首页 > 最新文献

Journal of Applied Biomaterials & Functional Materials最新文献

英文 中文
Retraction Notice: "Anti-fungal efficacy of Miswak Extract (Salvadora Persica) and commercial cleaner against Candida albicans on heat cured polymethylmethacrylate denture base". 撤稿通知:"Miswak Extract(Salvadora Persica)和商用清洁剂对热固化聚甲基丙烯酸甲酯义齿基托上白色念珠菌的抗真菌功效"。
IF 2.5 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1177/22808000241227498
{"title":"Retraction Notice: \"Anti-fungal efficacy of Miswak Extract (Salvadora Persica) and commercial cleaner against Candida albicans on heat cured polymethylmethacrylate denture base\".","authors":"","doi":"10.1177/22808000241227498","DOIUrl":"https://doi.org/10.1177/22808000241227498","url":null,"abstract":"","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241227498"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction Notice: "Role of mineral trioxide aggregate in dentistry: A bibliometric analysis using Scopus database". 撤稿通知:"三氧化物矿物质聚合体在牙科中的作用:使用 Scopus 数据库进行文献计量分析"。
IF 2.5 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1177/22808000231222708
{"title":"Retraction Notice: \"Role of mineral trioxide aggregate in dentistry: A bibliometric analysis using Scopus database\".","authors":"","doi":"10.1177/22808000231222708","DOIUrl":"https://doi.org/10.1177/22808000231222708","url":null,"abstract":"","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000231222708"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Full-ceramic resin-bonded fixed dental prostheses: A systematic review. 全陶瓷树脂粘结固定义齿:系统综述。
IF 2.5 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1177/22808000241250118
Sareh Habibzadeh, Faranak Khamisi, Seyed Ali Mosaddad, Gustavo Vicentis de Oliveira Fernandes, Artak Heboyan

Despite the development of implant-supported prostheses, there are still patients for whom conservative treatments such as resin-bonded fixed dental prostheses (RBFDPs) are more appropriate. This study's objective was to analyze the available research on full-ceramic RBFDPs. In this study, Web of Science, MEDLINE/PubMed, Scopus, Embase, Cochrane Library, and Google Scholar databases were searched for articles published in English between 2010 and 2020. A total of 14 studies were reviewed based on the eligibility criteria. The results showed that using a cantilever design with one abutment had an advantage over two abutments. Additionally, it was proposed that preparations designed with retentive aids, such as a proximal box, groove, and pinhole, could improve RBFDP survival rates. IPS e.max ZirCAD, In-Ceram alumina, and zirconia CAD/CAM were the most commonly used framework materials. Most studies used air abrasion, salinization, or hydrofluoric acid for surface treatment. Adhesive resin cements were the most frequently used type of cement. The survival rate of In-Ceram ceramics (85.3%-94.8%) was lower than that of In-Ceram zirconia and IPS e.max ZirCAD. Debonding, followed by framework fracture, was the leading cause of failure. Following 3-10 years follow-up, the survival percentage of all-ceramic RBFDPs ranged from 76% to 100%. Although RBFDPs have demonstrated satisfactory success as a conservative treatment, long-term follow-ups and higher sample sizes in clinical research are required to gain more reliable outcomes on the clinical success rate of various RBFDP designs.

尽管种植体支持义齿已经发展成熟,但仍有一些患者更适合采用树脂粘结固定义齿(RBFDP)等保守治疗方法。本研究的目的是分析关于全瓷 RBFDP 的现有研究。在这项研究中,我们检索了 Web of Science、MEDLINE/PubMed、Scopus、Embase、Cochrane Library 和 Google Scholar 数据库中 2010 年至 2020 年间发表的英文文章。根据资格标准,共审查了 14 项研究。结果显示,使用一个基台的悬臂设计比使用两个基台更有优势。此外,研究还提出,带有固位辅助装置(如近端盒、凹槽和针孔)的基台可以提高 RBFDP 的存活率。IPS e.max ZirCAD、In-Ceram 氧化铝和氧化锆 CAD/CAM 是最常用的框架材料。大多数研究使用气磨、盐渍化或氢氟酸进行表面处理。粘接性树脂水门汀是最常用的水门汀类型。In-Ceram陶瓷的存活率(85.3%-94.8%)低于In-Ceram氧化锆和IPS e.max ZirCAD。脱粘是失败的主要原因,其次是骨架断裂。经过 3-10 年的随访,全陶瓷 RBFDP 的存活率从 76% 到 100% 不等。虽然 RBFDP 作为一种保守治疗方法已经取得了令人满意的效果,但要想获得各种 RBFDP 设计临床成功率的更可靠结果,还需要在临床研究中进行长期随访和增加样本量。
{"title":"Full-ceramic resin-bonded fixed dental prostheses: A systematic review.","authors":"Sareh Habibzadeh, Faranak Khamisi, Seyed Ali Mosaddad, Gustavo Vicentis de Oliveira Fernandes, Artak Heboyan","doi":"10.1177/22808000241250118","DOIUrl":"10.1177/22808000241250118","url":null,"abstract":"<p><p>Despite the development of implant-supported prostheses, there are still patients for whom conservative treatments such as resin-bonded fixed dental prostheses (RBFDPs) are more appropriate. This study's objective was to analyze the available research on full-ceramic RBFDPs. In this study, Web of Science, MEDLINE/PubMed, Scopus, Embase, Cochrane Library, and Google Scholar databases were searched for articles published in English between 2010 and 2020. A total of 14 studies were reviewed based on the eligibility criteria. The results showed that using a cantilever design with one abutment had an advantage over two abutments. Additionally, it was proposed that preparations designed with retentive aids, such as a proximal box, groove, and pinhole, could improve RBFDP survival rates. IPS e.max ZirCAD, In-Ceram alumina, and zirconia CAD/CAM were the most commonly used framework materials. Most studies used air abrasion, salinization, or hydrofluoric acid for surface treatment. Adhesive resin cements were the most frequently used type of cement. The survival rate of In-Ceram ceramics (85.3%-94.8%) was lower than that of In-Ceram zirconia and IPS e.max ZirCAD. Debonding, followed by framework fracture, was the leading cause of failure. Following 3-10 years follow-up, the survival percentage of all-ceramic RBFDPs ranged from 76% to 100%. Although RBFDPs have demonstrated satisfactory success as a conservative treatment, long-term follow-ups and higher sample sizes in clinical research are required to gain more reliable outcomes on the clinical success rate of various RBFDP designs.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241250118"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140865277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of atomization on the composition and structure of recombinant humanized collagen type III. 雾化对重组人源化 III 型胶原蛋白组成和结构的影响。
IF 3.1 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1177/22808000241261904
Ningwen Cheng, Xinyue Zhang, Jian Wang, Danfeng Li, Ling Li, Huan Hu, Tingli Qu

Atomization is a treatment method to make inhaled liquids into aerosols and transport them to target organs in the form of fog or smoke. It has the advantages of improving the bioavailability of drugs, being painless, and non-invasive, and is now widely used in the treatment of lung and oral lesions. Aerosol inhalation as the route of administration of therapeutic proteins holds significant promise due to its ability to achieve high bioavailability in non-invasive pathways. Currently, a great number of therapeutic proteins such as alpha-1 antitrypsin and Dornase alfa are effective. Recombinant humanized collagen type III (rhCol III) as a therapeutic protein is widely used in the biomedical field, but atomization is not a common route of administration for rhCol III, presenting great potential for development. However, the structural stability of recombinant humanized collagen after atomization needs further investigation. This study demonstrated that the rhCol III subjected to atomization through compressed air had retained its original molecular weights, triple helical structures, and the ability to promote cell adhesion. In other words, the rhCol III can maintain its stability after undergoing atomization. Although more research is required to determine the efficacy and safety of the rhCol III after atomization, this study can lay the groundwork for future research.

雾化是一种将吸入的液体制成气溶胶,并以雾或烟的形式输送到靶器官的治疗方法。它具有提高药物生物利用度、无痛、无创伤等优点,目前已广泛应用于肺部和口腔病变的治疗。气溶胶吸入作为治疗蛋白质的给药途径,因其能在非侵入性途径中实现高生物利用度而大有可为。目前,α-1 抗胰蛋白酶和 Dornase alfa 等大量治疗蛋白质都很有效。重组人源化 III 型胶原蛋白(rhCol III)作为一种治疗蛋白在生物医学领域得到了广泛应用,但雾化给药并不是 rhCol III 的常用给药途径,因此具有很大的发展潜力。然而,重组人源化胶原蛋白雾化后的结构稳定性有待进一步研究。本研究表明,通过压缩空气雾化的 rhCol III 保持了原有的分子量、三重螺旋结构和促进细胞粘附的能力。换句话说,rhCol III 在经过雾化后仍能保持其稳定性。虽然还需要更多的研究来确定雾化后 rhCol III 的有效性和安全性,但本研究可为今后的研究奠定基础。
{"title":"Effect of atomization on the composition and structure of recombinant humanized collagen type III.","authors":"Ningwen Cheng, Xinyue Zhang, Jian Wang, Danfeng Li, Ling Li, Huan Hu, Tingli Qu","doi":"10.1177/22808000241261904","DOIUrl":"10.1177/22808000241261904","url":null,"abstract":"<p><p>Atomization is a treatment method to make inhaled liquids into aerosols and transport them to target organs in the form of fog or smoke. It has the advantages of improving the bioavailability of drugs, being painless, and non-invasive, and is now widely used in the treatment of lung and oral lesions. Aerosol inhalation as the route of administration of therapeutic proteins holds significant promise due to its ability to achieve high bioavailability in non-invasive pathways. Currently, a great number of therapeutic proteins such as alpha-1 antitrypsin and Dornase alfa are effective. Recombinant humanized collagen type III (rhCol III) as a therapeutic protein is widely used in the biomedical field, but atomization is not a common route of administration for rhCol III, presenting great potential for development. However, the structural stability of recombinant humanized collagen after atomization needs further investigation. This study demonstrated that the rhCol III subjected to atomization through compressed air had retained its original molecular weights, triple helical structures, and the ability to promote cell adhesion. In other words, the rhCol III can maintain its stability after undergoing atomization. Although more research is required to determine the efficacy and safety of the rhCol III after atomization, this study can lay the groundwork for future research.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241261904"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141440495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of coating time on the formation of coating layer and degradation behavior of hydroxyapatite coated ZK60 alloy. 涂层时间对羟基磷灰石涂层 ZK60 合金的涂层形成和降解行为的影响。
IF 3.1 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1177/22808000241251564
Le Van Hai, Do Nhu Ngoc, Pham Mai Khanh, Le Van Tuan, Vu Nhat Dinh, Nguyen Viet Nam

Objectives: This study aims to investigate the effect of coating time on the formation of hydroxyapatite (HA) coating layer on ZK60 substrate and understand the biodegradation behavior of the coated alloy for biodegradable implant applications.

Methods: Biodegradable ZK60 alloy was coated by HA layer for different times of 0.5, 1, 2, and 4 h by chemical conversion method. After coating, all the coated specimens were used for immersion test in Hanks' solution to understand the effect of coating time on the degradation behavior of the alloy. The degradation rate of the coated alloy was evaluated by Mg2+ ion quantification and pH change during immersion test. The microstructure of the coating layer was examined by scanning electron microscope (SEM) equipped with an energy-dispersive X-ray spectroscopy (EDS) before and after immersion to understand the degradation behavior of the coated alloy.

Results: HA coating layers were formed successfully on surface of ZK60 specimens after 0.5, 1, 2, and 4 h with different microstructure. Optimal coating quality was observed at 1 or 2 h, characterized by well-formed and uniform HA layers. However, extending the coating duration to 4 h led to the formation of cracks within the HA layer, accompanied by Mg(OH)2. Specimens coated for 1 and 2 h exhibited the lowest degradation rates, while specimens coated for 0.5 and 4 h showed the highest degradation rates. Furthermore, analysis of degradation products revealed the predominance of calcium phosphates formed on the surface of specimens coated for 1 and 2 h. Conversely, specimens coated for 0.5 and 4 h exhibited Mg(OH)2 as the primary degradation product, suggesting a less effective corrosion barrier under these conditions.

Conclusion: The HA layer formed after 2 h demonstrated as the most effective coating layer for enhancing the corrosion resistance of the ZK60 alloy for biomedical applications.

研究目的本研究旨在探讨涂覆时间对羟基磷灰石(HA)涂覆层在 ZK60 基底上形成的影响,并了解涂覆合金在生物降解植入物应用中的生物降解行为:方法:采用化学转化法对可生物降解的 ZK60 合金进行 0.5、1、2 和 4 h 不同时间的 HA 涂层处理。涂覆后,所有涂覆试样均在 Hanks 溶液中进行浸泡试验,以了解涂覆时间对合金降解行为的影响。在浸泡试验过程中,通过 Mg2+ 离子定量和 pH 值变化评估了涂层合金的降解率。用配备了能量色散 X 射线光谱仪(EDS)的扫描电子显微镜(SEM)观察了浸泡前后涂层的微观结构,以了解涂层合金的降解行为:0.5、1、2 和 4 小时后,不同微观结构的 ZK60 试样表面成功形成了 HA 涂层。在 1 或 2 小时内观察到最佳涂层质量,其特征是形成良好且均匀的 HA 涂层。然而,将涂层时间延长至 4 小时后,HA 层内会形成裂缝,并伴有 Mg(OH)2。涂覆时间为 1 和 2 小时的试样降解率最低,而涂覆时间为 0.5 和 4 小时的试样降解率最高。此外,对降解产物的分析表明,涂覆 1 和 2 小时的试样表面形成的主要是磷酸钙。相反,涂覆 0.5 和 4 小时的试样的主要降解产物是 Mg(OH)2,这表明在这些条件下的腐蚀屏障效果较差:结论:在生物医学应用中,2 小时后形成的 HA 层是增强 ZK60 合金耐腐蚀性最有效的涂层。
{"title":"Effect of coating time on the formation of coating layer and degradation behavior of hydroxyapatite coated ZK60 alloy.","authors":"Le Van Hai, Do Nhu Ngoc, Pham Mai Khanh, Le Van Tuan, Vu Nhat Dinh, Nguyen Viet Nam","doi":"10.1177/22808000241251564","DOIUrl":"https://doi.org/10.1177/22808000241251564","url":null,"abstract":"<p><strong>Objectives: </strong>This study aims to investigate the effect of coating time on the formation of hydroxyapatite (HA) coating layer on ZK60 substrate and understand the biodegradation behavior of the coated alloy for biodegradable implant applications.</p><p><strong>Methods: </strong>Biodegradable ZK60 alloy was coated by HA layer for different times of 0.5, 1, 2, and 4 h by chemical conversion method. After coating, all the coated specimens were used for immersion test in Hanks' solution to understand the effect of coating time on the degradation behavior of the alloy. The degradation rate of the coated alloy was evaluated by Mg<sup>2+</sup> ion quantification and pH change during immersion test. The microstructure of the coating layer was examined by scanning electron microscope (SEM) equipped with an energy-dispersive X-ray spectroscopy (EDS) before and after immersion to understand the degradation behavior of the coated alloy.</p><p><strong>Results: </strong>HA coating layers were formed successfully on surface of ZK60 specimens after 0.5, 1, 2, and 4 h with different microstructure. Optimal coating quality was observed at 1 or 2 h, characterized by well-formed and uniform HA layers. However, extending the coating duration to 4 h led to the formation of cracks within the HA layer, accompanied by Mg(OH)<sub>2</sub>. Specimens coated for 1 and 2 h exhibited the lowest degradation rates, while specimens coated for 0.5 and 4 h showed the highest degradation rates. Furthermore, analysis of degradation products revealed the predominance of calcium phosphates formed on the surface of specimens coated for 1 and 2 h. Conversely, specimens coated for 0.5 and 4 h exhibited Mg(OH)<sub>2</sub> as the primary degradation product, suggesting a less effective corrosion barrier under these conditions.</p><p><strong>Conclusion: </strong>The HA layer formed after 2 h demonstrated as the most effective coating layer for enhancing the corrosion resistance of the ZK60 alloy for biomedical applications.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241251564"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improvement of corrosion resistance and adhesion of hydroxyapatite coating on AZ31 alloy by an anodizing intermediate layer. 通过阳极氧化中间层提高 AZ31 合金上羟基磷灰石涂层的耐腐蚀性和附着力。
IF 3.1 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1177/22808000241271693
Anh Tuyet Thi Ngo, Linh Do Chi, Hanh Hong Pham, San Thy Pham, Luong Van Duong

Objectives: The primary objective of this study is using an anodizing intermediate layer to improve corrosion resistance and adhesion of hydroxyapatite coated AZ31 alloy for applications in biodegradable implants.

Methods: An anodizing intermediate layer was formed on the surface of AZ31 substrate at various anodizing voltage of 10, 20, 30, and 40 V respectively by anodizing process. HAp was grow on the surface of AZ31 substrate at 90°C and pH solution of 7.5 by chemical solution treatment method for 2 h. The coated samples were evaluated their corrosion behavior by Electrochemical measurements and biodegradation behavior by immersion test in Hank's balanced salts solution (HBSS) for 28 days via amount of Mg2+ ion released. While, their adhesion strength were evaluated by pull-off method. The amount of Mg2+ ions released of the samples was quantified by the Inductively coupled plasma mass spectrometry.

Results: An anodizing intermediate layer was successfully synthesized at various voltages by anodizing process and HAp coatings were prepared by chemical solution treatment method. The corrosion rate of hydroxyapatite coated AZ31 alloy with an anodizing intermediate layer decreased 4.4 times, while adhesion strength increased about two times compared to the HAp coated AZ31 specimen without an anodizing layer and achieved ~14.70, ~6.92 MPa, respectively. After immersion test in HBSS, the adhesion strength of HAp/AZ31-HBSS-specimen decrease to 45% because of large corroded areas with depth holes of hundreds of micrometers. The slighter decrease in adhesion strength of HAp/30V/AZ31-HBSS-specimen to 22% is due to the contribution of the anodizing intermediate layer.

Conclusion: HAp coated AZ31 alloy specimen with the existence of a porous structure with an elliptical shape, uniform and high density of MgO on the surface at anodizing voltage of 30 V resulted in a significant increase in corrosion resistance and the adhesion strength of HAp coatings.

目的:本研究的主要目的是利用阳极氧化中间层提高羟基磷灰石涂层 AZ31 合金的耐腐蚀性和附着力,以应用于可生物降解植入物:本研究的主要目的是利用阳极氧化中间层提高羟基磷灰石涂层 AZ31 合金的耐腐蚀性和附着力,以应用于生物可降解植入物:方法:通过阳极氧化工艺,在不同的阳极氧化电压(分别为 10、20、30 和 40 V)下,在 AZ31 基体表面形成阳极氧化中间层。在 90°C 和 pH 值为 7.5 的溶液中用化学溶液处理法在 AZ31 基底表面生长 2 小时后,用电化学测量法评估涂层样品的腐蚀行为,并通过 Mg2+ 离子释放量评估生物降解行为。同时,它们的粘附强度也通过拉离法进行了评估。通过电感耦合等离子体质谱法对样品释放的 Mg2+ 离子量进行了量化:结果:通过阳极氧化工艺在不同电压下成功合成了阳极氧化中间层,并采用化学溶液处理法制备了羟基磷灰石涂层。与不带阳极氧化层的 AZ31 试样相比,带阳极氧化中间层的羟基磷灰石涂层 AZ31 合金的腐蚀速率降低了 4.4 倍,而附着强度提高了约 2 倍,分别达到 ~14.70 和 ~6.92 MPa。在 HBSS 中浸泡测试后,HAp/AZ31-HBSS 试样的附着强度下降到 45%,原因是腐蚀区域较大,孔洞深度达数百微米。HAp/30V/AZ31-HBSS-试样的附着强度降低到 22%,这是由于阳极氧化中间层的作用:结论:HAp 涂层的 AZ31 合金试样具有椭圆形多孔结构,表面氧化镁密度均匀且高,在阳极氧化电压为 30 V 时,HAp 涂层的耐腐蚀性和附着强度显著提高。
{"title":"Improvement of corrosion resistance and adhesion of hydroxyapatite coating on AZ31 alloy by an anodizing intermediate layer.","authors":"Anh Tuyet Thi Ngo, Linh Do Chi, Hanh Hong Pham, San Thy Pham, Luong Van Duong","doi":"10.1177/22808000241271693","DOIUrl":"https://doi.org/10.1177/22808000241271693","url":null,"abstract":"<p><strong>Objectives: </strong>The primary objective of this study is using an anodizing intermediate layer to improve corrosion resistance and adhesion of hydroxyapatite coated AZ31 alloy for applications in biodegradable implants.</p><p><strong>Methods: </strong>An anodizing intermediate layer was formed on the surface of AZ31 substrate at various anodizing voltage of 10, 20, 30, and 40 V respectively by anodizing process. HAp was grow on the surface of AZ31 substrate at 90°C and pH solution of 7.5 by chemical solution treatment method for 2 h. The coated samples were evaluated their corrosion behavior by Electrochemical measurements and biodegradation behavior by immersion test in Hank's balanced salts solution (HBSS) for 28 days via amount of Mg<sup>2+</sup> ion released. While, their adhesion strength were evaluated by pull-off method. The amount of Mg<sup>2+</sup> ions released of the samples was quantified by the Inductively coupled plasma mass spectrometry.</p><p><strong>Results: </strong>An anodizing intermediate layer was successfully synthesized at various voltages by anodizing process and HAp coatings were prepared by chemical solution treatment method. The corrosion rate of hydroxyapatite coated AZ31 alloy with an anodizing intermediate layer decreased 4.4 times, while adhesion strength increased about two times compared to the HAp coated AZ31 specimen without an anodizing layer and achieved ~14.70, ~6.92 MPa, respectively. After immersion test in HBSS, the adhesion strength of HAp/AZ31-HBSS-specimen decrease to 45% because of large corroded areas with depth holes of hundreds of micrometers. The slighter decrease in adhesion strength of HAp/30V/AZ31-HBSS-specimen to 22% is due to the contribution of the anodizing intermediate layer.</p><p><strong>Conclusion: </strong>HAp coated AZ31 alloy specimen with the existence of a porous structure with an elliptical shape, uniform and high density of MgO on the surface at anodizing voltage of 30 V resulted in a significant increase in corrosion resistance and the adhesion strength of HAp coatings.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241271693"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma. 中药纳米药物的联合药物疗法可防止多药耐药蛋白 1:促进肺癌细胞凋亡。
IF 2.5 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1177/22808000241235442
Ashraf Alemi, Mojtaba Haghi Karamallah, Mohamad Sabaghan, Seyed Ahmad Hosseini, Ali Veisi, Somayeh Haghi Karamallah, Mohammad Farokhifar

Given the numerous adverse effects of lung cancer treatment, more research on non-toxic medications is urgently needed. Curcumin (CUR) and berberine (BBR) combat drug resistance by controlling the expression of multidrug resistant pump (MDR1). Fascinatingly, combining these medications increases the effectiveness of preventing lung cancer. Their low solubility and poor stability, however, restrict their therapeutic efficacy. Because of the improved bioavailability and increased encapsulation effectiveness of water-insoluble medicines, surfactant-based nanovesicles have recently received a great deal of attention. The current study sought to elucidate the Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma. The impact of several tween (20, 60, and 80) types with varied hydrophobic tails on BBR/CUR-TNV was evaluated. Additionally, the MDR1 activity and apoptosis rate of the BBR/CUR-TNV combination therapy were assessed. The encapsulation effectiveness of TNV was affected by the type of tween. With the TNV made from tween 60, cholesterol, and PEG (47.5: 47.5:5), more encapsulation effectiveness was attained. By combining CUR with BBR, especially when given in TNV, apoptosis increased. Additionally, when CUR and BBR were administered in combination, they significantly reduced the risk of MDR1 development. The current work suggests that the delivery of berberine and curcumin as a combination medication therapy via tween-based nanovesicles may be a potential lung cancer treatment.

鉴于肺癌治疗的诸多不良反应,迫切需要对无毒药物进行更多研究。姜黄素(CUR)和小檗碱(BBR)通过控制多药耐药泵(MDR1)的表达来对抗耐药性。令人称奇的是,将这两种药物结合使用可提高预防肺癌的效果。然而,这些药物溶解度低、稳定性差,限制了它们的疗效。由于水不溶性药物的生物利用度提高,封装效果增强,基于表面活性剂的纳米颗粒最近受到了广泛关注。本研究试图阐明中药纳米药物的联合用药治疗可防止多药耐药蛋白 1:促进肺癌细胞凋亡。研究评估了几种具有不同疏水性尾部的吐温(20、60 和 80)对 BBR/CUR-TNV 的影响。此外,还评估了 BBR/CUR-TNV 联合疗法的 MDR1 活性和凋亡率。TNV的封装效果受吐温类型的影响。用吐温 60、胆固醇和 PEG(47.5: 47.5:5)制成的 TNV 可达到更高的封装效果。将 CUR 与 BBR 结合使用,尤其是在 TNV 中使用时,细胞凋亡率会增加。此外,当 CUR 和 BBR 联合给药时,它们能显著降低 MDR1 发生的风险。目前的研究结果表明,通过基于吐温的纳米颗粒将小檗碱和姜黄素作为联合用药治疗可能是一种潜在的肺癌治疗方法。
{"title":"Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma.","authors":"Ashraf Alemi, Mojtaba Haghi Karamallah, Mohamad Sabaghan, Seyed Ahmad Hosseini, Ali Veisi, Somayeh Haghi Karamallah, Mohammad Farokhifar","doi":"10.1177/22808000241235442","DOIUrl":"10.1177/22808000241235442","url":null,"abstract":"<p><p>Given the numerous adverse effects of lung cancer treatment, more research on non-toxic medications is urgently needed. Curcumin (CUR) and berberine (BBR) combat drug resistance by controlling the expression of multidrug resistant pump (MDR1). Fascinatingly, combining these medications increases the effectiveness of preventing lung cancer. Their low solubility and poor stability, however, restrict their therapeutic efficacy. Because of the improved bioavailability and increased encapsulation effectiveness of water-insoluble medicines, surfactant-based nanovesicles have recently received a great deal of attention. The current study sought to elucidate the Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma. The impact of several tween (20, 60, and 80) types with varied hydrophobic tails on BBR/CUR-TNV was evaluated. Additionally, the MDR1 activity and apoptosis rate of the BBR/CUR-TNV combination therapy were assessed. The encapsulation effectiveness of TNV was affected by the type of tween. With the TNV made from tween 60, cholesterol, and PEG (47.5: 47.5:5), more encapsulation effectiveness was attained. By combining CUR with BBR, especially when given in TNV, apoptosis increased. Additionally, when CUR and BBR were administered in combination, they significantly reduced the risk of MDR1 development. The current work suggests that the delivery of berberine and curcumin as a combination medication therapy via tween-based nanovesicles may be a potential lung cancer treatment.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241235442"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140143539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spider silk enhanced tissue engineering of cartilage tissue: Approach of a novel bioreactor model using adipose derived stromal cells. 蜘蛛丝增强软骨组织工程:使用脂肪基质细胞的新型生物反应器模型的方法。
IF 2.5 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1177/22808000241226656
Sarah Strauß, Maximilian Diemer, Vesna Bucan, Jörn W Kuhbier, Tomke Asendorf, Peter M Vogt, Frederik Schlottmann

Human cartilage tissue remains a challenge for the development of therapeutic options due to its poor vascularization and reduced regenerative capacities. There are a variety of research approaches dealing with cartilage tissue engineering. In addition to different biomaterials, numerous cell populations have been investigated in bioreactor-supported experimental setups to improve cartilage tissue engineering. The concept of the present study was to investigate spider silk cocoons as scaffold seeded with adipose-derived stromal cells (ASC) in a custom-made bioreactor model using cyclic axial compression to engineer cartilage-like tissue. For chemical induction of differentiation, BMP-7 and TGF-β2 were added and changes in cell morphology and de-novo tissue formation were investigated using histological staining to verify chondrogenic differentiation. By seeding spider silk cocoons with ASC, a high colonization density and cell proliferation could be achieved. Mechanical induction of differentiation using a newly established bioreactor model led to a more roundish cell phenotype and new extracellular matrix formation, indicating a chondrogenic differentiation. The addition of BMP-7 and TGF-β2 enhanced the expression of cartilage specific markers in immunohistochemical staining. Overall, the present study can be seen as pilot study and valuable complementation to the published literature.

人体软骨组织的血管化程度低,再生能力差,因此在开发治疗方案方面仍面临挑战。软骨组织工程学的研究方法多种多样。除了不同的生物材料,人们还在生物反应器支持的实验装置中研究了多种细胞群,以改善软骨组织工程。本研究的概念是研究在一个定制的生物反应器模型中,用蛛丝茧作为支架,播种脂肪基质细胞(ASC),利用循环轴向压缩来设计软骨样组织。为了进行化学诱导分化,加入了 BMP-7 和 TGF-β2,并使用组织学染色法研究了细胞形态和新生组织形成的变化,以验证软骨分化。通过向蛛丝茧中播种 ASC,可以获得较高的定植密度和细胞增殖。利用新建立的生物反应器模型进行机械诱导分化,可使细胞表型更加圆润,并形成新的细胞外基质,这表明了软骨分化。BMP-7 和 TGF-β2 的添加增强了免疫组化染色中软骨特异性标志物的表达。总之,本研究可视为一项试验性研究,是对已发表文献的宝贵补充。
{"title":"Spider silk enhanced tissue engineering of cartilage tissue: Approach of a novel bioreactor model using adipose derived stromal cells.","authors":"Sarah Strauß, Maximilian Diemer, Vesna Bucan, Jörn W Kuhbier, Tomke Asendorf, Peter M Vogt, Frederik Schlottmann","doi":"10.1177/22808000241226656","DOIUrl":"10.1177/22808000241226656","url":null,"abstract":"<p><p>Human cartilage tissue remains a challenge for the development of therapeutic options due to its poor vascularization and reduced regenerative capacities. There are a variety of research approaches dealing with cartilage tissue engineering. In addition to different biomaterials, numerous cell populations have been investigated in bioreactor-supported experimental setups to improve cartilage tissue engineering. The concept of the present study was to investigate spider silk cocoons as scaffold seeded with adipose-derived stromal cells (ASC) in a custom-made bioreactor model using cyclic axial compression to engineer cartilage-like tissue. For chemical induction of differentiation, BMP-7 and TGF-β2 were added and changes in cell morphology and de-novo tissue formation were investigated using histological staining to verify chondrogenic differentiation. By seeding spider silk cocoons with ASC, a high colonization density and cell proliferation could be achieved. Mechanical induction of differentiation using a newly established bioreactor model led to a more roundish cell phenotype and new extracellular matrix formation, indicating a chondrogenic differentiation. The addition of BMP-7 and TGF-β2 enhanced the expression of cartilage specific markers in immunohistochemical staining. Overall, the present study can be seen as pilot study and valuable complementation to the published literature.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241226656"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139521011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electroless silver plating on fabrics for antimicrobial coating: comparison between cotton and polyester. 织物上的非电解镀银抗菌涂层:棉与涤纶的比较。
IF 3.1 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1177/22808000241277383
Ivan Vito Ferrari, Micaela Castellino, Anissa Pisani, Giulia Giuntoli, Aida Cavallo, Tamer Al Kayal, Paola Mazzetti, Alfredo Rosellini, Maria Sidoti, Antonino Cataldo, Mauro Pistello, Giorgio Soldani, Paola Losi

In the past few years, due to the Covid-19 pandemic, the interest towards textiles with antimicrobial functionalities faced a significant boost. This study proposes a rapid and convenient method, in terms of reactants and equipment, for fabricating antimicrobial coatings on textiles. Through the electroless silver plating reaction, silver coatings were successfully applied on cotton and polyester, rapidly and at room temperature. Functionalized samples were characterized by morphological (optical and scanning electron microscopies) and chemical tests (X-ray photoelectron spectroscopy, XPS) to investigate the nature of the silver coating. Although distinct nanoparticles did not form, XPS analysis detected the presence of silver, which resulted in an increased surface roughness and hydrophobicity of both cotton and polyester textiles. Ag-coated samples exhibited approximately 80% biocompatibility with murine L929 fibroblasts or human HaCaT cells, and strong antibacterial properties against Escherichia coli in direct contact tests. In antiviral experiments with SARS-CoV-2 virus, treated cotton showed a 100% viral reduction in 30 min, while polyester achieved 100% reduction in 1 h. With a human norovirus surrogate, the Feline Calicivirus, both treated textiles have a faster antiviral response, with more than 60% viral reduction after 5 min, while achieving a 100% reduction in 1 h. In conclusion, this study presents a fast, efficient, and low-cost solution for producing antimicrobial textiles with broad applications in medical and healthcare scenarios.

在过去几年中,由于 Covid-19 的流行,人们对具有抗菌功能的纺织品的兴趣大增。本研究从反应物和设备方面提出了一种快速、便捷的纺织品抗菌涂层制备方法。通过无电解镀银反应,成功地在室温下快速在棉和聚酯纤维上镀上了银涂层。通过形态学(光学显微镜和扫描电子显微镜)和化学测试(X 射线光电子能谱,XPS)对功能化样品进行了表征,以研究银涂层的性质。虽然没有形成明显的纳米颗粒,但 XPS 分析检测到了银的存在,从而增加了棉和聚酯纺织品的表面粗糙度和疏水性。银涂层样品与小鼠 L929 成纤维细胞或人类 HaCaT 细胞的生物相容性约为 80%,在直接接触测试中对大肠杆菌具有很强的抗菌性。在用 SARS-CoV-2 病毒进行的抗病毒实验中,经过处理的棉布在 30 分钟内可减少 100%的病毒,而经过处理的聚酯纤维在 1 小时内可减少 100%的病毒。
{"title":"Electroless silver plating on fabrics for antimicrobial coating: comparison between cotton and polyester.","authors":"Ivan Vito Ferrari, Micaela Castellino, Anissa Pisani, Giulia Giuntoli, Aida Cavallo, Tamer Al Kayal, Paola Mazzetti, Alfredo Rosellini, Maria Sidoti, Antonino Cataldo, Mauro Pistello, Giorgio Soldani, Paola Losi","doi":"10.1177/22808000241277383","DOIUrl":"10.1177/22808000241277383","url":null,"abstract":"<p><p>In the past few years, due to the Covid-19 pandemic, the interest towards textiles with antimicrobial functionalities faced a significant boost. This study proposes a rapid and convenient method, in terms of reactants and equipment, for fabricating antimicrobial coatings on textiles. Through the electroless silver plating reaction, silver coatings were successfully applied on cotton and polyester, rapidly and at room temperature. Functionalized samples were characterized by morphological (optical and scanning electron microscopies) and chemical tests (X-ray photoelectron spectroscopy, XPS) to investigate the nature of the silver coating. Although distinct nanoparticles did not form, XPS analysis detected the presence of silver, which resulted in an increased surface roughness and hydrophobicity of both cotton and polyester textiles. Ag-coated samples exhibited approximately 80% biocompatibility with murine L929 fibroblasts or human HaCaT cells, and strong antibacterial properties against <i>Escherichia coli</i> in direct contact tests. In antiviral experiments with SARS-CoV-2 virus, treated cotton showed a 100% viral reduction in 30 min, while polyester achieved 100% reduction in 1 h. With a human norovirus surrogate, the Feline Calicivirus, both treated textiles have a faster antiviral response, with more than 60% viral reduction after 5 min, while achieving a 100% reduction in 1 h. In conclusion, this study presents a fast, efficient, and low-cost solution for producing antimicrobial textiles with broad applications in medical and healthcare scenarios.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241277383"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic HA-GO implant coating for enhanced osseointegration via macrophage M2 polarization-induced osteo-immunomodulation. 仿生 HA-GO 植入物涂层通过巨噬细胞 M2 极化诱导的骨免疫调节增强骨结合。
IF 3.1 4区 医学 Q2 BIOPHYSICS Pub Date : 2024-01-01 DOI: 10.1177/22808000241266665
Wufanbieke Baheti, Xiaotao Chen, Mi La, Huiyu He

The pro-inflammatory/anti-inflammatory polarized phenotypes of macrophages (M1/M2) can be used to predict the success of implant integration. Hence, activating and inducing the transformation of immunocytes that promote tissue repair appears to be a highly promising strategy for facilitating osteo-anagenesis. In a previous study, titanium implants were coated with a graphene oxide-hydroxyapatite (GO-HA) nanocomposite via electrophoretic deposition, and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was found to be significantly enhanced when the GO content was 2wt%. However, the effectiveness of the GO-HA nanocomposite coating in modifying the in vivo immune microenvironment still remains unclear. In this study, the effects of GO-HA coatings on osteogenesis were investigated based on the GO-HA-mediated immune regulation of macrophages. The HA-2wt%GO nanocomposite coatings exhibited good biocompatibility and favored M2 macrophage polarization. Meanwhile, they could also significantly upregulate IL-10 (anti-inflammatory factor) expression and downregulate TNF-α (pro-inflammatory factor) expression. Additionally, the microenvironment, which was established by M2 macrophages, favored the osteogenesis of BMSCs both in vivo and in vitro. These findings show that the GO-HA nanocomposite coating is a promising surface-modification material. Hence, this study provides a reference for the development of next-generation osteoimmunomodulatory biomaterials.

巨噬细胞(M1/M2)的促炎/抗炎极化表型可用于预测植入物整合的成功与否。因此,激活和诱导促进组织修复的免疫细胞转化似乎是一种非常有前景的促进骨生成的策略。在之前的一项研究中,通过电泳沉积法将氧化石墨烯-羟基磷灰石(GO-HA)纳米复合材料涂覆在钛植入物上,发现当 GO 含量为 2wt% 时,骨髓间充质干细胞(BMSCs)的成骨分化能力明显增强。然而,GO-HA 纳米复合涂层在改变体内免疫微环境方面的效果仍不明确。本研究基于 GO-HA 介导的巨噬细胞免疫调节,研究了 GO-HA 涂层对成骨的影响。HA-2wt%GO纳米复合涂层具有良好的生物相容性,有利于M2巨噬细胞极化。同时,它们还能显著上调 IL-10(抗炎因子)的表达,下调 TNF-α(促炎因子)的表达。此外,由 M2 巨噬细胞建立的微环境有利于 BMSCs 在体内和体外的成骨。这些研究结果表明,GO-HA 纳米复合涂层是一种很有前景的表面修饰材料。因此,这项研究为开发下一代骨免疫调节生物材料提供了参考。
{"title":"Biomimetic HA-GO implant coating for enhanced osseointegration via macrophage M2 polarization-induced osteo-immunomodulation.","authors":"Wufanbieke Baheti, Xiaotao Chen, Mi La, Huiyu He","doi":"10.1177/22808000241266665","DOIUrl":"https://doi.org/10.1177/22808000241266665","url":null,"abstract":"<p><p>The pro-inflammatory/anti-inflammatory polarized phenotypes of macrophages (M1/M2) can be used to predict the success of implant integration. Hence, activating and inducing the transformation of immunocytes that promote tissue repair appears to be a highly promising strategy for facilitating osteo-anagenesis. In a previous study, titanium implants were coated with a graphene oxide-hydroxyapatite (GO-HA) nanocomposite via electrophoretic deposition, and the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was found to be significantly enhanced when the GO content was 2wt%. However, the effectiveness of the GO-HA nanocomposite coating in modifying the in vivo immune microenvironment still remains unclear. In this study, the effects of GO-HA coatings on osteogenesis were investigated based on the GO-HA-mediated immune regulation of macrophages. The HA-2wt%GO nanocomposite coatings exhibited good biocompatibility and favored M2 macrophage polarization. Meanwhile, they could also significantly upregulate IL-10 (anti-inflammatory factor) expression and downregulate TNF-α (pro-inflammatory factor) expression. Additionally, the microenvironment, which was established by M2 macrophages, favored the osteogenesis of BMSCs both in vivo and in vitro. These findings show that the GO-HA nanocomposite coating is a promising surface-modification material. Hence, this study provides a reference for the development of next-generation osteoimmunomodulatory biomaterials.</p>","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":"22 ","pages":"22808000241266665"},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Applied Biomaterials & Functional Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1