 5 wt.% MgHAp100 的 Ketac Molar 的维氏硬度降低了(p<0.05)。
{"title":"Physical and mechanical properties assessment of glass ionomer cements modified with TiO<sub>2</sub> and Mg-doped hydroxyapatite nanoparticles.","authors":"Bojana Ramić, Milica Cvjetićanin, Branislav Bajkin, Milan Drobac, Marija Milanović, Dragan Rajnović, Veljko Krstonošić, Đorđe Veljović","doi":"10.1177/22808000241282184","DOIUrl":"https://doi.org/10.1177/22808000241282184","url":null,"abstract":"<p><p>High viscosity glass ionomer cements (GICs) are widely used in various clinical applications, being particularly effective in atraumatic restorative treatment (ART) due to the synergistic interaction between the material and the technique. However, the inadequate mechanical properties of GICs raise concerns regarding the predictability and longevity of these restorations in areas exposed to occlusal stress. Various modifications of the powder components have been proposed to improve the mechanical strength of GICs to withstand occlusal loading during mastication. In this in vitro study, we investigated whether the nanoparticles (NPs) added to commercially available GICs could fulfill this requirement, which would likely broaden the spectrum of their potential clinical applications. Two commercially available GIC powders (Fuji IX and Ketac Molar), modified by the addition of 5 wt.% TiO<sub>2</sub>, MgHAp100 or MgHAp1000 NPs, were incorporated into the corresponding liquid in an appropriate ratio, and the mixed cements were evaluated in terms of fracture toughness, flexural strength, Vickers microhardness and rheological tests and compared with the original material. Fuji IX containing 5 wt.% MgHAp100 NPs had lower flexural strength, while Ketac Molar with 5 wt.% TiO<sub>2</sub> NPs showed increased fracture toughness. Vickers microhardness increased in Fuji IX following the addition of 5 wt.% TiO<sub>2</sub> and MgHAp100 but decreased in Ketac Molar comprising 5 wt.% MgHAp100 (<i>p</i> < 0.05). Achieving a predictable bond between NPs and cement matrix, as well as ensuring a uniform distribution of the NPs within the cement, are critical prerequisites for enhancing the mechanical performance of the original cement.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241282184"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chitosan-based promising scaffolds for the construction of tailored nanosystems against osteoporosis: Current status and future prospects. 基于壳聚糖的有前景的支架可用于构建针对骨质疏松症的定制纳米系统:现状与前景。
IF 3.1 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1177/22808000241266487
Ya-Ming Wang, Jiang-Tao Shen

Despite advancements in therapeutic techniques, restoring bone tissue after damage remains a challenging task. Tissue engineering or targeted drug delivery solutions aim to meet the pressing clinical demand for treatment alternatives by creating substitute materials that imitate the structural and biological characteristics of healthy tissue. Polymers derived from natural sources typically exhibit enhanced biological compatibility and bioactivity when compared to manufactured polymers. Chitosan is a unique polysaccharide derived from chitin through deacetylation, offering biodegradability, biocompatibility, and antibacterial activity. Its cationic charge sets it apart from other polymers, making it a valuable resource for various applications. Modifications such as thiolation, alkylation, acetylation, or hydrophilic group incorporation can enhance chitosan's swelling behavior, cross-linking, adhesion, permeation, controllable drug release, enzyme inhibition, and antioxidative properties. Chitosan scaffolds possess considerable potential for utilization in several biological applications. An intriguing application is its use in the areas of drug distribution and bone tissue engineering. Due to their excellent biocompatibility and lack of toxicity, they are an optimal material for this particular usage. This article provides a comprehensive analysis of osteoporosis, including its pathophysiology, current treatment options, the utilization of natural polymers in disease management, and the potential use of chitosan scaffolds for drug delivery systems aimed at treating the condition.

尽管治疗技术不断进步,但骨组织受损后的恢复仍是一项具有挑战性的任务。组织工程或靶向给药解决方案旨在通过制造能模仿健康组织结构和生物特性的替代材料,满足临床对替代治疗方法的迫切需求。与人造聚合物相比,从天然来源提取的聚合物通常具有更强的生物相容性和生物活性。壳聚糖是一种独特的多糖,由甲壳素通过脱乙酰化作用提取而成,具有生物降解性、生物相容性和抗菌活性。其阳离子电荷使其有别于其他聚合物,成为各种应用的宝贵资源。通过硫代、烷基化、乙酰化或加入亲水基团等改性措施,壳聚糖的溶胀行为、交联性、粘附性、渗透性、可控药物释放性、酶抑制性和抗氧化性都能得到增强。壳聚糖支架在多种生物应用中具有相当大的利用潜力。壳聚糖支架在药物分布和骨组织工程领域的应用就很引人关注。由于壳聚糖具有良好的生物相容性和无毒性,因此是这种特殊用途的最佳材料。本文全面分析了骨质疏松症,包括其病理生理学、当前的治疗方案、天然聚合物在疾病管理中的应用,以及壳聚糖支架在药物输送系统中的潜在用途,旨在治疗骨质疏松症。
{"title":"Chitosan-based promising scaffolds for the construction of tailored nanosystems against osteoporosis: Current status and future prospects.","authors":"Ya-Ming Wang, Jiang-Tao Shen","doi":"10.1177/22808000241266487","DOIUrl":"https://doi.org/10.1177/22808000241266487","url":null,"abstract":"<p><p>Despite advancements in therapeutic techniques, restoring bone tissue after damage remains a challenging task. Tissue engineering or targeted drug delivery solutions aim to meet the pressing clinical demand for treatment alternatives by creating substitute materials that imitate the structural and biological characteristics of healthy tissue. Polymers derived from natural sources typically exhibit enhanced biological compatibility and bioactivity when compared to manufactured polymers. Chitosan is a unique polysaccharide derived from chitin through deacetylation, offering biodegradability, biocompatibility, and antibacterial activity. Its cationic charge sets it apart from other polymers, making it a valuable resource for various applications. Modifications such as thiolation, alkylation, acetylation, or hydrophilic group incorporation can enhance chitosan's swelling behavior, cross-linking, adhesion, permeation, controllable drug release, enzyme inhibition, and antioxidative properties. Chitosan scaffolds possess considerable potential for utilization in several biological applications. An intriguing application is its use in the areas of drug distribution and bone tissue engineering. Due to their excellent biocompatibility and lack of toxicity, they are an optimal material for this particular usage. This article provides a comprehensive analysis of osteoporosis, including its pathophysiology, current treatment options, the utilization of natural polymers in disease management, and the potential use of chitosan scaffolds for drug delivery systems aimed at treating the condition.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241266487"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Picoscopy Discoveries of the Binary Atomic Structure 双原子结构的皮镜发现
4区 医学 Q2 BIOPHYSICS Pub Date : 2023-06-30 DOI: 10.35745/afm2023v03.02.0001
Olexandr Kucherov, Andrey Mudryk
In this article, we present a discovery of the binary atomic structure. Through picoscopy experiments, it was revealed that electronic structure is divided into core and functional structures. Internal chemically neutral electrons form the core of an atom and are spherical in pink, while the outer functional electrons are elongated in green being chemically active. A spherical yellow layer separates these two parts. It significantly simplifies the Schrödinger equation and leads to a solution for all 118 chemical elements. As a result, the Kucherov-Mudryk formula w = n + ¾l was derived. That formula allowed for organizing the periodic table in ascending order of the whole energy where en electron first fills the level with the lowest energy, according to the Minimum Potential Energy general principle of nature.
在这篇文章中,我们提出了二元原子结构的一个发现。通过picoscopy实验,发现其电子结构分为核心结构和功能结构。内部的化学中性电子构成了原子的核心,呈粉红色球形,而外部的功能电子呈绿色,呈细长状,具有化学活性。一个球形的黄色层将这两部分隔开。它极大地简化了Schrödinger方程,并得出了所有118种化学元素的解。由此推导出Kucherov-Mudryk公式w = n +¾l。这个公式允许按照整个能量的升序来组织元素周期表,其中一个电子首先填满了能量最低的能级,根据自然的最小势能一般原理。
{"title":"Picoscopy Discoveries of the Binary Atomic Structure","authors":"Olexandr Kucherov, Andrey Mudryk","doi":"10.35745/afm2023v03.02.0001","DOIUrl":"https://doi.org/10.35745/afm2023v03.02.0001","url":null,"abstract":"In this article, we present a discovery of the binary atomic structure. Through picoscopy experiments, it was revealed that electronic structure is divided into core and functional structures. Internal chemically neutral electrons form the core of an atom and are spherical in pink, while the outer functional electrons are elongated in green being chemically active. A spherical yellow layer separates these two parts. It significantly simplifies the Schrödinger equation and leads to a solution for all 118 chemical elements. As a result, the Kucherov-Mudryk formula w = n + ¾l was derived. That formula allowed for organizing the periodic table in ascending order of the whole energy where en electron first fills the level with the lowest energy, according to the Minimum Potential Energy general principle of nature.","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136369198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Ga Concentration on the Output Performance of ZnO Piezoelectric Nanorods Nanogenerator Ga浓度对ZnO压电纳米棒输出性能的影响
4区 医学 Q2 BIOPHYSICS Pub Date : 2023-06-30 DOI: 10.35745/afm2023v03.02.0002
Tung-Lung Wu, Teen-Hang Meen, Yu-Chuan Chang
In this study, a self-assembled monolayer of octyltriethoxysilane was grown on ITO glass. Subsequently, a hydrothermal method was employed to grow low-density gallium (Ga)-doped zinc oxide (ZnO) nanorod structures. In this growth process, the undoped pure ZnO nanorods and ZnO nanorods doped with five different Ga concentrations were developed. After growing the nanorods, X-ray diffraction (XRD) analysis was conducted on both undoped pure ZnO and Ga-doped ZnO nanorods to observe the influence of Ga concentration on the crystalline structure of the ZnO nanorods. Additionally, scanning electron microscopy (SEM) was utilized to examine changes in the surface and cross-sectional growth of ZnO nanorods with varying Ga concentrations, thereby investigating the impact of Ga concentration on the growth of ZnO nanorods. Finally, a thin Pt film was sputtered onto the ZnO nanorod structures to assemble nanogenerators. Ultrasonic excitation was applied to develop these nanogenerators for electrical measurements, allowing us to explore the effects of metal doping on the nanorods’ electrical properties.
在本研究中,在ITO玻璃上生长了一层自组装的辛基三乙基氧基硅烷单层。随后,采用水热法生长低密度镓掺杂氧化锌纳米棒结构。在此生长过程中,制备了未掺杂的纯ZnO纳米棒和掺杂5种不同Ga浓度的ZnO纳米棒。生长纳米棒后,对未掺杂的纯ZnO和掺杂Ga的ZnO纳米棒进行x射线衍射(XRD)分析,观察Ga浓度对ZnO纳米棒晶体结构的影响。此外,利用扫描电子显微镜(SEM)研究了不同Ga浓度下ZnO纳米棒表面和截面生长的变化,从而研究了Ga浓度对ZnO纳米棒生长的影响。最后,在ZnO纳米棒结构上溅射一层薄薄的Pt薄膜来组装纳米发电机。超声波激发被应用于这些纳米发电机的电学测量,使我们能够探索金属掺杂对纳米棒电学性能的影响。
{"title":"Effect of Ga Concentration on the Output Performance of ZnO Piezoelectric Nanorods Nanogenerator","authors":"Tung-Lung Wu, Teen-Hang Meen, Yu-Chuan Chang","doi":"10.35745/afm2023v03.02.0002","DOIUrl":"https://doi.org/10.35745/afm2023v03.02.0002","url":null,"abstract":"In this study, a self-assembled monolayer of octyltriethoxysilane was grown on ITO glass. Subsequently, a hydrothermal method was employed to grow low-density gallium (Ga)-doped zinc oxide (ZnO) nanorod structures. In this growth process, the undoped pure ZnO nanorods and ZnO nanorods doped with five different Ga concentrations were developed. After growing the nanorods, X-ray diffraction (XRD) analysis was conducted on both undoped pure ZnO and Ga-doped ZnO nanorods to observe the influence of Ga concentration on the crystalline structure of the ZnO nanorods. Additionally, scanning electron microscopy (SEM) was utilized to examine changes in the surface and cross-sectional growth of ZnO nanorods with varying Ga concentrations, thereby investigating the impact of Ga concentration on the growth of ZnO nanorods. Finally, a thin Pt film was sputtered onto the ZnO nanorod structures to assemble nanogenerators. Ultrasonic excitation was applied to develop these nanogenerators for electrical measurements, allowing us to explore the effects of metal doping on the nanorods’ electrical properties.","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136368946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Platinum Nanotubes Calculated Using Relativistic Cylindrical Wave Technique: Chiral Induced Spin Selectivity 用相对论柱面波技术计算铂纳米管:手性诱导自旋选择性
IF 2.5 4区 医学 Q2 BIOPHYSICS Pub Date : 2023-03-30 DOI: 10.35745/afm2023v03.01.0001
P. D’yachkov, E. D’yachkov
Electronic and spin properties of chiral platinum nanotubes are calculated using the relativistic linear augmented cylindrical waves method. The spin-orbit coupling induces the strong splitting of nonrelativistic dispersion curves for the Fermi energy region. The large differences in spin densities of states for spins up and down can be used to create pure spin currents through the tubules. In the two series Pt (5, n2) and Pt (10, n2), the (5, 3) and (10, 7) nanotubes show the strongest chirality-induced spin selectivity effects.
利用相对论线性增广柱面波方法计算了手性铂纳米管的电子和自旋性质。自旋轨道耦合引起了费米能区非相对论色散曲线的强烈分裂。上下自旋状态的自旋密度的巨大差异可以用来产生通过小管的纯自旋电流。在Pt (5, n2)和Pt (10, n2)两个系列中,(5,3)和(10,7)纳米管表现出最强的手性诱导自旋选择性效应。
{"title":"Platinum Nanotubes Calculated Using Relativistic Cylindrical Wave Technique: Chiral Induced Spin Selectivity","authors":"P. D’yachkov, E. D’yachkov","doi":"10.35745/afm2023v03.01.0001","DOIUrl":"https://doi.org/10.35745/afm2023v03.01.0001","url":null,"abstract":"Electronic and spin properties of chiral platinum nanotubes are calculated using the relativistic linear augmented cylindrical waves method. The spin-orbit coupling induces the strong splitting of nonrelativistic dispersion curves for the Fermi energy region. The large differences in spin densities of states for spins up and down can be used to create pure spin currents through the tubules. In the two series Pt (5, n2) and Pt (10, n2), the (5, 3) and (10, 7) nanotubes show the strongest chirality-induced spin selectivity effects.","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"165 1","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76924819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Applied Biomaterials & Functional Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1