首页 > 最新文献

Journal of applied glycoscience最新文献

英文 中文
Characterization of a GH36 β-L-Arabinopyranosidase in Bifidobacterium adolescentis. 青少年双歧杆菌GH36 β-L-Arabinopyranosidase的研究。
IF 1.1 Pub Date : 2018-05-20 eCollection Date: 2018-01-01 DOI: 10.5458/jag.jag.JAG-2018_001
Yuki Sasaki, Nami Togo, Kanefumi Kitahara, Kiyotaka Fujita

β-L-Arabinopyranosidases are classified into the glycoside hydrolase family 27 (GH27) and GH97, but not into GH36. In this study, we first characterized the GH36 β-L-arabinopyranosidase BAD_1528 from Bifidobacterium adolescentis JCM1275. The recombinant BAD_1528 expressed in Escherichia coli had a hydrolytic activity toward p-nitrophenyl (pNP)-β-L-arabinopyranoside (Arap) and a weak activity toward pNP-α-D-galactopyranoside (Gal). The enzyme liberated L-arabinose efficiently not from any oligosaccharides or polysaccharides containing Arap-β1,3-linkages, but from the disaccharide Arap-β1,3-L-arabinose. However, we were unable to confirm the in vitro fermentability of Arap-β1,3-Ara in B. adolescentis strains. The enzyme also had a transglycosylation activity toward 1-alkanols and saccharides as acceptors.

β- l -阿拉伯吡喃葡萄糖苷酶属于糖苷水解酶家族27 (GH27)和GH97,但不属于GH36。在这项研究中,我们首次鉴定了来自青少年双歧杆菌JCM1275的GH36 β-L-arabinopyranosidase BAD_1528。重组BAD_1528在大肠杆菌中表达,对对硝基苯基(pNP)-β- l -阿拉伯吡喃苷(Arap)具有水解活性,对pNP-α- d -半乳糖吡喃苷(Gal)具有弱水解活性。该酶不是从任何低聚糖或含有Arap-β1,3键的多糖中有效地释放l -阿拉伯糖,而是从双糖Arap-β1,3-l -阿拉伯糖中有效地释放l -阿拉伯糖。然而,我们无法证实Arap-β1,3- ara在青少年B.菌株中的体外发酵性。该酶还对1-烷醇和糖作为受体具有转糖基化活性。
{"title":"Characterization of a GH36 β-L-Arabinopyranosidase in <i>Bifidobacterium adolescentis</i>.","authors":"Yuki Sasaki,&nbsp;Nami Togo,&nbsp;Kanefumi Kitahara,&nbsp;Kiyotaka Fujita","doi":"10.5458/jag.jag.JAG-2018_001","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2018_001","url":null,"abstract":"<p><p>β-L-Arabinopyranosidases are classified into the glycoside hydrolase family 27 (GH27) and GH97, but not into GH36. In this study, we first characterized the GH36 β-L-arabinopyranosidase BAD_1528 from <i>Bifidobacterium adolescentis</i> JCM1275. The recombinant BAD_1528 expressed in <i>Escherichia coli</i> had a hydrolytic activity toward <i>p</i>-nitrophenyl (<i>p</i>NP)-β-L-arabinopyranoside (Ara<i>p</i>) and a weak activity toward <i>p</i>NP-α-D-galactopyranoside (Gal). The enzyme liberated L-arabinose efficiently not from any oligosaccharides or polysaccharides containing Ara<i>p</i>-β1,3-linkages, but from the disaccharide Ara<i>p</i>-β1,3-L-arabinose. However, we were unable to confirm the <i>in vitro</i> fermentability of Ara<i>p</i>-β1,3-Ara in <i>B. adolescentis</i> strains. The enzyme also had a transglycosylation activity toward 1-alkanols and saccharides as acceptors.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2018-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2018_001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39279799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Purification, Cloning, Functional Expression, Structure, and Characterization of a Thermostable β-Mannanase from Talaromyces trachyspermus B168 and Its Efficiency in Production of Mannooligosaccharides from Coffee Wastes. 高精Talaromyces trachyspermus B168耐热β-甘露聚糖酶的纯化、克隆、功能表达、结构和特性及其在咖啡废渣中生产甘露寡糖的效率
IF 1.1 Pub Date : 2018-05-20 eCollection Date: 2018-01-01 DOI: 10.5458/jag.jag.JAG-2017_018
Kentaro Suzuki, Mari Michikawa, Haruna Sato, Masahiro Yuki, Kei Kamino, Wataru Ogasawara, Shinya Fushinobu, Satoshi Kaneko

Highly thermostable β-mannanase, belonging to glycoside hydrolase family 5 subfamily 7, was purified from the culture supernatant of Talaromyces trachyspermus B168 and the cDNA of its transcript was cloned. The recombinant enzyme showed maximal activity at pH 4.5 and 85 °C. It retained more than 90 % of its activity below 60 °C. Obtaining the crystal structure of the enzyme helped us to understand the mechanism of its thermostability. An antiparallel β-sheet, salt-bridges, hydrophobic packing, proline residues in the loops, and loop shortening are considered to be related to the thermostability of the enzyme. The enzyme hydrolyzed mannans such as locust bean gum, carob galactomannan, guar gum, konjac glucomannan, and ivory nut mannan. It hydrolyzed 50.7 % of the total mannans from coffee waste, producing mannooligosaccharides. The enzyme has the highest optimum temperature among the known fungal β-mannanases and has potential for use in industrial applications.

从短精Talaromyces trachyspermus B168培养上清中纯化出高耐热性β-甘露聚糖酶,属于糖苷水解酶家族5亚家族7,并克隆了其转录物cDNA。重组酶在pH 4.5和85℃条件下活性最高。它在60°C以下保持了90%以上的活性。获得酶的晶体结构有助于我们了解其热稳定性的机理。反平行β片、盐桥、疏水填料、环中的脯氨酸残基和环缩短被认为与酶的热稳定性有关。该酶可水解甘露聚糖,如刺槐豆胶、角豆半乳甘露聚糖、瓜尔胶、魔芋葡甘露聚糖和象牙坚果甘露聚糖。它从咖啡废料中水解了50.7%的甘露聚糖,生产出甘露寡糖。该酶在已知真菌β-甘露聚糖酶中具有最高的最适温度,具有工业应用潜力。
{"title":"Purification, Cloning, Functional Expression, Structure, and Characterization of a Thermostable β-Mannanase from <i>Talaromyces trachyspermus</i> B168 and Its Efficiency in Production of Mannooligosaccharides from Coffee Wastes.","authors":"Kentaro Suzuki,&nbsp;Mari Michikawa,&nbsp;Haruna Sato,&nbsp;Masahiro Yuki,&nbsp;Kei Kamino,&nbsp;Wataru Ogasawara,&nbsp;Shinya Fushinobu,&nbsp;Satoshi Kaneko","doi":"10.5458/jag.jag.JAG-2017_018","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2017_018","url":null,"abstract":"<p><p>Highly thermostable β-mannanase, belonging to glycoside hydrolase family 5 subfamily 7, was purified from the culture supernatant of <i>Talaromyces trachyspermus</i> B168 and the cDNA of its transcript was cloned. The recombinant enzyme showed maximal activity at pH 4.5 and 85 °C. It retained more than 90 % of its activity below 60 °C. Obtaining the crystal structure of the enzyme helped us to understand the mechanism of its thermostability. An antiparallel β-sheet, salt-bridges, hydrophobic packing, proline residues in the loops, and loop shortening are considered to be related to the thermostability of the enzyme. The enzyme hydrolyzed mannans such as locust bean gum, carob galactomannan, guar gum, konjac glucomannan, and ivory nut mannan. It hydrolyzed 50.7 % of the total mannans from coffee waste, producing mannooligosaccharides. The enzyme has the highest optimum temperature among the known fungal β-mannanases and has potential for use in industrial applications.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2018-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2017_018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39279798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Identification of a Point Mutation in the Granule-bound Starch Synthase I Gene (GBSSI) in a waxy Diploid Wheat Mutant and Design of Molecular Markers for Backcrossing. 小麦糯质二倍体粒结合淀粉合成酶I基因点突变的鉴定及回交分子标记设计。
IF 1.1 Pub Date : 2018-02-20 eCollection Date: 2018-01-01 DOI: 10.5458/jag.jag.JAG-2017_012
Satoko Miura, Naoko Crofts, Misato Abe, Koji Murai, Keiko Iwaki, Shuzo Fujita, Naoko Fujita

In cereals, granule-bound starch synthase I (GBSSI)-deficient mutants accumulate glutinous (amylose-free) starch in their storage tissues. The amylose-free starch produced by waxy (wx) mutants of hexaploid bread wheat (Triticum aestivum L.) is used in cakes and breads. However, wx mutants of diploid wheat (T. monococcum L.) have so far no commercial applications. In this study, we identified a mutation in exon 6 of GBSSI in a diploid wheat wx mutant that resulted in the replacement of Trp355 with a stop codon. Molecular markers were developed for the rapid screening of the mutation, which should allow the selection of heterozygous and homozygous plants during backcrossing. This will facilitate the improvement of the agricultural traits of the wx mutant and the generation of new amylose-free wx lines.

在谷物中,颗粒结合淀粉合成酶I (GBSSI)缺陷突变体在其储存组织中积累了粘性(无直链淀粉)淀粉。六倍体面包小麦(Triticum aestivum L.)的蜡质(wx)突变体生产的无直链淀粉用于蛋糕和面包。然而,二倍体小麦(T. monococum L.)的wx突变体迄今尚未有商业应用。在这项研究中,我们在一个二倍体小麦wx突变体的GBSSI外显子6上发现了一个突变,导致Trp355被一个停止密码子取代。利用分子标记快速筛选该突变体,可在回交过程中选择杂合子和纯合子植株。这将有利于wx突变体农业性状的改良和无直链淀粉wx新品系的产生。
{"title":"Identification of a Point Mutation in the Granule-bound Starch Synthase I Gene (<i>GBSSI</i>) in a <i>waxy</i> Diploid Wheat Mutant and Design of Molecular Markers for Backcrossing.","authors":"Satoko Miura,&nbsp;Naoko Crofts,&nbsp;Misato Abe,&nbsp;Koji Murai,&nbsp;Keiko Iwaki,&nbsp;Shuzo Fujita,&nbsp;Naoko Fujita","doi":"10.5458/jag.jag.JAG-2017_012","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2017_012","url":null,"abstract":"<p><p>In cereals, granule-bound starch synthase I (GBSSI)-deficient mutants accumulate glutinous (amylose-free) starch in their storage tissues. The amylose-free starch produced by <i>waxy</i> (<i>wx</i>) mutants of hexaploid bread wheat (<i>Triticum aestivum</i> L.) is used in cakes and breads. However, <i>wx</i> mutants of diploid wheat (<i>T. monococcum</i> L.) have so far no commercial applications. In this study, we identified a mutation in exon 6 of <i>GBSSI</i> in a diploid wheat <i>wx</i> mutant that resulted in the replacement of Trp355 with a stop codon. Molecular markers were developed for the rapid screening of the mutation, which should allow the selection of heterozygous and homozygous plants during backcrossing. This will facilitate the improvement of the agricultural traits of the <i>wx</i> mutant and the generation of new amylose-free <i>wx</i> lines.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2018-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2017_012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39279797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Azidolysis by the Formation of Stable Ser-His Catalytic Dyad in a Glycoside Hydrolase Family 10 Xylanase Mutant. 糖苷水解酶家族10木聚糖酶突变体形成稳定Ser-His催化双偶体促进氮偶分解。
IF 1.1 Pub Date : 2018-02-20 eCollection Date: 2018-01-01 DOI: 10.5458/jag.jag.JAG-2017_011
Ryuichiro Suzuki, Zui Fujimoto, Satoshi Kaneko, Tsunemi Hasegawa, Atsushi Kuno

Glycoside hydrolases require carboxyl groups as catalysts for their activity. A retaining xylanase from Streptomyces olivaceoviridis E-86 belonging to glycoside hydrolase family 10 possesses Glu128 and Glu236 that respectively function as acid/base and nucleophile. We previously developed a unique mutant of the retaining xylanase, N127S/E128H, whose deglycosylation is triggered by azide. A crystallographic study reported that the transient formation of a Ser-His catalytic dyad in the reaction cycle possibly reduced the azidolysis reaction. In the present study, we engineered a catalytic dyad with enhanced stability by site-directed mutagenesis and crystallographic study of N127S/E128H. Comparison of the Michaelis complexes of N127S/E128H with pNP-X2 and with xylopentaose showed that Ser127 could form an alternative hydrogen bond with Thr82, which disrupts the formation of the Ser-His catalytic dyad. The introduction of T82A mutation in N127S/E128H produces an enhanced first-order rate constant (6 times that of N127S/E128H). We confirmed the presence of a stable Ser-His hydrogen bond in the Michaelis complex of the triple mutant, which forms the productive tautomer of His128 that acts as an acid catalyst. Because the glycosyl azide is applicable in the bioconjugation of glycans by using click chemistry, the enzyme-assisted production of the glycosyl azide may contribute to the field of glycobiology.

糖苷水解酶的活性需要羧基作为催化剂。橄榄绿链霉菌E-86中的一种保留木聚糖酶属于糖苷水解酶家族10,具有Glu128和Glu236,分别具有酸/碱和亲核试剂的功能。我们之前开发了一种独特的保留木聚糖酶突变体N127S/E128H,其去糖基化是由叠氮化物触发的。晶体学研究表明,在反应循环中,ser - he催化二元体的短暂形成可能降低了叠氮解反应。在本研究中,我们通过位点诱变和对N127S/E128H的晶体学研究,设计了一种具有增强稳定性的催化二元体。N127S/E128H与pNP-X2和木戊糖的Michaelis配合物比较表明,Ser127可以与Thr82形成替代氢键,从而破坏Ser-His催化二元体的形成。在N127S/E128H中引入T82A突变,提高了一阶速率常数(是N127S/E128H的6倍)。我们证实了在三突变体的Michaelis复合体中存在一个稳定的Ser-His氢键,它形成了His128的生产性互变异构体,作为酸催化剂。由于叠氮糖基可应用于click化学的聚糖生物偶联,因此酶辅助合成叠氮糖基可为糖生物学领域的研究做出贡献。
{"title":"Enhanced Azidolysis by the Formation of Stable Ser-His Catalytic Dyad in a Glycoside Hydrolase Family 10 Xylanase Mutant.","authors":"Ryuichiro Suzuki,&nbsp;Zui Fujimoto,&nbsp;Satoshi Kaneko,&nbsp;Tsunemi Hasegawa,&nbsp;Atsushi Kuno","doi":"10.5458/jag.jag.JAG-2017_011","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2017_011","url":null,"abstract":"<p><p>Glycoside hydrolases require carboxyl groups as catalysts for their activity. A retaining xylanase from <i>Streptomyces olivaceoviridis</i> E-86 belonging to glycoside hydrolase family 10 possesses Glu128 and Glu236 that respectively function as acid/base and nucleophile. We previously developed a unique mutant of the retaining xylanase, N127S/E128H, whose deglycosylation is triggered by azide. A crystallographic study reported that the transient formation of a Ser-His catalytic dyad in the reaction cycle possibly reduced the azidolysis reaction. In the present study, we engineered a catalytic dyad with enhanced stability by site-directed mutagenesis and crystallographic study of N127S/E128H. Comparison of the Michaelis complexes of N127S/E128H with pNP-X<sub>2</sub> and with xylopentaose showed that Ser127 could form an alternative hydrogen bond with Thr82, which disrupts the formation of the Ser-His catalytic dyad. The introduction of T82A mutation in N127S/E128H produces an enhanced first-order rate constant (6 times that of N127S/E128H). We confirmed the presence of a stable Ser-His hydrogen bond in the Michaelis complex of the triple mutant, which forms the productive tautomer of His128 that acts as an acid catalyst. Because the glycosyl azide is applicable in the bioconjugation of glycans by using click chemistry, the enzyme-assisted production of the glycosyl azide may contribute to the field of glycobiology.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2018-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2017_011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39279796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Enzymatic Synthesis of 1,5-Anhydro-4-O-β-D-glucopyranosyl-D-fructose Using Cellobiose Phosphorylase and Its Spontaneous Decomposition via β-Elimination. 纤维素二糖磷酸化酶合成1,5-无水-4- o- β- d -葡萄糖吡喃基- d -果糖及其通过β-消除的自发分解。
IF 1.1 Pub Date : 2017-11-20 eCollection Date: 2017-01-01 DOI: 10.5458/jag.jag.JAG-2017_010
Takahito Kajiki, Kazuhiro Yoshinaga, Shiro Komba, Motomitsu Kitaoka

Cellobiose phosphorylase from Cellvibrio gilvus was used to prepare 1,5-anhydro-4-O-β-D-glucopyranosyl-D-fructose [βGlc(1→4)AF] from 1,5-anhydro-D-fructose and α-D-glucose 1-phosphate. βGlc(1→4)AF decomposed into D-glucose and ascopyrone T via β-elimination. Higher pH and temperature caused faster decomposition. However, decomposition proceeded significantly even under mild conditions. For instance, the half-life of βGlc(1→4)AF was 17 h at 30 °C and pH 7.0. Because βGlc(1→4)AF is a mimic of cellulose, in which the C2 hydroxyl group is oxidized, such decomposition may occur in oxidized cellulose in nature. Here we propose a possible oxidizing pathway by which this occurs.

利用来自gilvus Cellvibrio的纤维素二糖磷酸化酶,以1,5-无水d -果糖和α- d -葡萄糖1-磷酸为原料,制备了1,5-无水d -4- o- β- d - glucopyranoyl - d -fructose [βGlc(1→4)AF]。β- glc(1→4)AF通过β消除分解为d -葡萄糖和ascopyrone T。更高的pH值和温度导致更快的分解。然而,即使在温和的条件下,分解也会显著进行。例如,βGlc(1→4)AF在30℃、pH 7.0条件下的半衰期为17 h。由于βGlc(1→4)AF是纤维素的模拟物,其中C2羟基被氧化,因此这种分解在自然界中可能发生在氧化纤维素中。在这里,我们提出了一种可能的氧化途径。
{"title":"Enzymatic Synthesis of 1,5-Anhydro-4-<i>O</i>-β-D-glucopyranosyl-D-fructose Using Cellobiose Phosphorylase and Its Spontaneous Decomposition via β-Elimination.","authors":"Takahito Kajiki,&nbsp;Kazuhiro Yoshinaga,&nbsp;Shiro Komba,&nbsp;Motomitsu Kitaoka","doi":"10.5458/jag.jag.JAG-2017_010","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2017_010","url":null,"abstract":"<p><p>Cellobiose phosphorylase from <i>Cellvibrio gilvus</i> was used to prepare 1,5-anhydro-4-<i>O</i>-β-D-glucopyranosyl-D-fructose [βGlc(1→4)AF] from 1,5-anhydro-D-fructose and α-D-glucose 1-phosphate. βGlc(1→4)AF decomposed into D-glucose and ascopyrone T via β-elimination. Higher pH and temperature caused faster decomposition. However, decomposition proceeded significantly even under mild conditions. For instance, the half-life of βGlc(1→4)AF was 17 h at 30 °C and pH 7.0. Because βGlc(1→4)AF is a mimic of cellulose, in which the C2 hydroxyl group is oxidized, such decomposition may occur in oxidized cellulose in nature. Here we propose a possible oxidizing pathway by which this occurs.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2017-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2017_010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Synthesis of 3-Keto-levoglucosan Using Pyranose Oxidase and Its Spontaneous Decomposition via β-Elimination. 利用吡喃糖氧化酶合成 3-Keto-levoglucosan 并通过 β-升华自发分解。
IF 1.1 Pub Date : 2017-11-20 eCollection Date: 2017-01-01 DOI: 10.5458/jag.jag.JAG-2017_013
Motomitsu Kitaoka

3-Keto-levoglucosan (3ketoLG) has been postulated to be the product of a reaction catalyzed by levoglucosan dehydrogenase (LGDH), a bacterial enzyme involved in the metabolism of levoglucosan (LG). To investigate the LG metabolic pathway catalyzed by LGDH, 3ketoLG is needed. However, 3ketoLG has not been successfully isolated from the LGDH reaction. This study investigated the ability of pyranose oxidase to convert LG into 3ketoLG by oxidizing the C3 hydroxyl group. During the oxidation of LG, 3ketoLG was spontaneously crystallized in the reaction mixture. Starting with 500 mM LG, the isolation yield of 3ketoLG was 80 %. Nuclear magnetic resonance analyses revealed that a part of 3ketoLG dimerized in aqueous solution, explaining its poor solubility. Even under normal conditions, 3ketoLG was unstable in aqueous solution, with a half-life of 16 h at pH 7.0 and 30 °C. The decomposition proceeded through β-elimination of the C-O bonds at both C1 and C5, as evidenced by decomposition products. This instability explains the difficulty in obtaining 3ketoLG via the LGDH reaction.

据推测,3-酮基左旋葡聚糖(3ketoLG)是左旋葡聚糖脱氢酶(LGDH)催化反应的产物,LGDH 是一种参与左旋葡聚糖(LG)代谢的细菌酶。要研究 LGDH 催化的 LG 代谢途径,需要 3ketoLG。然而,尚未从 LGDH 反应中成功分离出 3ketoLG。本研究调查了吡喃糖氧化酶通过氧化 C3 羟基将 LG 转化为 3ketoLG 的能力。在 LG 氧化过程中,3ketoLG 自发地在反应混合物中结晶。从 500 mM LG 开始,3ketoLG 的分离率为 80%。核磁共振分析表明,部分 3ketoLG 在水溶液中发生了二聚化,这也是其溶解性差的原因。即使在正常条件下,3ketoLG 在水溶液中也不稳定,在 pH 值为 7.0、温度为 30 ℃ 的条件下,其半衰期为 16 小时。分解产物表明,分解是通过 C1 和 C5 上的 C-O 键的β-消除进行的。这种不稳定性解释了通过 LGDH 反应难以获得 3ketoLG 的原因。
{"title":"Synthesis of 3-Keto-levoglucosan Using Pyranose Oxidase and Its Spontaneous Decomposition via β-Elimination.","authors":"Motomitsu Kitaoka","doi":"10.5458/jag.jag.JAG-2017_013","DOIUrl":"10.5458/jag.jag.JAG-2017_013","url":null,"abstract":"<p><p>3-Keto-levoglucosan (3ketoLG) has been postulated to be the product of a reaction catalyzed by levoglucosan dehydrogenase (LGDH), a bacterial enzyme involved in the metabolism of levoglucosan (LG). To investigate the LG metabolic pathway catalyzed by LGDH, 3ketoLG is needed. However, 3ketoLG has not been successfully isolated from the LGDH reaction. This study investigated the ability of pyranose oxidase to convert LG into 3ketoLG by oxidizing the C3 hydroxyl group. During the oxidation of LG, 3ketoLG was spontaneously crystallized in the reaction mixture. Starting with 500 mM LG, the isolation yield of 3ketoLG was 80 %. Nuclear magnetic resonance analyses revealed that a part of 3ketoLG dimerized in aqueous solution, explaining its poor solubility. Even under normal conditions, 3ketoLG was unstable in aqueous solution, with a half-life of 16 h at pH 7.0 and 30 °C. The decomposition proceeded through β-elimination of the C-O bonds at both C1 and C5, as evidenced by decomposition products. This instability explains the difficulty in obtaining 3ketoLG via the LGDH reaction.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2017-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6a/21/JAG-64-099.PMC8056934.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
4-O-Methyl Modifications of Glucuronic Acids in Xylans Are Indispensable for Substrate Discrimination by GH67 α-Glucuronidase from Bacillus halodurans C-125. 嗜盐芽孢杆菌C-125的GH67 α-葡萄糖醛酸酶对木聚糖中葡萄糖醛酸的4- o -甲基修饰是鉴定底物所必需的。
IF 1.1 Pub Date : 2017-11-20 eCollection Date: 2017-01-01 DOI: 10.5458/jag.jag.JAG-2017_016
Haruka Yagi, Tomoko Maehara, Tsuyoshi Tanaka, Ryo Takehara, Koji Teramoto, Katsuro Yaoi, Satoshi Kaneko

A GH67 α-glucuronidase gene derived from Bacillus halodurans C-125 was expressed in E. coli to obtain a recombinant enzyme (BhGlcA67). Using the purified enzyme, the enzymatic properties and substrate specificities of the enzyme were investigated. BhGlcA67 showed maximum activity at pH 5.4 and 45 °C. When BhGlcA67 was incubated with birchwood, oat spelts, and cotton seed xylan, the enzyme did not release any glucuronic acid or 4-O-methyl-glucuronic acid from these substrates. BhGlcA67 acted only on 4-O-methyl-α-D-glucuronopyranosyl-(1→2)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose (MeGlcA3Xyl3), which has a glucuronic acid side chain with a 4-O-methyl group located at its non-reducing end, but did not on β-D-xylopyranosyl-(1→4)-[4-O-methyl-α-D-glucuronopyranosyl-(l→2)]-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylop- yranose (MeGlcA3Xyl4) and α-D-glucuronopyranosyl-(l→2)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose (GlcA3Xyl3). The environment for recognizing the 4-O-methyl group of glucuronic acid was observed in all the crystal structures of reported GH67 glucuronidases, and the amino acids for discriminating the 4-O-methyl group of glucuronic acid were widely conserved in the primary sequences of the GH67 family, suggesting that the 4-O-methyl group is critical for the activities of the GH67 family.

从嗜盐芽孢杆菌C-125中提取的GH67 α-葡萄糖醛酸酶基因在大肠杆菌中表达,获得重组酶BhGlcA67。利用纯化后的酶,研究了酶的酶学性质和底物特异性。BhGlcA67在pH 5.4和45℃条件下活性最高。当BhGlcA67与桦木、燕麦和棉籽木聚糖孵育时,该酶没有从这些底物中释放任何葡萄糖醛酸或4- o -甲基葡萄糖醛酸。BhGlcA67仅作用于4- o -methyl-α- d -glucuronopyranosyl-(1→2)-β- d -xylopyranosyl-(1→4)-β- d -xylopyranosyl-(1→4)-β- d -xylopyranose (MeGlcA3Xyl3),其葡萄糖醛酸侧链的非还原端有一个4- o -甲基。β-D-xylopyranosyl-(1→4)-[4- o -methyl-α-D-glucuronopyranosyl-(1→2)]-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)- β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)- β-D-xylopyranosyl-(GlcA3Xyl3)]-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)- β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl (GlcA3Xyl3)。在已报道的GH67葡萄糖醛酸酶的所有晶体结构中均存在识别葡萄糖醛酸4- o -甲基的环境,并且用于识别葡萄糖醛酸4- o -甲基的氨基酸在GH67家族的一级序列中广泛保守,这表明4- o -甲基对GH67家族的活性至关重要。
{"title":"4-<i>O</i>-Methyl Modifications of Glucuronic Acids in Xylans Are Indispensable for Substrate Discrimination by GH67 α-Glucuronidase from <i>Bacillus halodurans</i> C-125.","authors":"Haruka Yagi,&nbsp;Tomoko Maehara,&nbsp;Tsuyoshi Tanaka,&nbsp;Ryo Takehara,&nbsp;Koji Teramoto,&nbsp;Katsuro Yaoi,&nbsp;Satoshi Kaneko","doi":"10.5458/jag.jag.JAG-2017_016","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2017_016","url":null,"abstract":"<p><p>A GH67 α-glucuronidase gene derived from <i>Bacillus halodurans</i> C-125 was expressed in <i>E. coli</i> to obtain a recombinant enzyme (<i>Bh</i>GlcA67). Using the purified enzyme, the enzymatic properties and substrate specificities of the enzyme were investigated. <i>Bh</i>GlcA67 showed maximum activity at pH 5.4 and 45 °C. When <i>Bh</i>GlcA67 was incubated with birchwood, oat spelts, and cotton seed xylan, the enzyme did not release any glucuronic acid or 4-<i>O</i>-methyl-glucuronic acid from these substrates. <i>Bh</i>GlcA67 acted only on 4-<i>O</i>-methyl-α-D-glucuronopyranosyl-(1→2)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose (MeGlcA<sup>3</sup>Xyl<sub>3</sub>), which has a glucuronic acid side chain with a 4-<i>O</i>-methyl group located at its non-reducing end, but did not on β-D-xylopyranosyl-(1→4)-[4-<i>O</i>-methyl-α-D-glucuronopyranosyl-(l→2)]-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylop- yranose (MeGlcA<sup>3</sup>Xyl<sub>4</sub>) and α-D-glucuronopyranosyl-(l→2)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose (GlcA<sup>3</sup>Xyl<sub>3</sub>). The environment for recognizing the 4-<i>O</i>-methyl group of glucuronic acid was observed in all the crystal structures of reported GH67 glucuronidases, and the amino acids for discriminating the 4-<i>O</i>-methyl group of glucuronic acid were widely conserved in the primary sequences of the GH67 family, suggesting that the 4-<i>O</i>-methyl group is critical for the activities of the GH67 family.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2017-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2017_016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39279794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Structural Analysis of a Novel Oligosaccharide Isolated from Fermented Beverage of Plant Extracts. 植物提取物发酵饮料中一种新型低聚糖的结构分析。
IF 1.1 Pub Date : 2017-11-20 eCollection Date: 2017-01-01 DOI: 10.5458/jag.jag.JAG-2017_014
Akira Yamamori, Yusuke Takata, Eri Fukushi, Jun Kawabata, Hideki Okada, Naoki Kawazoe, Keiji Ueno, Shuichi Onodera, Norio Shiomi

A fermented beverage of plant extracts (Super Ohtaka®) was prepared from about 50 kinds of fruits and vegetables. This natural fermentation was performed by yeast (Zygosaccharomyces spp. and Pichia spp.) and lactic acid bacteria (Leuconostoc spp.) and resulted in the production of a novel fructopyranose-containing saccharide, which was subsequently isolated using carbon-Celite column chromatography and preparative-HPLC. The structure of the saccharide was determined using MALDI-TOF MS and NMR, and the saccharide was identified as β-D-fructopyranosyl-(2→6)-β-D-fructofuranosyl-(2↔1)-α-D-glucopyranoside. This is the first description of this novel saccharide and its isolation from a natural source.

以约50种水果和蔬菜为原料,制备了植物提取物发酵饮料(Super Ohtaka®)。酵母(Zygosaccharomyces spp.和毕赤酵母(Pichia spp.))和乳酸菌(Leuconostoc spp.)进行了自然发酵,产生了一种新型的果糖-吡喃糖,随后使用碳- celite柱层析和制备- hplc分离了该糖。用MALDI-TOF质谱和NMR对该糖的结构进行了分析,确定该糖为β- d -果糖吡喃糖基-(2→6)-β- d -果糖呋喃糖基-(2→1)-α- d -葡萄糖吡喃糖苷。这是第一次描述这种新型糖类及其从自然来源中分离出来。
{"title":"Structural Analysis of a Novel Oligosaccharide Isolated from Fermented Beverage of Plant Extracts.","authors":"Akira Yamamori, Yusuke Takata, Eri Fukushi, Jun Kawabata, Hideki Okada, Naoki Kawazoe, Keiji Ueno, Shuichi Onodera, Norio Shiomi","doi":"10.5458/jag.jag.JAG-2017_014","DOIUrl":"10.5458/jag.jag.JAG-2017_014","url":null,"abstract":"<p><p>A fermented beverage of plant extracts (Super Ohtaka<sup>®</sup>) was prepared from about 50 kinds of fruits and vegetables. This natural fermentation was performed by yeast (<i>Zygosaccharomyces</i> spp. and <i>Pichia</i> spp.) and lactic acid bacteria (<i>Leuconostoc</i> spp.) and resulted in the production of a novel fructopyranose-containing saccharide, which was subsequently isolated using carbon-Celite column chromatography and preparative-HPLC. The structure of the saccharide was determined using MALDI-TOF MS and NMR, and the saccharide was identified as β-D-fructopyranosyl-(2→6)-β-D-fructofuranosyl-(2↔1)-α-D-glucopyranoside. This is the first description of this novel saccharide and its isolation from a natural source.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2017-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2017_014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39279795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the Change in Powder Properties of Rice Flour by Different Milling Processes. 不同研磨工艺对米粉粉末性质影响的研究
IF 1.1 Pub Date : 2017-11-20 eCollection Date: 2017-01-01 DOI: 10.5458/jag.jag.JAG-2016_016
Daitaro Ishikawa, Ikumi Sawa, Yasuyo Sekiyama, Akemi K Horigane, Tomoya Okunishi, Keiko Fujii, Tomoyuki Fujii

The aim of this study was to clarify the change in the powder properties of rice flour depending on the milling process. Rice flour samples, which have gradual mechanical shock properties, were prepared using different milling methods. Furthermore, the correlation between the starch damage, owing to mechanical shock, and powder properties of rice flour was investigated. The particle size was changed gradually through each milling process; however, the change did not clearly correlate with starch damage. The results of the X-ray diffraction (XRD) pattern of nongelatinized samples showed the typical A-type structure of starch. The crystal structure of starch in rice flour may change to a disorder state with the progress of milling; thus, in this study, instead of crystallinity, we considered the disorder index (DI) calculated from the XRD intensity of samples. Relationship between DI and starch damage was confirmed with R 2 = 0.923. Therefore, the mechanical shock caused by the milling process contributes to the crystal state of starch. The parameter q m calculated from the Guggenheim-Anderson-de Boer (GAB) equation of each sample corresponded to the DI. This result suggested that the sorption site of rice flour decreased, and a positive correlation was observed between the parameter K and DI. Thus, the interaction between the rice flour and water molecules weakened because of the mechanical shock. In addition, the use of a SEM image supports the insight that the change in parameter K may reflect the structural change in the solid phase. These results demonstrated that the change in powder properties of rice flour caused by mechanical shock of the milling could evaluate quantitatively.

本研究旨在阐明碾磨过程对米粉性质的影响。采用不同的碾磨方法制备了具有渐变机械冲击特性的米粉样品。此外,还研究了机械冲击造成的淀粉损伤与米粉粉末特性之间的相关性。在每个碾磨过程中,粒度都会逐渐发生变化,但这种变化与淀粉损伤并无明显关联。非糊化样品的 X 射线衍射(XRD)图谱结果显示淀粉具有典型的 A 型结构。米粉中淀粉的晶体结构可能会随着碾磨的进行而变为无序状态,因此,在本研究中,我们考虑的不是结晶度,而是根据样品的 X 射线衍射强度计算出的无序指数(DI)。DI 与淀粉损伤之间的关系得到了证实,R 2 = 0.923。因此,研磨过程造成的机械冲击会影响淀粉的晶体状态。根据古根海姆-安德森-德布尔(GAB)方程计算出的各样品参数 q m 与 DI 相符。这一结果表明,米粉的吸附位点减少,参数 K 与 DI 之间呈正相关。因此,由于机械冲击,米粉与水分子之间的相互作用减弱了。此外,利用扫描电子显微镜(SEM)图像支持了参数 K 的变化可能反映了固相结构变化的观点。这些结果表明,碾磨机械冲击引起的米粉粉末特性变化可以得到定量评估。
{"title":"Study on the Change in Powder Properties of Rice Flour by Different Milling Processes.","authors":"Daitaro Ishikawa, Ikumi Sawa, Yasuyo Sekiyama, Akemi K Horigane, Tomoya Okunishi, Keiko Fujii, Tomoyuki Fujii","doi":"10.5458/jag.jag.JAG-2016_016","DOIUrl":"10.5458/jag.jag.JAG-2016_016","url":null,"abstract":"<p><p>The aim of this study was to clarify the change in the powder properties of rice flour depending on the milling process. Rice flour samples, which have gradual mechanical shock properties, were prepared using different milling methods. Furthermore, the correlation between the starch damage, owing to mechanical shock, and powder properties of rice flour was investigated. The particle size was changed gradually through each milling process; however, the change did not clearly correlate with starch damage. The results of the X-ray diffraction (XRD) pattern of nongelatinized samples showed the typical A-type structure of starch. The crystal structure of starch in rice flour may change to a disorder state with the progress of milling; thus, in this study, instead of crystallinity, we considered the disorder index (DI) calculated from the XRD intensity of samples. Relationship between DI and starch damage was confirmed with <i>R</i> <sup>2</sup> = 0.923. Therefore, the mechanical shock caused by the milling process contributes to the crystal state of starch. The parameter <i>q</i> <sub>m</sub> calculated from the Guggenheim-Anderson-de Boer (GAB) equation of each sample corresponded to the DI. This result suggested that the sorption site of rice flour decreased, and a positive correlation was observed between the parameter <i>K</i> and DI. Thus, the interaction between the rice flour and water molecules weakened because of the mechanical shock. In addition, the use of a SEM image supports the insight that the change in parameter <i>K</i> may reflect the structural change in the solid phase. These results demonstrated that the change in powder properties of rice flour caused by mechanical shock of the milling could evaluate quantitatively.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2017-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f6/fc/JAG-64-109.PMC8056928.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Proteoglycan and Hyaluronan in Hot Water Extract from Salmon Cartilage. 鲑鱼软骨热水提取物中蛋白多糖和透明质酸的表征
IF 1.1 Pub Date : 2017-09-20 eCollection Date: 2017-01-01 DOI: 10.5458/jag.jag.JAG-2017_005
Ikuko Kakizaki, Ayako Miura, Takashi Mineta, Jinseo Hong, Yoji Kato

Salmon cartilage proteoglycan fractions have recently gained favor as ingredients of functional food and cosmetics. An optimal hot water method to extract proteoglycan from salmon cartilage has recently been developed. The extracted cartilage includes hyaluronan and collagen in addition to proteoglycan as counterparts that interact with each other. In this study, biochemical analyses and atomic force microscopical analysis revealed global molecular images of proteoglycan in the hot water extract. More than seventy percent of proteoglycans in this extract maintained their whole native structures. Hyaluronan purified from the hot water extract showed a distribution with high molecular weight similar to hyaluronan considered to be native hyaluronan in cartilage. The current data is evidence of the quality of this hot water cartilage extract.

最近,鲑鱼软骨蛋白多糖馏分作为功能性食品和化妆品的成分受到青睐。最近开发出了一种从鲑鱼软骨中提取蛋白多糖的最佳热水法。提取的软骨除蛋白多糖外,还包括透明质酸和胶原蛋白,它们是相互影响的对应物。在这项研究中,生化分析和原子力显微镜分析揭示了热水提取物中蛋白聚糖的整体分子图像。该提取物中超过 70% 的蛋白聚糖保持了完整的原生结构。从热水提取物中纯化出的透明质酸显示出与软骨中被认为是原生透明质酸的透明质酸相似的高分子量分布。目前的数据证明了这种热水软骨提取物的质量。
{"title":"Characterization of Proteoglycan and Hyaluronan in Hot Water Extract from Salmon Cartilage.","authors":"Ikuko Kakizaki, Ayako Miura, Takashi Mineta, Jinseo Hong, Yoji Kato","doi":"10.5458/jag.jag.JAG-2017_005","DOIUrl":"10.5458/jag.jag.JAG-2017_005","url":null,"abstract":"<p><p>Salmon cartilage proteoglycan fractions have recently gained favor as ingredients of functional food and cosmetics. An optimal hot water method to extract proteoglycan from salmon cartilage has recently been developed. The extracted cartilage includes hyaluronan and collagen in addition to proteoglycan as counterparts that interact with each other. In this study, biochemical analyses and atomic force microscopical analysis revealed global molecular images of proteoglycan in the hot water extract. More than seventy percent of proteoglycans in this extract maintained their whole native structures. Hyaluronan purified from the hot water extract showed a distribution with high molecular weight similar to hyaluronan considered to be native hyaluronan in cartilage. The current data is evidence of the quality of this hot water cartilage extract.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2017-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2a/59/JAG-64-083.PMC8056930.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of applied glycoscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1