Pub Date : 2017-11-20eCollection Date: 2017-01-01DOI: 10.5458/jag.jag.JAG-2017_013
Motomitsu Kitaoka
3-Keto-levoglucosan (3ketoLG) has been postulated to be the product of a reaction catalyzed by levoglucosan dehydrogenase (LGDH), a bacterial enzyme involved in the metabolism of levoglucosan (LG). To investigate the LG metabolic pathway catalyzed by LGDH, 3ketoLG is needed. However, 3ketoLG has not been successfully isolated from the LGDH reaction. This study investigated the ability of pyranose oxidase to convert LG into 3ketoLG by oxidizing the C3 hydroxyl group. During the oxidation of LG, 3ketoLG was spontaneously crystallized in the reaction mixture. Starting with 500 mM LG, the isolation yield of 3ketoLG was 80 %. Nuclear magnetic resonance analyses revealed that a part of 3ketoLG dimerized in aqueous solution, explaining its poor solubility. Even under normal conditions, 3ketoLG was unstable in aqueous solution, with a half-life of 16 h at pH 7.0 and 30 °C. The decomposition proceeded through β-elimination of the C-O bonds at both C1 and C5, as evidenced by decomposition products. This instability explains the difficulty in obtaining 3ketoLG via the LGDH reaction.
据推测,3-酮基左旋葡聚糖(3ketoLG)是左旋葡聚糖脱氢酶(LGDH)催化反应的产物,LGDH 是一种参与左旋葡聚糖(LG)代谢的细菌酶。要研究 LGDH 催化的 LG 代谢途径,需要 3ketoLG。然而,尚未从 LGDH 反应中成功分离出 3ketoLG。本研究调查了吡喃糖氧化酶通过氧化 C3 羟基将 LG 转化为 3ketoLG 的能力。在 LG 氧化过程中,3ketoLG 自发地在反应混合物中结晶。从 500 mM LG 开始,3ketoLG 的分离率为 80%。核磁共振分析表明,部分 3ketoLG 在水溶液中发生了二聚化,这也是其溶解性差的原因。即使在正常条件下,3ketoLG 在水溶液中也不稳定,在 pH 值为 7.0、温度为 30 ℃ 的条件下,其半衰期为 16 小时。分解产物表明,分解是通过 C1 和 C5 上的 C-O 键的β-消除进行的。这种不稳定性解释了通过 LGDH 反应难以获得 3ketoLG 的原因。
{"title":"Synthesis of 3-Keto-levoglucosan Using Pyranose Oxidase and Its Spontaneous Decomposition via β-Elimination.","authors":"Motomitsu Kitaoka","doi":"10.5458/jag.jag.JAG-2017_013","DOIUrl":"10.5458/jag.jag.JAG-2017_013","url":null,"abstract":"<p><p>3-Keto-levoglucosan (3ketoLG) has been postulated to be the product of a reaction catalyzed by levoglucosan dehydrogenase (LGDH), a bacterial enzyme involved in the metabolism of levoglucosan (LG). To investigate the LG metabolic pathway catalyzed by LGDH, 3ketoLG is needed. However, 3ketoLG has not been successfully isolated from the LGDH reaction. This study investigated the ability of pyranose oxidase to convert LG into 3ketoLG by oxidizing the C3 hydroxyl group. During the oxidation of LG, 3ketoLG was spontaneously crystallized in the reaction mixture. Starting with 500 mM LG, the isolation yield of 3ketoLG was 80 %. Nuclear magnetic resonance analyses revealed that a part of 3ketoLG dimerized in aqueous solution, explaining its poor solubility. Even under normal conditions, 3ketoLG was unstable in aqueous solution, with a half-life of 16 h at pH 7.0 and 30 °C. The decomposition proceeded through β-elimination of the C-O bonds at both C1 and C5, as evidenced by decomposition products. This instability explains the difficulty in obtaining 3ketoLG via the LGDH reaction.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"64 4","pages":"99-107"},"PeriodicalIF":1.1,"publicationDate":"2017-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6a/21/JAG-64-099.PMC8056934.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A GH67 α-glucuronidase gene derived from Bacillus halodurans C-125 was expressed in E. coli to obtain a recombinant enzyme (BhGlcA67). Using the purified enzyme, the enzymatic properties and substrate specificities of the enzyme were investigated. BhGlcA67 showed maximum activity at pH 5.4 and 45 °C. When BhGlcA67 was incubated with birchwood, oat spelts, and cotton seed xylan, the enzyme did not release any glucuronic acid or 4-O-methyl-glucuronic acid from these substrates. BhGlcA67 acted only on 4-O-methyl-α-D-glucuronopyranosyl-(1→2)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose (MeGlcA3Xyl3), which has a glucuronic acid side chain with a 4-O-methyl group located at its non-reducing end, but did not on β-D-xylopyranosyl-(1→4)-[4-O-methyl-α-D-glucuronopyranosyl-(l→2)]-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylop- yranose (MeGlcA3Xyl4) and α-D-glucuronopyranosyl-(l→2)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose (GlcA3Xyl3). The environment for recognizing the 4-O-methyl group of glucuronic acid was observed in all the crystal structures of reported GH67 glucuronidases, and the amino acids for discriminating the 4-O-methyl group of glucuronic acid were widely conserved in the primary sequences of the GH67 family, suggesting that the 4-O-methyl group is critical for the activities of the GH67 family.
从嗜盐芽孢杆菌C-125中提取的GH67 α-葡萄糖醛酸酶基因在大肠杆菌中表达,获得重组酶BhGlcA67。利用纯化后的酶,研究了酶的酶学性质和底物特异性。BhGlcA67在pH 5.4和45℃条件下活性最高。当BhGlcA67与桦木、燕麦和棉籽木聚糖孵育时,该酶没有从这些底物中释放任何葡萄糖醛酸或4- o -甲基葡萄糖醛酸。BhGlcA67仅作用于4- o -methyl-α- d -glucuronopyranosyl-(1→2)-β- d -xylopyranosyl-(1→4)-β- d -xylopyranosyl-(1→4)-β- d -xylopyranose (MeGlcA3Xyl3),其葡萄糖醛酸侧链的非还原端有一个4- o -甲基。β-D-xylopyranosyl-(1→4)-[4- o -methyl-α-D-glucuronopyranosyl-(1→2)]-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)- β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)- β-D-xylopyranosyl-(GlcA3Xyl3)]-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)- β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl (GlcA3Xyl3)。在已报道的GH67葡萄糖醛酸酶的所有晶体结构中均存在识别葡萄糖醛酸4- o -甲基的环境,并且用于识别葡萄糖醛酸4- o -甲基的氨基酸在GH67家族的一级序列中广泛保守,这表明4- o -甲基对GH67家族的活性至关重要。
{"title":"4-<i>O</i>-Methyl Modifications of Glucuronic Acids in Xylans Are Indispensable for Substrate Discrimination by GH67 α-Glucuronidase from <i>Bacillus halodurans</i> C-125.","authors":"Haruka Yagi, Tomoko Maehara, Tsuyoshi Tanaka, Ryo Takehara, Koji Teramoto, Katsuro Yaoi, Satoshi Kaneko","doi":"10.5458/jag.jag.JAG-2017_016","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2017_016","url":null,"abstract":"<p><p>A GH67 α-glucuronidase gene derived from <i>Bacillus halodurans</i> C-125 was expressed in <i>E. coli</i> to obtain a recombinant enzyme (<i>Bh</i>GlcA67). Using the purified enzyme, the enzymatic properties and substrate specificities of the enzyme were investigated. <i>Bh</i>GlcA67 showed maximum activity at pH 5.4 and 45 °C. When <i>Bh</i>GlcA67 was incubated with birchwood, oat spelts, and cotton seed xylan, the enzyme did not release any glucuronic acid or 4-<i>O</i>-methyl-glucuronic acid from these substrates. <i>Bh</i>GlcA67 acted only on 4-<i>O</i>-methyl-α-D-glucuronopyranosyl-(1→2)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose (MeGlcA<sup>3</sup>Xyl<sub>3</sub>), which has a glucuronic acid side chain with a 4-<i>O</i>-methyl group located at its non-reducing end, but did not on β-D-xylopyranosyl-(1→4)-[4-<i>O</i>-methyl-α-D-glucuronopyranosyl-(l→2)]-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylop- yranose (MeGlcA<sup>3</sup>Xyl<sub>4</sub>) and α-D-glucuronopyranosyl-(l→2)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose (GlcA<sup>3</sup>Xyl<sub>3</sub>). The environment for recognizing the 4-<i>O</i>-methyl group of glucuronic acid was observed in all the crystal structures of reported GH67 glucuronidases, and the amino acids for discriminating the 4-<i>O</i>-methyl group of glucuronic acid were widely conserved in the primary sequences of the GH67 family, suggesting that the 4-<i>O</i>-methyl group is critical for the activities of the GH67 family.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"64 4","pages":"115-121"},"PeriodicalIF":1.1,"publicationDate":"2017-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2017_016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39279794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-11-20eCollection Date: 2017-01-01DOI: 10.5458/jag.jag.JAG-2017_014
Akira Yamamori, Yusuke Takata, Eri Fukushi, Jun Kawabata, Hideki Okada, Naoki Kawazoe, Keiji Ueno, Shuichi Onodera, Norio Shiomi
A fermented beverage of plant extracts (Super Ohtaka®) was prepared from about 50 kinds of fruits and vegetables. This natural fermentation was performed by yeast (Zygosaccharomyces spp. and Pichia spp.) and lactic acid bacteria (Leuconostoc spp.) and resulted in the production of a novel fructopyranose-containing saccharide, which was subsequently isolated using carbon-Celite column chromatography and preparative-HPLC. The structure of the saccharide was determined using MALDI-TOF MS and NMR, and the saccharide was identified as β-D-fructopyranosyl-(2→6)-β-D-fructofuranosyl-(2↔1)-α-D-glucopyranoside. This is the first description of this novel saccharide and its isolation from a natural source.
以约50种水果和蔬菜为原料,制备了植物提取物发酵饮料(Super Ohtaka®)。酵母(Zygosaccharomyces spp.和毕赤酵母(Pichia spp.))和乳酸菌(Leuconostoc spp.)进行了自然发酵,产生了一种新型的果糖-吡喃糖,随后使用碳- celite柱层析和制备- hplc分离了该糖。用MALDI-TOF质谱和NMR对该糖的结构进行了分析,确定该糖为β- d -果糖吡喃糖基-(2→6)-β- d -果糖呋喃糖基-(2→1)-α- d -葡萄糖吡喃糖苷。这是第一次描述这种新型糖类及其从自然来源中分离出来。
{"title":"Structural Analysis of a Novel Oligosaccharide Isolated from Fermented Beverage of Plant Extracts.","authors":"Akira Yamamori, Yusuke Takata, Eri Fukushi, Jun Kawabata, Hideki Okada, Naoki Kawazoe, Keiji Ueno, Shuichi Onodera, Norio Shiomi","doi":"10.5458/jag.jag.JAG-2017_014","DOIUrl":"10.5458/jag.jag.JAG-2017_014","url":null,"abstract":"<p><p>A fermented beverage of plant extracts (Super Ohtaka<sup>®</sup>) was prepared from about 50 kinds of fruits and vegetables. This natural fermentation was performed by yeast (<i>Zygosaccharomyces</i> spp. and <i>Pichia</i> spp.) and lactic acid bacteria (<i>Leuconostoc</i> spp.) and resulted in the production of a novel fructopyranose-containing saccharide, which was subsequently isolated using carbon-Celite column chromatography and preparative-HPLC. The structure of the saccharide was determined using MALDI-TOF MS and NMR, and the saccharide was identified as β-D-fructopyranosyl-(2→6)-β-D-fructofuranosyl-(2↔1)-α-D-glucopyranoside. This is the first description of this novel saccharide and its isolation from a natural source.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"64 4","pages":"123-127"},"PeriodicalIF":1.1,"publicationDate":"2017-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2017_014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39279795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of this study was to clarify the change in the powder properties of rice flour depending on the milling process. Rice flour samples, which have gradual mechanical shock properties, were prepared using different milling methods. Furthermore, the correlation between the starch damage, owing to mechanical shock, and powder properties of rice flour was investigated. The particle size was changed gradually through each milling process; however, the change did not clearly correlate with starch damage. The results of the X-ray diffraction (XRD) pattern of nongelatinized samples showed the typical A-type structure of starch. The crystal structure of starch in rice flour may change to a disorder state with the progress of milling; thus, in this study, instead of crystallinity, we considered the disorder index (DI) calculated from the XRD intensity of samples. Relationship between DI and starch damage was confirmed with R2 = 0.923. Therefore, the mechanical shock caused by the milling process contributes to the crystal state of starch. The parameter qm calculated from the Guggenheim-Anderson-de Boer (GAB) equation of each sample corresponded to the DI. This result suggested that the sorption site of rice flour decreased, and a positive correlation was observed between the parameter K and DI. Thus, the interaction between the rice flour and water molecules weakened because of the mechanical shock. In addition, the use of a SEM image supports the insight that the change in parameter K may reflect the structural change in the solid phase. These results demonstrated that the change in powder properties of rice flour caused by mechanical shock of the milling could evaluate quantitatively.
本研究旨在阐明碾磨过程对米粉性质的影响。采用不同的碾磨方法制备了具有渐变机械冲击特性的米粉样品。此外,还研究了机械冲击造成的淀粉损伤与米粉粉末特性之间的相关性。在每个碾磨过程中,粒度都会逐渐发生变化,但这种变化与淀粉损伤并无明显关联。非糊化样品的 X 射线衍射(XRD)图谱结果显示淀粉具有典型的 A 型结构。米粉中淀粉的晶体结构可能会随着碾磨的进行而变为无序状态,因此,在本研究中,我们考虑的不是结晶度,而是根据样品的 X 射线衍射强度计算出的无序指数(DI)。DI 与淀粉损伤之间的关系得到了证实,R 2 = 0.923。因此,研磨过程造成的机械冲击会影响淀粉的晶体状态。根据古根海姆-安德森-德布尔(GAB)方程计算出的各样品参数 q m 与 DI 相符。这一结果表明,米粉的吸附位点减少,参数 K 与 DI 之间呈正相关。因此,由于机械冲击,米粉与水分子之间的相互作用减弱了。此外,利用扫描电子显微镜(SEM)图像支持了参数 K 的变化可能反映了固相结构变化的观点。这些结果表明,碾磨机械冲击引起的米粉粉末特性变化可以得到定量评估。
{"title":"Study on the Change in Powder Properties of Rice Flour by Different Milling Processes.","authors":"Daitaro Ishikawa, Ikumi Sawa, Yasuyo Sekiyama, Akemi K Horigane, Tomoya Okunishi, Keiko Fujii, Tomoyuki Fujii","doi":"10.5458/jag.jag.JAG-2016_016","DOIUrl":"10.5458/jag.jag.JAG-2016_016","url":null,"abstract":"<p><p>The aim of this study was to clarify the change in the powder properties of rice flour depending on the milling process. Rice flour samples, which have gradual mechanical shock properties, were prepared using different milling methods. Furthermore, the correlation between the starch damage, owing to mechanical shock, and powder properties of rice flour was investigated. The particle size was changed gradually through each milling process; however, the change did not clearly correlate with starch damage. The results of the X-ray diffraction (XRD) pattern of nongelatinized samples showed the typical A-type structure of starch. The crystal structure of starch in rice flour may change to a disorder state with the progress of milling; thus, in this study, instead of crystallinity, we considered the disorder index (DI) calculated from the XRD intensity of samples. Relationship between DI and starch damage was confirmed with <i>R</i> <sup>2</sup> = 0.923. Therefore, the mechanical shock caused by the milling process contributes to the crystal state of starch. The parameter <i>q</i> <sub>m</sub> calculated from the Guggenheim-Anderson-de Boer (GAB) equation of each sample corresponded to the DI. This result suggested that the sorption site of rice flour decreased, and a positive correlation was observed between the parameter <i>K</i> and DI. Thus, the interaction between the rice flour and water molecules weakened because of the mechanical shock. In addition, the use of a SEM image supports the insight that the change in parameter <i>K</i> may reflect the structural change in the solid phase. These results demonstrated that the change in powder properties of rice flour caused by mechanical shock of the milling could evaluate quantitatively.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"64 4","pages":"109-114"},"PeriodicalIF":1.1,"publicationDate":"2017-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f6/fc/JAG-64-109.PMC8056928.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salmon cartilage proteoglycan fractions have recently gained favor as ingredients of functional food and cosmetics. An optimal hot water method to extract proteoglycan from salmon cartilage has recently been developed. The extracted cartilage includes hyaluronan and collagen in addition to proteoglycan as counterparts that interact with each other. In this study, biochemical analyses and atomic force microscopical analysis revealed global molecular images of proteoglycan in the hot water extract. More than seventy percent of proteoglycans in this extract maintained their whole native structures. Hyaluronan purified from the hot water extract showed a distribution with high molecular weight similar to hyaluronan considered to be native hyaluronan in cartilage. The current data is evidence of the quality of this hot water cartilage extract.
{"title":"Characterization of Proteoglycan and Hyaluronan in Hot Water Extract from Salmon Cartilage.","authors":"Ikuko Kakizaki, Ayako Miura, Takashi Mineta, Jinseo Hong, Yoji Kato","doi":"10.5458/jag.jag.JAG-2017_005","DOIUrl":"10.5458/jag.jag.JAG-2017_005","url":null,"abstract":"<p><p>Salmon cartilage proteoglycan fractions have recently gained favor as ingredients of functional food and cosmetics. An optimal hot water method to extract proteoglycan from salmon cartilage has recently been developed. The extracted cartilage includes hyaluronan and collagen in addition to proteoglycan as counterparts that interact with each other. In this study, biochemical analyses and atomic force microscopical analysis revealed global molecular images of proteoglycan in the hot water extract. More than seventy percent of proteoglycans in this extract maintained their whole native structures. Hyaluronan purified from the hot water extract showed a distribution with high molecular weight similar to hyaluronan considered to be native hyaluronan in cartilage. The current data is evidence of the quality of this hot water cartilage extract.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"64 4","pages":"83-90"},"PeriodicalIF":1.1,"publicationDate":"2017-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2a/59/JAG-64-083.PMC8056930.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We previously reported that sensitivity to Congo Red (CR) or Lysing Enzymes (LE) is affected by the loss of cell-wall α-1,3-glucan (AG) in Aspergillus nidulans. We found that the amount of CR adsorbed to AG was significantly less than the amount adsorbed to β-1,3-glucan (BG) or chitin, suggesting that loss of cell-wall AG would increase exposure of BG on the cell surface, and thereby increase the sensitivity to CR. Generally, fungal BGs are known as biological response modifiers because of their recognition by Dectin-1 receptors in human immune systems. Therefore, isolation of AG-deficient mutants in Aspergillus oryzae has been used in the Japanese fermentation industry to create strains with increased ability to promote immune responses. Here, we aimed to isolate AG-deficient strains by mutagenizing A. oryzae conidia with chemical mutagens. Based on the increased sensitivity to CR in AG-deficient strains of A. nidulans and A. oryzae, we established a screening method for isolation of AG-deficient strains. Several candidate AG-deficient mutants of A. oryzae were isolated using the screening method; these strains showed increased sensitivity to CR and/or LE. Cytokine production was increased in the dendritic cells co-incubated with germinated conidia of the AG-deficient mutants. Furthermore, according to a Dectin-1 NFAT (nuclear factor of activator T cells)-GFP (green fluorescent protein) reporter assay, Dectin-1 response levels in the AG-deficient mutants were higher than those in wild-type A. oryzae. These results suggest that we successfully isolated AG-deficient mutants of A. oryzae with immunostimulatory effects.
{"title":"Characterization of Cell Wall α-1,3-Glucan-Deficient Mutants in <i>Aspergillus oryzae</i> Isolated by a Screening Method Based on Their Sensitivities to Congo Red or Lysing Enzymes.","authors":"Akira Yoshimi, Misa Hirama, Yasunobu Tsubota, Kazuyoshi Kawakami, Silai Zhang, Katsuya Gomi, Keietsu Abe","doi":"10.5458/jag.jag.JAG-2017_004","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2017_004","url":null,"abstract":"<p><p>We previously reported that sensitivity to Congo Red (CR) or Lysing Enzymes (LE) is affected by the loss of cell-wall α-1,3-glucan (AG) in <i>Aspergillus nidulans</i>. We found that the amount of CR adsorbed to AG was significantly less than the amount adsorbed to β-1,3-glucan (BG) or chitin, suggesting that loss of cell-wall AG would increase exposure of BG on the cell surface, and thereby increase the sensitivity to CR. Generally, fungal BGs are known as biological response modifiers because of their recognition by Dectin-1 receptors in human immune systems. Therefore, isolation of AG-deficient mutants in <i>Aspergillus oryzae</i> has been used in the Japanese fermentation industry to create strains with increased ability to promote immune responses. Here, we aimed to isolate AG-deficient strains by mutagenizing <i>A. oryzae</i> conidia with chemical mutagens. Based on the increased sensitivity to CR in AG-deficient strains of <i>A. nidulans</i> and <i>A. oryzae</i>, we established a screening method for isolation of AG-deficient strains. Several candidate AG-deficient mutants of <i>A. oryzae</i> were isolated using the screening method; these strains showed increased sensitivity to CR and/or LE. Cytokine production was increased in the dendritic cells co-incubated with germinated conidia of the AG-deficient mutants. Furthermore, according to a Dectin-1 NFAT (nuclear factor of activator T cells)-GFP (green fluorescent protein) reporter assay, Dectin-1 response levels in the AG-deficient mutants were higher than those in wild-type <i>A. oryzae</i>. These results suggest that we successfully isolated AG-deficient mutants of <i>A. oryzae</i> with immunostimulatory effects.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"64 3","pages":"65-73"},"PeriodicalIF":1.1,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2017_004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-08-20eCollection Date: 2017-01-01DOI: 10.5458/jag.jag.JAG-2016_017
Taihua Mu, Hongnan Sun
In 2014, potato production in China amounted to 96 million tons, which was the highest in the world. As one of the most important nutritional foods in the world, potato is rich in starch, dietary fiber, vitamins, minerals, etc. Potatoes stand barren environment, drought, saline, and alkaline environment, and cold weather, with a short growing season. These features make them the best rain-fed crops suitable for production even when the annual rainfall is below 400 mm. In 2013, the Chinese Ministry of Agriculture suggested a potato staple food strategy using potatoes to make Chinese traditional staple foods such as steamed bread, noodles, etc. Our research group carried out a study on processing technology of potato staple food, especially fermented staple food. Some new processing technologies of potato staple food have been investigated and developed. The aim of this paper is to give an overview of the possible effects of adding potato flour in the dough and of the microstructure characteristics, technological parameters, total polyphenol content, and antioxidant activity of staple foods. We also systematically describe the processing technology of potato staple foods, which may be of great importance in promoting further expansion of the potato-processing industry and increasing the economic benefit of the companies.
{"title":"Progress in Research and Development of Potato Staple Food Processing Technology.","authors":"Taihua Mu, Hongnan Sun","doi":"10.5458/jag.jag.JAG-2016_017","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2016_017","url":null,"abstract":"<p><p>In 2014, potato production in China amounted to 96 million tons, which was the highest in the world. As one of the most important nutritional foods in the world, potato is rich in starch, dietary fiber, vitamins, minerals, <i>etc</i>. Potatoes stand barren environment, drought, saline, and alkaline environment, and cold weather, with a short growing season. These features make them the best rain-fed crops suitable for production even when the annual rainfall is below 400 mm. In 2013, the Chinese Ministry of Agriculture suggested a potato staple food strategy using potatoes to make Chinese traditional staple foods such as steamed bread, noodles, <i>etc</i>. Our research group carried out a study on processing technology of potato staple food, especially fermented staple food. Some new processing technologies of potato staple food have been investigated and developed. The aim of this paper is to give an overview of the possible effects of adding potato flour in the dough and of the microstructure characteristics, technological parameters, total polyphenol content, and antioxidant activity of staple foods. We also systematically describe the processing technology of potato staple foods, which may be of great importance in promoting further expansion of the potato-processing industry and increasing the economic benefit of the companies.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"64 3","pages":"51-64"},"PeriodicalIF":1.1,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2016_017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-08-20eCollection Date: 2017-01-01DOI: 10.5458/jag.jag.JAG-2017_001
Eri Udagawa, Hiroko Matsuda, Mamiko Tanaka, Takaaki Shirai
Potatoes are generally regarded as high glycemic index (GI) foods. Resistant starch (RS) comprises the starch fraction that is not absorbed in the small intestine, thus controlling the glucose level and improving the intestinal environment. In this study, an analysis of the formation of RS of potato starch samples under different acetic acid-thermal treatment conditions was conducted. Additionally, the relationship between the rates of starch digestion, estimated GI (eGI), and the RS content was evaluated by employing in vitro enzymatic models. Compared with control samples, the RS content in the cold-stored samples after acid-boiling was higher, whereas that of samples after heating at 120 °C with acetic acid was decreased. The eGI was negatively correlated with the RS content in potatoes. Cold store after acid-boiling was effective in increasing the RS content. Furthermore, low eGI values may have resulted from higher levels of RS in potatoes.
{"title":"The Effect of Heat-acid Treatment on the Formation of Resistant Starch and the Estimated Glycemic Index in Potatoes.","authors":"Eri Udagawa, Hiroko Matsuda, Mamiko Tanaka, Takaaki Shirai","doi":"10.5458/jag.jag.JAG-2017_001","DOIUrl":"10.5458/jag.jag.JAG-2017_001","url":null,"abstract":"<p><p>Potatoes are generally regarded as high glycemic index (GI) foods. Resistant starch (RS) comprises the starch fraction that is not absorbed in the small intestine, thus controlling the glucose level and improving the intestinal environment. In this study, an analysis of the formation of RS of potato starch samples under different acetic acid-thermal treatment conditions was conducted. Additionally, the relationship between the rates of starch digestion, estimated GI (eGI), and the RS content was evaluated by employing <i>in vitro</i> enzymatic models. Compared with control samples, the RS content in the cold-stored samples after acid-boiling was higher, whereas that of samples after heating at 120 °C with acetic acid was decreased. The eGI was negatively correlated with the RS content in potatoes. Cold store after acid-boiling was effective in increasing the RS content. Furthermore, low eGI values may have resulted from higher levels of RS in potatoes.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"64 3","pages":"75-80"},"PeriodicalIF":1.1,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1d/6f/JAG-64-075.PMC8056890.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We report production of the functional disaccharide gentiobiose β-D-Glcp-(1→6)-D-Glc by a hydrolysis reaction of hydrothermally treated Aureobasidium pullulans β-1,3-1,6-glucan as the substrate and Kitalase as the enzyme. Gentiobiose was produced over the pH range 4-6 and the concentration of gentiobiose produced decreased above pH 7. The maximum value of gentiobiose production was unaffected by the enzyme concentration. The maximum concentration of gentiobiose produced was dependent on the substrate concentration whereas the maximum ratio of gentiobiose to glucose was not. The production of gentiobiose from yeast β-1,3-1,6-glucan was lower than that from A. pullulans β-1,3-1,6-glucan.
本文报道了以水热处理过的普鲁兰毛霉β- 1,3,6 -葡聚糖为底物,以Kitalase为酶水解制备功能双糖gentiobiose β-D-Glcp-(1→6)- d - glc。在pH值4 ~ 6范围内产生龙胆糖,在pH值7以上产生的龙胆糖浓度下降。基因糖产量最大值不受酶浓度的影响。产龙胆糖的最大浓度与底物浓度有关,而龙胆糖与葡萄糖的最大比值与底物浓度无关。酵母β-1,3-1,6-葡聚糖的产量低于普鲁兰菇β-1,3-1,6-葡聚糖。
{"title":"Production of Gentiobiose from Hydrothermally Treated <i>Aureobasidium pullulans</i> β-1,3-1,6-Glucan.","authors":"Katsuki Hirabayashi, Yoshiya Tashiro, Nobuhiro Kondo, Sachio Hayashi","doi":"10.5458/jag.jag.JAG-2017_002","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2017_002","url":null,"abstract":"<p><p>We report production of the functional disaccharide gentiobiose β-D-Glc<i>p</i>-(1→6)-D-Glc by a hydrolysis reaction of hydrothermally treated <i>Aureobasidium pullulans</i> β-1,3-1,6-glucan as the substrate and Kitalase as the enzyme. Gentiobiose was produced over the pH range 4-6 and the concentration of gentiobiose produced decreased above pH 7. The maximum value of gentiobiose production was unaffected by the enzyme concentration. The maximum concentration of gentiobiose produced was dependent on the substrate concentration whereas the maximum ratio of gentiobiose to glucose was not. The production of gentiobiose from yeast β-1,3-1,6-glucan was lower than that from <i>A. pullulans</i> β-1,3-1,6-glucan.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"64 2","pages":"33-37"},"PeriodicalIF":1.1,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2017_002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39289242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We prepared and characterized amylose nanogels containing ionic polysaccharides which we used were 4-O-methyl-D-glucurono-D-xylan (GX), alginate, xanthan, and chitosan. Gelation under a shear force followed by a wet pulverization leads to the formation of hybrid nanogels. The resultant nanogels were characterized by particle size analysis, zeta-potential measurement and atomic force microscopy (AFM). Wet pulverization under a pressure of 200 MPa reduced the particle size of the gels from 20-26 μm to 240-670 nm. Zeta potential measurement showed that the ionic polysaccharides increased surface charges of the amylose gels. AFM observations showed the network consisting of submicron size amylose-polysaccharide nano fibrils. The fibrils containing GX were dispersed uniformly, while those containing only amylose were partly aggregated.
我们制备了含有4- o-甲基- d -葡萄糖醛酸- d -木聚糖(GX)、海藻酸盐、黄原胶和壳聚糖的离子多糖直链淀粉纳米凝胶,并对其进行了表征。在剪切力作用下凝胶化,然后湿粉碎,形成了杂化纳米凝胶。通过粒径分析、ζ电位测量和原子力显微镜(AFM)对所得纳米凝胶进行了表征。在200 MPa的湿法粉碎压力下,凝胶的粒径由20 ~ 26 μm减小到240 ~ 670 nm。Zeta电位测定表明,离子多糖增加了直链淀粉凝胶的表面电荷。原子力显微镜观察表明,该网络由亚微米大小的直链淀粉-多糖纳米原纤维组成。含GX的原纤维分布均匀,仅含直链淀粉的原纤维部分聚集。
{"title":"Characterization of Amylose Nanogels and Microgels Containing Ionic Polysaccharides.","authors":"Shiho Suzuki, Junichiro Nishioka, Shinichi Kitamura","doi":"10.5458/jag.jag.JAG-2016_012","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2016_012","url":null,"abstract":"<p><p>We prepared and characterized amylose nanogels containing ionic polysaccharides which we used were 4-<i>O</i>-methyl-D-glucurono-D-xylan (GX), alginate, xanthan, and chitosan. Gelation under a shear force followed by a wet pulverization leads to the formation of hybrid nanogels. The resultant nanogels were characterized by particle size analysis, zeta-potential measurement and atomic force microscopy (AFM). Wet pulverization under a pressure of 200 MPa reduced the particle size of the gels from 20-26 μm to 240-670 nm. Zeta potential measurement showed that the ionic polysaccharides increased surface charges of the amylose gels. AFM observations showed the network consisting of submicron size amylose-polysaccharide nano fibrils. The fibrils containing GX were dispersed uniformly, while those containing only amylose were partly aggregated.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"64 2","pages":"21-25"},"PeriodicalIF":1.1,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/dd/cf/JAG-64-021.PMC8056922.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39289240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}