首页 > 最新文献

Journal of applied glycoscience最新文献

英文 中文
Reaction Behavior of Glucose and Fructose in Subcritical Water in the Presence of Various Salts. 不同盐存在下葡萄糖和果糖在亚临界水中的反应行为。
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2020-10-29 eCollection Date: 2020-01-01 DOI: 10.5458/jag.jag.JAG-2019_0014
Yuya Furushiro, Takashi Kobayashi

Glucose and fructose were treated in subcritical water in the presence of alkali or alkaline earth metal chlorides. All salts accelerated the conversion of saccharides, and alkaline earth metal chloride greatly promoted the isomerization of glucose to fructose. In contrast, alkali metal salts only slightly promoted this isomerization and facilitated the decomposition of glucose to byproducts such as organic acids. The selectivity of the glucose-to-fructose isomerization was higher at lower conversions of glucose and in the presence of alkaline earth metal chlorides. The pH of the reaction mixture also greatly affected the selectivity, which decreased rapidly at lower pH due to the generated organic acids. At low pH, decomposition of glucose became dominant over isomerization, but further conversion of glucose was suppressed. This result was elucidated by the suppression of the alkali-induced isomerization of glucose at low pH. Fructose underwent decomposition during the treatment of the fructose solution, but its isomerization to glucose was not observed. The added salts autocatalytically promoted the decomposition of fructose, and the reaction mechanism of fructose decomposition differed from that of glucose.

在亚临界水中用碱或碱土金属氯化物处理葡萄糖和果糖。所有的盐类都加速了糖类的转化,碱土金属氯大大促进了葡萄糖向果糖的异构化。相比之下,碱金属盐只略微促进了这种异构化,并促进了葡萄糖分解成副产物,如有机酸。在葡萄糖转化率较低和碱土金属氯化物存在的情况下,葡萄糖-果糖异构化的选择性较高。反应混合物的pH值对选择性也有很大影响,在较低的pH值下,由于产生有机酸,选择性迅速下降。在低pH下,葡萄糖的分解作用大于异构化作用,但葡萄糖的进一步转化受到抑制。这一结果是通过在低ph下抑制碱诱导的葡萄糖异构化来阐明的。果糖溶液在处理过程中进行了分解,但没有观察到它向葡萄糖的异构化。添加的盐自催化促进了果糖的分解,并且果糖分解的反应机理与葡萄糖不同。
{"title":"Reaction Behavior of Glucose and Fructose in Subcritical Water in the Presence of Various Salts.","authors":"Yuya Furushiro,&nbsp;Takashi Kobayashi","doi":"10.5458/jag.jag.JAG-2019_0014","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2019_0014","url":null,"abstract":"<p><p>Glucose and fructose were treated in subcritical water in the presence of alkali or alkaline earth metal chlorides. All salts accelerated the conversion of saccharides, and alkaline earth metal chloride greatly promoted the isomerization of glucose to fructose. In contrast, alkali metal salts only slightly promoted this isomerization and facilitated the decomposition of glucose to byproducts such as organic acids. The selectivity of the glucose-to-fructose isomerization was higher at lower conversions of glucose and in the presence of alkaline earth metal chlorides. The pH of the reaction mixture also greatly affected the selectivity, which decreased rapidly at lower pH due to the generated organic acids. At low pH, decomposition of glucose became dominant over isomerization, but further conversion of glucose was suppressed. This result was elucidated by the suppression of the alkali-induced isomerization of glucose at low pH. Fructose underwent decomposition during the treatment of the fructose solution, but its isomerization to glucose was not observed. The added salts autocatalytically promoted the decomposition of fructose, and the reaction mechanism of fructose decomposition differed from that of glucose.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"67 1","pages":"11-15"},"PeriodicalIF":1.1,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2019_0014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39354575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Microbial α-L-Rhamnosidases of Glycosyl Hydrolase Families GH78 and GH106 Have Broad Substrate Specificities toward α-L-Rhamnosyl- and α-L-Mannosyl-Linkages. 糖基水解酶家族GH78和GH106的微生物α- l-鼠李糖苷酶对α- l-鼠李糖基和α- l-甘露糖基键具有广泛的底物特异性。
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2020-09-03 eCollection Date: 2020-01-01 DOI: 10.5458/jag.jag.JAG-2020_0005
Feunai Agape Papalii Tautau, Minoru Izumi, Emiko Matsunaga, Yujiro Higuchi, Kaoru Takegawa

α-L-Rhamnosidases (α-L-Rha-ases, EC 3.2.1.40) are glycosyl hydrolases (GHs) that hydrolyze a terminal α-linked L-rhamnose residue from a wide spectrum of substrates such as heteropolysaccharides, glycosylated proteins, and natural flavonoids. As a result, they are considered catalysts of interest for various biotechnological applications. α-L-rhamnose (6-deoxy-L-mannose) is structurally similar to the rare sugar α-L-mannose. Here we have examined whether microbial α-L-Rha-ases possess α-L-mannosidase activity by synthesizing the substrate 4-nitrophenyl α-L-mannopyranoside. Four α-L-Rha-ases from GH78 and GH106 families were expressed and purified from Escherichia coli cells. All four enzymes exhibited both α-L-rhamnosyl-hydrolyzing activity and weak α-L-mannosyl-hydrolyzing activity. SpRhaM, a GH106 family α-L-Rha-ase from Sphingomonas paucimobilis FP2001, was found to have relatively higher α-L-mannosidase activity as compared with three GH78 α-L-Rha-ases. The α-L-mannosidase activity of SpRhaM showed pH dependence, with highest activity observed at pH 7.0. In summary, we have shown that α-L-Rha-ases also have α-L-mannosidase activity. Our findings will be useful in the identification and structural determination of α-L-mannose-containing polysaccharides from natural sources for use in the pharmaceutical and food industries.

α-l -鼠李糖苷酶(α- l - rhas -ases, EC 3.2.1.40)是一种糖基水解酶(GHs),可以水解末端α-连接的l -鼠李糖残基,这些残基来自多种底物,如杂多糖、糖基化蛋白和天然黄酮类化合物。因此,它们被认为是各种生物技术应用感兴趣的催化剂。α- l -鼠李糖(6-脱氧- l -甘露糖)在结构上与稀有糖α- l -甘露糖相似。在这里,我们通过合成底物4-硝基苯α- l -甘露葡萄糖苷来检测微生物α- l - rhaa酶是否具有α- l -甘露葡萄糖苷酶活性。从大肠杆菌细胞中表达并纯化了GH78和GH106家族的4个α- l - rhaa酶。4种酶均具有α- l-鼠李糖基水解活性和弱α- l-甘露糖基水解活性。spsprham是来自Sphingomonas paucimobilis FP2001的GH106家族α- l - rhaa酶,与GH78 α- l - rhaa酶相比,spsprham具有较高的α- l -甘露糖苷酶活性。SpRhaM α- l -甘露糖苷酶活性呈pH依赖性,在pH 7.0时活性最高。综上所述,我们已经证明α- l - rhaa酶也具有α- l -甘露糖苷酶活性。我们的发现将有助于从天然来源的α- l -甘露糖多糖的鉴定和结构测定,用于制药和食品工业。
{"title":"Microbial α-L-Rhamnosidases of Glycosyl Hydrolase Families GH78 and GH106 Have Broad Substrate Specificities toward α-L-Rhamnosyl- and α-L-Mannosyl-Linkages.","authors":"Feunai Agape Papalii Tautau,&nbsp;Minoru Izumi,&nbsp;Emiko Matsunaga,&nbsp;Yujiro Higuchi,&nbsp;Kaoru Takegawa","doi":"10.5458/jag.jag.JAG-2020_0005","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0005","url":null,"abstract":"<p><p>α-L-Rhamnosidases (α-L-Rha-ases, EC 3.2.1.40) are glycosyl hydrolases (GHs) that hydrolyze a terminal α-linked L-rhamnose residue from a wide spectrum of substrates such as heteropolysaccharides, glycosylated proteins, and natural flavonoids. As a result, they are considered catalysts of interest for various biotechnological applications. α-L-rhamnose (6-deoxy-L-mannose) is structurally similar to the rare sugar α-L-mannose. Here we have examined whether microbial α-L-Rha-ases possess α-L-mannosidase activity by synthesizing the substrate 4-nitrophenyl α-L-mannopyranoside. Four α-L-Rha-ases from GH78 and GH106 families were expressed and purified from <i>Escherichia coli</i> cells. All four enzymes exhibited both α-L-rhamnosyl-hydrolyzing activity and weak α-L-mannosyl-hydrolyzing activity. SpRhaM, a GH106 family α-L-Rha-ase from <i>Sphingomonas paucimobilis</i> FP2001, was found to have relatively higher α-L-mannosidase activity as compared with three GH78 α-L-Rha-ases. The α-L-mannosidase activity of SpRhaM showed pH dependence, with highest activity observed at pH 7.0. In summary, we have shown that α-L-Rha-ases also have α-L-mannosidase activity. Our findings will be useful in the identification and structural determination of α-L-mannose-containing polysaccharides from natural sources for use in the pharmaceutical and food industries.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"67 3","pages":"87-93"},"PeriodicalIF":1.1,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a4/56/67_jag.JAG-2020_0005.PMC8132073.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39282088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single Amino Acid Mutation of Pyranose 2-Oxidase Results in Increased Specificity for Diabetes Biomarker 1,5-Anhydro-D-Glucitol. 吡喃糖2氧化酶单氨基酸突变导致糖尿病生物标志物1,5-无水- d -葡萄糖醇的特异性增加。
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2020-09-03 eCollection Date: 2020-01-01 DOI: 10.5458/jag.jag.JAG-2020_0002
Takahiro Fujii, Kiyohiko Igarashi, Masahiro Samejima

Pyranose 2-oxidases catalyze the oxidation of various pyranose sugars at the C2 position. However, their potential application for detecting sugars other than glucose in blood is hindered by relatively high activity towards glucose. In this study, in order to find a mutant enzyme with enhanced specificity for 1,5-anhydro-D-glucitol (1,5-AG), which is a biomarker for diabetes mellitus, we conducted site-directed mutagenesis of pyranose 2-oxidase from the basidiomycete Phanerochaete chrysosporium ( Pc POX). Considering the three-dimensional structure of the substrate-binding site of Pc POX and the structural difference between glucose and 1,5-AG, we selected alanine 551 of Pc POX as a target residue for mutation. Kinetic studies of the 19 mutants of Pc POX expressed as recombinant proteins in E. coli revealed that the ratio of k cat / K m for 1,5-AG to k cat / K m for glucose was three times higher for the A551L mutant than for wild-type Pc POX. Although the A551L mutant has lower specific activity towards each substrate than the wild-type enzyme, its increased specificity for 1,5-AG makes it a promising lead for the development of POX-based 1,5-AG detection systems.

吡喃糖2氧化酶催化在C2位置的各种吡喃糖的氧化。然而,它们在检测血液中葡萄糖以外的糖的潜在应用受到相对较高的葡萄糖活性的阻碍。在这项研究中,为了找到一种对糖尿病生物标志物1,5-无水-d -葡萄糖醇(1,5- ag)具有增强特异性的突变酶,我们对担子菌Phanerochaete chrysosporium (Pc POX)的吡喃糖2氧化酶进行了定点诱变。考虑到Pc POX底物结合位点的三维结构以及葡萄糖与1,5- ag的结构差异,我们选择了Pc POX的丙氨酸551作为突变的靶残基。在大肠杆菌中表达重组蛋白的19个突变体的动力学研究表明,A551L突变体的1,5- ag的k cat / k m与葡萄糖的k cat / k m的比值是野生型Pc POX的3倍。尽管A551L突变体对每种底物的特异性活性低于野生型酶,但其对1,5- ag的特异性增加,使其成为开发基于pox的1,5- ag检测系统的有希望的先导物。
{"title":"Single Amino Acid Mutation of Pyranose 2-Oxidase Results in Increased Specificity for Diabetes Biomarker 1,5-Anhydro-D-Glucitol.","authors":"Takahiro Fujii,&nbsp;Kiyohiko Igarashi,&nbsp;Masahiro Samejima","doi":"10.5458/jag.jag.JAG-2020_0002","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0002","url":null,"abstract":"<p><p>Pyranose 2-oxidases catalyze the oxidation of various pyranose sugars at the C2 position. However, their potential application for detecting sugars other than glucose in blood is hindered by relatively high activity towards glucose. In this study, in order to find a mutant enzyme with enhanced specificity for 1,5-anhydro-D-glucitol (1,5-AG), which is a biomarker for diabetes mellitus, we conducted site-directed mutagenesis of pyranose 2-oxidase from the basidiomycete <i>Phanerochaete chrysosporium</i> ( <i>Pc</i> POX). Considering the three-dimensional structure of the substrate-binding site of <i>Pc</i> POX and the structural difference between glucose and 1,5-AG, we selected alanine 551 of <i>Pc</i> POX as a target residue for mutation. Kinetic studies of the 19 mutants of <i>Pc</i> POX expressed as recombinant proteins in <i>E. coli</i> revealed that the ratio of <i>k</i> <sub>cat</sub> / <i>K</i> <sub>m</sub> for 1,5-AG to <i>k</i> <sub>cat</sub> / <i>K</i> <sub>m</sub> for glucose was three times higher for the A551L mutant than for wild-type <i>Pc</i> POX. Although the A551L mutant has lower specific activity towards each substrate than the wild-type enzyme, its increased specificity for 1,5-AG makes it a promising lead for the development of POX-based 1,5-AG detection systems.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"67 3","pages":"73-78"},"PeriodicalIF":1.1,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/05/78/JAG-67-073.PMC8135088.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39282086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermostable Mutants of Glycoside Hydrolase Family 6 Cellobiohydrolase from the Basidiomycete Phanerochaete chrysosporium. 糖苷水解酶家族6的耐热突变体——来自黄孢平革担子菌的纤维生物水解酶。
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2020-09-03 eCollection Date: 2020-01-01 DOI: 10.5458/jag.jag.JAG-2020_0004
Sora Yamaguchi, Naoki Sunagawa, Mikako Tachioka, Kiyohiko Igarashi, Masahiro Samejima

Thermal inactivation of saccharifying enzymes is a crucial issue for the efficient utilization of cellulosic biomass as a renewable resource. Cellobiohydrolases (CBHs) are a kind of cellulase. In general, CBHs belonging to glycoside hydrolase (GH) family 6 (Cel6) act synergistically with CBHs of GH family 7 (Cel7) and other carbohydrate-active enzymes during the degradation of cellulosic biomass. However, while the catalytic rate of enzymes generally becomes faster at higher temperatures, Cel6 CBHs are inactivated at lower temperatures than Cel7 CBHs, and this represents a limiting factor for industrial utilization. In this study, we produced a series of mutants of the glycoside hydrolase family 6 cellobiohydrolase Pc Cel6A from the fungus Phanerochaete chrysosporium , and compared their thermal stability. Eight mutants from a random mutagenesis library and one rationally designed mutant were selected as candidate thermostable mutants and produced by heterologous expression in the yeast Pichia pastoris . Comparison of the hydrolytic activities at 50 and 60 °C indicated that the thermal stability of Pc Cel6A is influenced by the number and position of cysteine residues that are not involved in disulfide bonds.

糖化酶的热失活是有效利用纤维素生物质这一可再生资源的关键问题。纤维素生物水解酶(CBHs)是一种纤维素酶。一般来说,在纤维素生物质的降解过程中,属于糖苷水解酶(GH)家族6 (Cel6)的CBHs与GH家族7 (Cel7)的CBHs和其他碳水化合物活性酶协同作用。然而,虽然酶的催化速率在较高温度下通常会变快,但Cel6 CBHs在较低温度下会比Cel7 CBHs失活,这是工业利用的限制因素。在本研究中,我们从真菌Phanerochaete chrysosporium中获得了一系列糖苷水解酶家族6纤维生物水解酶Pc Cel6A突变体,并比较了它们的热稳定性。从随机突变文库中选择8个突变体和1个合理设计的突变体作为耐热突变体候选突变体,在酵母毕赤酵母中进行异源表达。在50°C和60°C时的水解活性比较表明,Pc Cel6A的热稳定性受到不参与二硫键的半胱氨酸残基的数量和位置的影响。
{"title":"Thermostable Mutants of Glycoside Hydrolase Family 6 Cellobiohydrolase from the Basidiomycete <i>Phanerochaete chrysosporium</i>.","authors":"Sora Yamaguchi,&nbsp;Naoki Sunagawa,&nbsp;Mikako Tachioka,&nbsp;Kiyohiko Igarashi,&nbsp;Masahiro Samejima","doi":"10.5458/jag.jag.JAG-2020_0004","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0004","url":null,"abstract":"<p><p>Thermal inactivation of saccharifying enzymes is a crucial issue for the efficient utilization of cellulosic biomass as a renewable resource. Cellobiohydrolases (CBHs) are a kind of cellulase. In general, CBHs belonging to glycoside hydrolase (GH) family 6 (Cel6) act synergistically with CBHs of GH family 7 (Cel7) and other carbohydrate-active enzymes during the degradation of cellulosic biomass. However, while the catalytic rate of enzymes generally becomes faster at higher temperatures, Cel6 CBHs are inactivated at lower temperatures than Cel7 CBHs, and this represents a limiting factor for industrial utilization. In this study, we produced a series of mutants of the glycoside hydrolase family 6 cellobiohydrolase <i>Pc</i> Cel6A from the fungus <i>Phanerochaete chrysosporium</i> , and compared their thermal stability. Eight mutants from a random mutagenesis library and one rationally designed mutant were selected as candidate thermostable mutants and produced by heterologous expression in the yeast <i>Pichia pastoris</i> . Comparison of the hydrolytic activities at 50 and 60 °C indicated that the thermal stability of <i>Pc</i> Cel6A is influenced by the number and position of cysteine residues that are not involved in disulfide bonds.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"67 3","pages":"79-86"},"PeriodicalIF":1.1,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b6/ec/67_jag.JAG-2020_0004.PMC8132074.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39282087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Evaluation of the Anti-Proliferative Activity of Rare Aldohexoses against MOLT-4F and DU-145 Human Cancer Cell Line and Structure-Activity Relationship of D-Idose. 稀有醛糖酶对人肝癌细胞株MOLT-4F和DU-145的抗增殖活性及D-Idose的构效关系
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2020-09-03 eCollection Date: 2020-01-01 DOI: 10.5458/jag.jag.JAG-2020_0006
Hironobu Ishiyama, Ryo C Yanagita, Kazune Takemoto, Natsumi Kitaguchi, Yuuki Uezato, Yasunori Sugiyama, Masashi Sato, Yasuhiro Kawanami

D-Allose (D-All), a C-3 epimer of D-glucose (D-Glc), is a naturally rare monosaccharide, which shows anti-proliferative activity against several human cancer cell lines. Unlike conventional anticancer drugs, D-All targets glucose metabolism and is non-toxic to normal cells. Therefore, it has attracted attention as a unique "seed" compound for anticancer agents. However, the anti-proliferative activities of the other rare aldohexoses have not been examined yet. In this study, we evaluated the anti-proliferative activity of rare aldohexoses against human leukemia MOLT-4F and human prostate cancer DU-145 cell lines. We found that D-All and D-idose (D-Ido) at 5 mM inhibited cell proliferation of MOLT-4F cells by 46 % and 60 %, respectively. On the other hand, the rare aldohexoses at 5 mM did not show specific anti-proliferative activity against DU-145 cells. To explore the structure-activity relationship of D-Ido, we evaluated the anti-proliferative activity of D-sorbose (D-Sor), 6-deoxy-D-Ido, and L-xylose (L-Xyl) against MOLT-4F cells and found that D-Sor, 6-deoxy-D-Ido, and L-Xyl showed no inhibitory activity at 5 mM, suggesting that the aldose structure and the C-6 hydroxy group of D-Ido are important for its activity. Cellular glucose uptake assay and western blotting analysis of thioredoxin-interacting protein (TXNIP) expression suggested that the anti-proliferative activity of D-Ido is induced by inhibition of glucose uptake via TXNIP-independent pathway.

D-Allose (D-All)是d -葡萄糖(D-Glc)的C-3外显体,是一种天然罕见的单糖,对几种人类癌细胞具有抗增殖活性。与传统的抗癌药物不同,D-All针对葡萄糖代谢,对正常细胞无毒。因此,它作为抗癌药物中独特的“种子”化合物而备受关注。然而,其他罕见的醛糖酶的抗增殖活性尚未被研究。在这项研究中,我们评估了罕见醛糖酶对人白血病MOLT-4F和人前列腺癌DU-145细胞系的抗增殖活性。我们发现,5 mM的D-All和D-idose (D-Ido)分别抑制了MOLT-4F细胞46%和60%的细胞增殖。另一方面,罕见的醛糖酶在5 mM处对DU-145细胞没有特异性的抗增殖活性。为了探究D-Ido的构效关系,我们评估了d -山梨糖(D-Sor)、6-脱氧-D-Ido和l -木糖(L-Xyl)对MOLT-4F细胞的抗增殖活性,发现D-Sor、6-脱氧-D-Ido和L-Xyl在5 mM处没有抑制活性,这表明D-Ido的醛糖结构和C-6羟基对其活性起重要作用。细胞葡萄糖摄取测定和硫氧还蛋白相互作用蛋白(TXNIP)表达的western blotting分析表明,D-Ido的抗增殖活性是通过TXNIP不依赖的途径抑制葡萄糖摄取而诱导的。
{"title":"Evaluation of the Anti-Proliferative Activity of Rare Aldohexoses against MOLT-4F and DU-145 Human Cancer Cell Line and Structure-Activity Relationship of D-Idose.","authors":"Hironobu Ishiyama,&nbsp;Ryo C Yanagita,&nbsp;Kazune Takemoto,&nbsp;Natsumi Kitaguchi,&nbsp;Yuuki Uezato,&nbsp;Yasunori Sugiyama,&nbsp;Masashi Sato,&nbsp;Yasuhiro Kawanami","doi":"10.5458/jag.jag.JAG-2020_0006","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0006","url":null,"abstract":"<p><p>D-Allose (D-All), a C-3 epimer of D-glucose (D-Glc), is a naturally rare monosaccharide, which shows anti-proliferative activity against several human cancer cell lines. Unlike conventional anticancer drugs, D-All targets glucose metabolism and is non-toxic to normal cells. Therefore, it has attracted attention as a unique \"seed\" compound for anticancer agents. However, the anti-proliferative activities of the other rare aldohexoses have not been examined yet. In this study, we evaluated the anti-proliferative activity of rare aldohexoses against human leukemia MOLT-4F and human prostate cancer DU-145 cell lines. We found that D-All and D-idose (D-Ido) at 5 mM inhibited cell proliferation of MOLT-4F cells by 46 % and 60 %, respectively. On the other hand, the rare aldohexoses at 5 mM did not show specific anti-proliferative activity against DU-145 cells. To explore the structure-activity relationship of D-Ido, we evaluated the anti-proliferative activity of D-sorbose (D-Sor), 6-deoxy-D-Ido, and L-xylose (L-Xyl) against MOLT-4F cells and found that D-Sor, 6-deoxy-D-Ido, and L-Xyl showed no inhibitory activity at 5 mM, suggesting that the aldose structure and the C-6 hydroxy group of D-Ido are important for its activity. Cellular glucose uptake assay and western blotting analysis of thioredoxin-interacting protein (TXNIP) expression suggested that the anti-proliferative activity of D-Ido is induced by inhibition of glucose uptake via TXNIP-independent pathway.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"67 3","pages":"95-101"},"PeriodicalIF":1.1,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8e/37/JAG-67-095.PMC8132072.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39282089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effects of Phosphoryl Oligosaccharides of Calcium (POs-Ca) on Mycelial Growth and Fruiting Body Development of the Edible Mushroom, Pleurotus ostreatus. 钙磷酰低聚糖(POs-Ca)对食用菌平菇菌丝生长和子实体发育的影响
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2020-05-21 eCollection Date: 2020-01-01 DOI: 10.5458/jag.jag.JAG-2020_0001
Daisuke Suzuki, Yuko Sato, Hiroshi Kamasaka, Takashi Kuriki

Phosphoryl oligosaccharides of calcium (POs-Ca) is a calcium salt of phosphoryl maltooligosaccharides made from potato starch. POs-Ca is highly water-soluble and can supply both the calcium ion and acidic oligosaccharides in an aqueous solution. In this study, we investigated the effects of POs-Ca on the mycelial growth and fruiting body yield of Pleurotus ostreatus , which is one of the most widely cultivated edible mushrooms in the world. We cultivated the mushroom using both potato dextrose agar (PDA) medium and sawdust-based medium, with added calcium salts. The addition of POs-Ca into the PDA medium with a calcium concentration of 10 mg increased mycelial growth significantly ( p < 0.05, vs . control). POs-Ca addition to the sawdust-based medium at concentrations of 1.0 to 3.0 g/100 g medium increased the amount of calcium in the fruiting bodies but did not affect the length of the cultivation period or the weight of the fruiting body. The calcium content in the fruiting body increased 12-fold when compared to the control. On the other hand, neither the CaHPO 4 ・2H 2 O group nor the CaHPO 4 ・2H 2 O with oligosaccharides group showed changes in the calcium content of the fruiting bodies. Our results indicate that the use of POs-Ca in mushroom cultivation allows for the possibility of developing new functional foods like calcium-enriched edible mushrooms. This is the first report describing the effects of POs-Ca on mushroom cultivation.

磷酸寡糖钙(POs-Ca)是由马铃薯淀粉制成的磷酸麦芽寡糖的钙盐。POs-Ca 具有很高的水溶性,可以在水溶液中同时提供钙离子和酸性寡糖。在本研究中,我们研究了 POs-Ca 对马铃薯蘑菇菌丝生长和子实体产量的影响,马铃薯蘑菇是世界上栽培最广泛的食用菌之一。我们使用添加了钙盐的马铃薯葡萄糖琼脂(PDA)培养基和基于锯屑的培养基栽培这种蘑菇。在钙浓度为 10 毫克的 PDA 培养基中添加 POs-Ca 后,菌丝生长显著增加(与对照相比,p < 0.05)。在以锯屑为基础的培养基中添加浓度为 1.0 至 3.0 克/100 克的 POs-Ca 会增加子实体中的钙含量,但不会影响培养期的长短或子实体的重量。与对照组相比,子实体中的钙含量增加了 12 倍。另一方面,CaHPO 4 ・2H 2 O 组和含寡糖的 CaHPO 4 ・2H 2 O 组的子实体钙含量都没有发生变化。我们的研究结果表明,在蘑菇栽培中使用 POs-Ca 有可能开发出新的功能性食品,如富含钙的食用菌。这是第一份描述 POs-Ca 对蘑菇栽培影响的报告。
{"title":"Effects of Phosphoryl Oligosaccharides of Calcium (POs-Ca) on Mycelial Growth and Fruiting Body Development of the Edible Mushroom, <i>Pleurotus ostreatus</i>.","authors":"Daisuke Suzuki, Yuko Sato, Hiroshi Kamasaka, Takashi Kuriki","doi":"10.5458/jag.jag.JAG-2020_0001","DOIUrl":"10.5458/jag.jag.JAG-2020_0001","url":null,"abstract":"<p><p>Phosphoryl oligosaccharides of calcium (POs-Ca) is a calcium salt of phosphoryl maltooligosaccharides made from potato starch. POs-Ca is highly water-soluble and can supply both the calcium ion and acidic oligosaccharides in an aqueous solution. In this study, we investigated the effects of POs-Ca on the mycelial growth and fruiting body yield of <i>Pleurotus ostreatus</i> , which is one of the most widely cultivated edible mushrooms in the world. We cultivated the mushroom using both potato dextrose agar (PDA) medium and sawdust-based medium, with added calcium salts. The addition of POs-Ca into the PDA medium with a calcium concentration of 10 mg increased mycelial growth significantly ( <i>p</i> < 0.05, <i>vs</i> . control). POs-Ca addition to the sawdust-based medium at concentrations of 1.0 to 3.0 g/100 g medium increased the amount of calcium in the fruiting bodies but did not affect the length of the cultivation period or the weight of the fruiting body. The calcium content in the fruiting body increased 12-fold when compared to the control. On the other hand, neither the CaHPO <sub>4</sub> ・2H <sub>2</sub> O group nor the CaHPO <sub>4</sub> ・2H <sub>2</sub> O with oligosaccharides group showed changes in the calcium content of the fruiting bodies. Our results indicate that the use of POs-Ca in mushroom cultivation allows for the possibility of developing new functional foods like calcium-enriched edible mushrooms. This is the first report describing the effects of POs-Ca on mushroom cultivation.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"67 3","pages":"67-72"},"PeriodicalIF":1.1,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ca/52/JAG-67-067.PMC8155663.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39282085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of C-6 Methylol Groups on Substrate Recognition of Glucose/Xylose Mixed Oligosaccharides by Cellobiose Dehydrogenase from the Basidiomycete Phanerochaete chrysosporium. C-6甲基对黄孢平革担子菌纤维二糖脱氢酶对葡萄糖/木糖混合低聚糖识别的影响
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2020-05-20 eCollection Date: 2020-01-01 DOI: 10.5458/jag.jag.JAG-2020_0003
Kiyohiko Igarashi, Satoshi Kaneko, Motomitsu Kitaoka, Masahiro Samejima

Cellobiose dehydrogenase (CDH) is a flavocytochrome catalyzing oxidation of the reducing end of cellobiose and cellooligosaccharides, and has a key role in the degradation of cellulosic biomass by filamentous fungi. Here, we use a lineup of glucose/xylose-mixed β-1,4-linked disaccharides and trisaccharides, enzymatically synthesized by means of the reverse reaction of cellobiose phosphorylase and cellodextrin phosphorylase, to investigate the substrate recognition of CDH. We found that CDH utilizes β-D-xylopyranosyl-(1→4)-D-glucopyranose (Xyl-Glc) as an electron donor with similar K m and k cat values to cellobiose. β-D-Glucopyranosyl-(1→4)-D-xylopyranose (Glc-Xyl) shows a higher K m value, while xylobiose does not serve as a substrate. Trisaccharides show similar behavior; i.e., trisaccharides with cellobiose and Xyl-Glc units at the reducing end show similar kinetics, while the enzyme was less active towards those with Glc-Xyl, and inactive towards those with xylobiose. We also use docking simulation to evaluate substrate recognition of the disaccharides, and we discuss possible molecular mechanisms of substrate recognition by CDH.

纤维素二糖脱氢酶(CDH)是一种黄细胞色素,可催化纤维素二糖和纤维素低聚糖的还原端氧化,在丝状真菌降解纤维素生物质中起关键作用。本研究利用纤维素二糖磷酸化酶和纤维素糊精磷酸化酶逆反应合成的葡萄糖/木糖混合β-1,4-连接二糖和三糖,研究了CDH对底物的识别。我们发现CDH利用β-D-xylopyranosyl-(1→4)- d -glucopyranose (yl- glc)作为电子供体,其K - m和K - cat值与纤维素二糖相似。β-D-Glucopyranosyl-(1→4)- d -xylopyranose (Glc-Xyl)表现出更高的K m值,而木糖不作为底物。三糖表现出类似的行为;即,在还原端含有纤维素二糖和木糖二糖的三糖表现出相似的动力学,而酶对含有葡萄糖二糖的三糖活性较低,而对含有木糖二糖的三糖活性较低。我们还使用对接模拟来评估双糖对底物的识别,并讨论了CDH识别底物的可能分子机制。
{"title":"Effect of C-6 Methylol Groups on Substrate Recognition of Glucose/Xylose Mixed Oligosaccharides by Cellobiose Dehydrogenase from the Basidiomycete <i>Phanerochaete chrysosporium</i>.","authors":"Kiyohiko Igarashi,&nbsp;Satoshi Kaneko,&nbsp;Motomitsu Kitaoka,&nbsp;Masahiro Samejima","doi":"10.5458/jag.jag.JAG-2020_0003","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0003","url":null,"abstract":"<p><p>Cellobiose dehydrogenase (CDH) is a flavocytochrome catalyzing oxidation of the reducing end of cellobiose and cellooligosaccharides, and has a key role in the degradation of cellulosic biomass by filamentous fungi. Here, we use a lineup of glucose/xylose-mixed β-1,4-linked disaccharides and trisaccharides, enzymatically synthesized by means of the reverse reaction of cellobiose phosphorylase and cellodextrin phosphorylase, to investigate the substrate recognition of CDH. We found that CDH utilizes β-D-xylopyranosyl-(1→4)-D-glucopyranose (Xyl-Glc) as an electron donor with similar <i>K</i> <sub>m</sub> and <i>k</i> <sub>cat</sub> values to cellobiose. β-D-Glucopyranosyl-(1→4)-D-xylopyranose (Glc-Xyl) shows a higher <i>K</i> <sub>m</sub> value, while xylobiose does not serve as a substrate. Trisaccharides show similar behavior; i.e., trisaccharides with cellobiose and Xyl-Glc units at the reducing end show similar kinetics, while the enzyme was less active towards those with Glc-Xyl, and inactive towards those with xylobiose. We also use docking simulation to evaluate substrate recognition of the disaccharides, and we discuss possible molecular mechanisms of substrate recognition by CDH.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"67 2","pages":"51-57"},"PeriodicalIF":1.1,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f0/6e/JAG-67-051.PMC8293687.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39282082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Sialylated O -Glycans from Hen Egg White Ovomucin are Decomposed by Mucin-degrading Gut Microbes. 从蛋清卵磷脂中提取的唾液化O -聚糖被黏液降解肠道微生物分解。
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2020-05-20 eCollection Date: 2020-01-01 DOI: 10.5458/jag.jag.JAG-2019_0020
Hiromi Takada, Toshihiko Katoh, Takane Katayama

Ovomucin, a hen egg white protein, is characterized by its hydrogel-forming properties, high molecular weight, and extensive O -glycosylation with a high degree of sialylation. As a commonly used food ingredient, we explored whether ovomucin has an effect on the gut microbiota. O- Glycan analysis revealed that ovomucin contained core-1 and 2 structures with heavy modification by N -acetylneuraminic acid and/or sulfate groups. Of the two mucin-degrading gut microbes we tested, Akkermansia muciniphila grew in medium containing ovomucin as a sole carbon source during a 24 h culture period, whereas Bifidobacterium bifidum did not. Both gut microbes, however, degraded ovomucin O -glycans and released monosaccharides into the culture supernatants in a species-dependent manner, as revealed by semi-quantified mass spectrometric analysis and anion exchange chromatography analysis. Our data suggest that ovomucin potentially affects the gut microbiota through O -glycan decomposition by gut microbes and degradant sugar sharing within the community.

卵黄蛋白是一种蛋清蛋白,其特点是具有水凝胶形成特性、高分子量和广泛的O -糖基化和高度的唾液化。作为一种常用的食品成分,我们探讨了卵泡蛋白是否对肠道微生物群有影响。O-聚糖分析表明,卵黄蛋白含有被N -乙酰神经氨酸和/或硫酸盐基团大量修饰的核心-1和2结构。在我们测试的两种降解黏液蛋白的肠道微生物中,嗜粘杆菌在含有卵粘蛋白作为唯一碳源的培养基中生长了24小时,而两歧双歧杆菌则没有。然而,半定量质谱分析和阴离子交换色谱分析显示,这两种肠道微生物都以种依赖的方式降解卵粘蛋白O -聚糖并释放单糖到培养上清液中。我们的数据表明,卵磷脂可能通过肠道微生物分解O -聚糖和降解群落内的糖共享来影响肠道微生物群。
{"title":"Sialylated <i>O</i> -Glycans from Hen Egg White Ovomucin are Decomposed by Mucin-degrading Gut Microbes.","authors":"Hiromi Takada,&nbsp;Toshihiko Katoh,&nbsp;Takane Katayama","doi":"10.5458/jag.jag.JAG-2019_0020","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2019_0020","url":null,"abstract":"<p><p>Ovomucin, a hen egg white protein, is characterized by its hydrogel-forming properties, high molecular weight, and extensive <i>O</i> -glycosylation with a high degree of sialylation. As a commonly used food ingredient, we explored whether ovomucin has an effect on the gut microbiota. <i>O-</i> Glycan analysis revealed that ovomucin contained core-1 and 2 structures with heavy modification by <i>N</i> -acetylneuraminic acid and/or sulfate groups. Of the two mucin-degrading gut microbes we tested, <i>Akkermansia muciniphila</i> grew in medium containing ovomucin as a sole carbon source during a 24 h culture period, whereas <i>Bifidobacterium bifidum</i> did not. Both gut microbes, however, degraded ovomucin <i>O</i> -glycans and released monosaccharides into the culture supernatants in a species-dependent manner, as revealed by semi-quantified mass spectrometric analysis and anion exchange chromatography analysis. Our data suggest that ovomucin potentially affects the gut microbiota through <i>O</i> -glycan decomposition by gut microbes and degradant sugar sharing within the community.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"67 2","pages":"31-39"},"PeriodicalIF":1.1,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2019_0020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Analysis of Transglucosylation Products of Aspergillus niger α-Glucosidase that Catalyzes the Formation of α-1,2- and α-1,3-Linked Oligosaccharides. 黑曲霉α-葡萄糖苷酶催化形成α-1,2-和α-1,3-连接寡糖的转葡萄糖基化产物分析。
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2020-03-06 eCollection Date: 2020-01-01 DOI: 10.5458/jag.jag.JAG-2019_0015
Atsushi Kawano, Kansuke Fukui, Yuji Matsumoto, Atsushi Terada, Akihiro Tominaga, Nozomi Nikaido, Takashi Tonozuka, Kazuhide Totani, Nozomu Yasutake

According to whole-genome sequencing, Aspergillus niger produces multiple enzymes of glycoside hydrolases (GH) 31. Here we focus on a GH31 α-glucosidase, AgdB, from A. niger . AgdB has also previously been reported as being expressed in the yeast species, Pichia pastoris ; while the recombinant enzyme (rAgdB) has been shown to catalyze tranglycosylation via a complex mechanism. We constructed an expression system for A. niger AgdB using Aspergillus nidulans . To better elucidate the complicated mechanism employed by AgdB for transglucosylation, we also established a method to quantify glucosidic linkages in the transglucosylation products using 2D NMR spectroscopy. Results from the enzyme activity analysis indicated that the optimum temperature was 65 °C and optimum pH range was 6.0-7.0. Further, the NMR results showed that when maltose or maltopentaose served as the substrate, α-1,2-, α-1,3-, and small amount of α-1,1-β-linked oligosaccharides are present throughout the transglucosylation products of AgdB. These results suggest that AgdB is an α-glucosidase that serves as a transglucosylase capable of effectively producing oligosaccharides with α-1,2-, α-1,3-glucosidic linkages.

根据全基因组测序,黑曲霉产生多种糖苷水解酶(GH)31。在此,我们重点研究黑曲霉中的一种 GH31 α-糖苷酶 AgdB。之前也有报道称 AgdB 可在酵母菌 Pichia pastoris 中表达;而重组酶(rAgdB)已被证明可通过复杂的机制催化糖基化。我们利用黑曲霉构建了黑曲霉 AgdB 的表达系统。为了更好地阐明 AgdB 进行反式糖基化的复杂机制,我们还建立了一种利用二维核磁共振光谱对反式糖基化产物中的葡糖苷键进行定量的方法。酶活性分析结果表明,最佳温度为 65 °C,最佳 pH 值范围为 6.0-7.0。此外,核磁共振结果表明,当麦芽糖或麦芽五糖作为底物时,AgdB 的整个转葡糖基化产物中存在α-1,2-、α-1,3-和少量α-1,1-β连接的寡糖。这些结果表明,AgdB是一种α-葡萄糖苷酶,它作为一种转葡糖基酶,能够有效地产生具有α-1,2-、α-1,3-葡萄糖苷键的寡糖。
{"title":"Analysis of Transglucosylation Products of <i>Aspergillus niger</i> α-Glucosidase that Catalyzes the Formation of α-1,2- and α-1,3-Linked Oligosaccharides.","authors":"Atsushi Kawano, Kansuke Fukui, Yuji Matsumoto, Atsushi Terada, Akihiro Tominaga, Nozomi Nikaido, Takashi Tonozuka, Kazuhide Totani, Nozomu Yasutake","doi":"10.5458/jag.jag.JAG-2019_0015","DOIUrl":"10.5458/jag.jag.JAG-2019_0015","url":null,"abstract":"<p><p>According to whole-genome sequencing, <i>Aspergillus niger</i> produces multiple enzymes of glycoside hydrolases (GH) 31. Here we focus on a GH31 α-glucosidase, AgdB, from <i>A. niger</i> . AgdB has also previously been reported as being expressed in the yeast species, <i>Pichia pastoris</i> ; while the recombinant enzyme (rAgdB) has been shown to catalyze tranglycosylation via a complex mechanism. We constructed an expression system for <i>A. niger</i> AgdB using <i>Aspergillus nidulans</i> . To better elucidate the complicated mechanism employed by AgdB for transglucosylation, we also established a method to quantify glucosidic linkages in the transglucosylation products using 2D NMR spectroscopy. Results from the enzyme activity analysis indicated that the optimum temperature was 65 °C and optimum pH range was 6.0-7.0. Further, the NMR results showed that when maltose or maltopentaose served as the substrate, α-1,2-, α-1,3-, and small amount of α-1,1-β-linked oligosaccharides are present throughout the transglucosylation products of AgdB. These results suggest that AgdB is an α-glucosidase that serves as a transglucosylase capable of effectively producing oligosaccharides with α-1,2-, α-1,3-glucosidic linkages.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"67 2","pages":"41-49"},"PeriodicalIF":1.1,"publicationDate":"2020-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8f/6a/JAG-67-041.PMC8311119.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Ammonia Pretreatment for Enzymatic Hydrolysis of Sugarcane Bagasse to Recover Xylooligosaccharides. 氨预处理蔗渣酶解回收低聚木糖的研究。
IF 1.1 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2020-02-20 eCollection Date: 2020-01-01 DOI: 10.5458/jag.jag.JAG-2019_0017
Sosyu Tsutsui, Kiyoshi Sakuragi, Kiyohiko Igarashi, Masahiro Samejima, Satoshi Kaneko

Sugarcane bagasse is a useful biomass resource. In the present study, we examined the efficacy of ammonia pretreatment for selective release of hemicellulose from bagasse. Pretreatment of bagasse with aqueous ammonia resulted in significant loss of xylan. In contrast, pretreatment of bagasse with anhydrous ammonia resulted in almost no xylan loss. Aqueous ammonia or anhydrous ammonia-pretreated bagasse was then subjected to enzymatic digestion with a xylanase from the glycoside hydrolase (GH) family 10 or a xylanase from the GH family 11. The hydrolysis rate of xylan in bagasse pretreated with aqueous ammonia was approximately 50 %. In contrast, in the anhydrous ammonia-treated bagasse, xylan hydrolysis was > 80 %. These results suggested that anhydrous ammonia pretreatment would be an effective method for preparation of sugarcane bagasse for enzymatic hydrolysis to recover xylooligosaccharides.

甘蔗渣是一种有用的生物质资源。在本研究中,我们考察了氨预处理对蔗渣半纤维素选择性释放的效果。用氨水对甘蔗渣进行预处理,木聚糖损失显著。相比之下,无水氨预处理蔗渣几乎没有木聚糖的损失。然后用糖苷水解酶(GH)家族10的木聚糖酶或GH家族11的木聚糖酶进行氨水或无水预处理的甘蔗渣酶解。用氨水预处理蔗渣,木聚糖的水解率约为50%。无水氨处理的甘蔗渣木聚糖水解率> 80%。上述结果表明,无水氨预处理是制备甘蔗渣的有效方法,可用于酶解回收低聚木糖。
{"title":"Evaluation of Ammonia Pretreatment for Enzymatic Hydrolysis of Sugarcane Bagasse to Recover Xylooligosaccharides.","authors":"Sosyu Tsutsui,&nbsp;Kiyoshi Sakuragi,&nbsp;Kiyohiko Igarashi,&nbsp;Masahiro Samejima,&nbsp;Satoshi Kaneko","doi":"10.5458/jag.jag.JAG-2019_0017","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2019_0017","url":null,"abstract":"<p><p>Sugarcane bagasse is a useful biomass resource. In the present study, we examined the efficacy of ammonia pretreatment for selective release of hemicellulose from bagasse. Pretreatment of bagasse with aqueous ammonia resulted in significant loss of xylan. In contrast, pretreatment of bagasse with anhydrous ammonia resulted in almost no xylan loss. Aqueous ammonia or anhydrous ammonia-pretreated bagasse was then subjected to enzymatic digestion with a xylanase from the glycoside hydrolase (GH) family 10 or a xylanase from the GH family 11. The hydrolysis rate of xylan in bagasse pretreated with aqueous ammonia was approximately 50 %. In contrast, in the anhydrous ammonia-treated bagasse, xylan hydrolysis was > 80 %. These results suggested that anhydrous ammonia pretreatment would be an effective method for preparation of sugarcane bagasse for enzymatic hydrolysis to recover xylooligosaccharides.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"67 1","pages":"17-22"},"PeriodicalIF":1.1,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2019_0017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39354576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Journal of applied glycoscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1