The genus Pestalotiopsis are endophytic fungi that have recently been identified as cellulolytic system producers. We herein cloned a gene coding for a xylanase belonging to glycoside hydrolase (GH) family 10 (PesXyn10A) from Pestalotiopsis sp. AN-7, which was isolated from the soil of a mangrove forest. This protein was heterologously expressed by Pichia pastoris as a host, and its enzymatic properties were characterized. PesXyn10A was produced as a glycosylated protein and coincident to theoretical molecular weight (35.3 kDa) after deglycosylation by peptide-NfF-glycosidase F. Purified recombinant PesXyn10A exhibited maximal activity at pH 6.0 and 50 °C, and activity was maintained at 90 % at pH 5.0 and temperatures lower than 30 °C for 24 h. The substrate specificity of PesXyn10A was limited and it hydrolyzed glucuronoxylan and arabinoxylan, but not β-glucan. The final hydrolysis products from birchwood xylan were xylose, xylobiose, and 1,23-α-D-(4-O-methyl-glucuronyl)-1,4-β-D-xylotriose. The addition of metallic salts (NaCl, KCl, MgCl2, and CaCl2) activated PesXyn10A for xylan degradation, and maximal activation by these divalent cations was approximately 160 % at a concentration of 5 mM. The thermostability of PesXyn10A significantly increased in the presence of 50 mM NaCl or 5 mM MgCl2. The present results suggest that the presence of metallic salts at a low concentration, similar to brackish water, exerts positive effects on the enzyme activity and thermal stability of PesXyn10A.
拟盘多毛孢属是一种内生真菌,最近被鉴定为纤维素分解系统的生产者。本文克隆了从红树林土壤中分离得到的拟盘多毛孢(拟盘多毛孢)甘糖苷水解酶(GH)家族10 (PesXyn10A)木聚糖酶基因。该蛋白以毕赤酵母为宿主进行了异源表达,并对其酶学性质进行了表征。经肽- nf -糖苷酶f去糖基化后,得到了与理论分子量(35.3 kDa)一致的糖基化蛋白PesXyn10A。纯化后的重组蛋白PesXyn10A在pH 6.0和50°C时活性最高,在pH 5.0和低于30°C的温度下24 h活性保持在90%。桦木木聚糖的最终水解产物为木糖、木糖二糖和1,23-α- d -(4- o -甲基葡萄糖醛基)-1,4-β- d -木糖三糖。金属盐(NaCl、KCl、MgCl2和CaCl2)的加入激活了PesXyn10A降解木聚糖的活性,在浓度为5 mM时,这些二价阳离子的最大活化率约为160%,在50 mM NaCl或5 mM MgCl2的存在下,PesXyn10A的热稳定性显著提高。结果表明,低浓度金属盐的存在(类似于微咸水)对PesXyn10A的酶活性和热稳定性有积极的影响。
{"title":"Xylanase from Marine Filamentous Fungus <i>Pestalotiopsis</i> sp. AN-7 Was Activated with Diluted Salt Solution Like Brackish Water.","authors":"Sangho Koh, Masahiro Mizuno, Yuto Izuoka, Naoto Fujino, Naoko Hamada-Sato, Yoshihiko Amano","doi":"10.5458/jag.jag.JAG-2020_0011","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0011","url":null,"abstract":"<p><p>The genus <i>Pestalotiopsis</i> are endophytic fungi that have recently been identified as cellulolytic system producers. We herein cloned a gene coding for a xylanase belonging to glycoside hydrolase (GH) family 10 (<i>Pes</i>Xyn10A) from <i>Pestalotiopsis</i> sp. AN-7, which was isolated from the soil of a mangrove forest. This protein was heterologously expressed by <i>Pichia pastoris</i> as a host, and its enzymatic properties were characterized. <i>Pes</i>Xyn10A was produced as a glycosylated protein and coincident to theoretical molecular weight (35.3 kDa) after deglycosylation by peptide-<i>NfF</i>-glycosidase F. Purified recombinant <i>Pes</i>Xyn10A exhibited maximal activity at pH 6.0 and 50 °C, and activity was maintained at 90 % at pH 5.0 and temperatures lower than 30 °C for 24 h. The substrate specificity of <i>Pes</i>Xyn10A was limited and it hydrolyzed glucuronoxylan and arabinoxylan, but not β-glucan. The final hydrolysis products from birchwood xylan were xylose, xylobiose, and 1,2<sup>3</sup>-α-D-(4-<i>O</i>-methyl-glucuronyl)-1,4-β-D-xylotriose. The addition of metallic salts (NaCl, KCl, MgCl<sub>2</sub>, and CaCl<sub>2</sub>) activated <i>Pes</i>Xyn10A for xylan degradation, and maximal activation by these divalent cations was approximately 160 % at a concentration of 5 mM. The thermostability of <i>Pes</i>Xyn10A significantly increased in the presence of 50 mM NaCl or 5 mM MgCl<sub>2</sub>. The present results suggest that the presence of metallic salts at a low concentration, similar to brackish water, exerts positive effects on the enzyme activity and thermal stability of <i>Pes</i>Xyn10A.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2021-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7e/b0/JAG-68-11.PMC8116177.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Utilizing transglycosylation reaction catalyzed by β- N -acetylhexosaminidase of Stenotrophomonas maltophilia , β-D-fructofuranosyl-(2↔1)-α- N , N ´diacetylchitobioside (GlcNAc 2 -Fru) was synthesized from N -acetylsucrosamine and N , N ´-diacetylchitobiose (GlcNAc 2 ), and β-D-fructofuranosyl-(2↔1)-α- N , N ´, N ´´-triacetylchitotrioside (GlcNAc 3 -Fru) was synthesized from GlcNAc 2 -Fru and GlcNAc 2 . Through purification by charcoal column chromatography, pure GlcNAc 2 -Fru and GlcNAc 3 -Fru were obtained in molar yields of 33.0 % and 11.7 % from GlcNAc 2 , respectively. The structures of these oligosaccharides were confirmed by comparing instrumental analysis data of fragments obtained by enzymatic hydrolysis and acid hydrolysis of them with known data of these fragments.
利用嗜麦芽寡养单胞菌β- N -乙酰己糖苷酶催化的转糖基化反应,从N -乙酰蔗糖胺和N, N ' -二乙酰壳聚糖(GlcNAc 2)合成β- d -果糖呋喃基-(2↔1)-α- N, N ' ' -二乙酰壳聚糖(GlcNAc 2),从GlcNAc 2 -fru和GlcNAc 2合成β- d -果糖呋喃基-(2↔1)-α- N, N ', N ' ' -三乙酰壳聚糖(GlcNAc 3 -fru)。经炭柱层析纯化,得到GlcNAc 2 -Fru和GlcNAc 3 -Fru的摩尔产率分别为33.0%和11.7%。通过将酶解和酸解获得的片段的仪器分析数据与已知片段的数据进行比较,确定了这些寡糖的结构。
{"title":"Enzymatic Synthesis and Structural Confirmation of Novel Oligosaccharide, D-Fructofuranose-linked Chitin Oligosaccharide.","authors":"Hiroki Hosaka, Sayaka Shirai, Sora Fujita, Mitsuru Tashiro, Takako Hirano, Wataru Hakamata, Toshiyuki Nishio","doi":"10.5458/jag.jag.JAG-2020_0009","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0009","url":null,"abstract":"<p><p>Utilizing transglycosylation reaction catalyzed by β- <i>N</i> -acetylhexosaminidase of <i>Stenotrophomonas maltophilia</i> , β-D-fructofuranosyl-(2↔1)-α- <i>N</i> , <i>N</i> ´diacetylchitobioside (GlcNAc <sub>2</sub> -Fru) was synthesized from <i>N</i> -acetylsucrosamine and <i>N</i> , <i>N</i> ´-diacetylchitobiose (GlcNAc <sub>2</sub> ), and β-D-fructofuranosyl-(2↔1)-α- <i>N</i> , <i>N</i> ´, <i>N</i> ´´-triacetylchitotrioside (GlcNAc <sub>3</sub> -Fru) was synthesized from GlcNAc <sub>2</sub> -Fru and GlcNAc <sub>2</sub> . Through purification by charcoal column chromatography, pure GlcNAc <sub>2</sub> -Fru and GlcNAc <sub>3</sub> -Fru were obtained in molar yields of 33.0 % and 11.7 % from GlcNAc <sub>2</sub> , respectively. The structures of these oligosaccharides were confirmed by comparing instrumental analysis data of fragments obtained by enzymatic hydrolysis and acid hydrolysis of them with known data of these fragments.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/cc/af/JAG-67-129.PMC8116863.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hexokinases catalyze glucose phosphorylation at the first step in glycolysis in eukaryotes. In the budding yeast Saccharomyces cerevisiae , three enzymes for glucose phosphorylation have long been known: Hxk1, Hxk2, and Glk1. In this study, we focus on Emi2, a previously uncharacterized hexokinase-like protein of S. cerevisiae . Our data show that the recombinant Emi2 protein (rEmi2), expressed in Escherichia coli , possesses glucose-phosphorylating activity in the presence of ATP and Mg 2+ . It was also found that rEmi2 phosphorylates not only glucose but also fructose, mannose and glucosamine in vitro . In addition, we examined changes in the level of endogenous Emi2 protein in S. cerevisiae in the presence or absence of glucose and a non-fermentable carbon source. We found that the expression of Emi2 protein is tightly suppressed during proliferation in high glucose, while it is strongly upregulated in response to glucose limitation and the presence of a non-fermentable carbon source. Our data suggest that the expression of the endogenous Emi2 protein in S. cerevisiae is regulated under the control of Hxk2 in response to glucose availability in the environment.
{"title":"The Emi2 Protein of <i>Saccharomyces cerevisiae</i> is a Hexokinase Expressed under Glucose Limitation.","authors":"Midori Umekawa, Kaito Hamada, Naoto Isono, Shuichi Karita","doi":"10.5458/jag.jag.JAG-2020_0007","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0007","url":null,"abstract":"<p><p>Hexokinases catalyze glucose phosphorylation at the first step in glycolysis in eukaryotes. In the budding yeast <i>Saccharomyces cerevisiae</i> , three enzymes for glucose phosphorylation have long been known: Hxk1, Hxk2, and Glk1. In this study, we focus on Emi2, a previously uncharacterized hexokinase-like protein of <i>S. cerevisiae</i> . Our data show that the recombinant Emi2 protein (rEmi2), expressed in <i>Escherichia coli</i> , possesses glucose-phosphorylating activity in the presence of ATP and Mg <sup>2+</sup> . It was also found that rEmi2 phosphorylates not only glucose but also fructose, mannose and glucosamine <i>in vitro</i> . In addition, we examined changes in the level of endogenous Emi2 protein in <i>S. cerevisiae</i> in the presence or absence of glucose and a non-fermentable carbon source. We found that the expression of Emi2 protein is tightly suppressed during proliferation in high glucose, while it is strongly upregulated in response to glucose limitation and the presence of a non-fermentable carbon source. Our data suggest that the expression of the endogenous Emi2 protein in <i>S. cerevisiae</i> is regulated under the control of Hxk2 in response to glucose availability in the environment.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0c/2a/JAG-67-103.PMC8119236.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Glycopolymers have attracted increased attention as functional polymeric materials, and simple methods for synthesizing glycopolymers remain needed. This paper reports the aqueous one-pot and chemoenzymatic synthesis of four types of glycopolymers via two reactions: the β-galactosidase-catalyzed glycomonomer synthesis using 4,6-dimetoxy triazinyl β-D-galactopyranoside and hydroxy group-containing (meth)acrylamide and (meth)acrylate derivatives as the activated glycosyl donor substrate and as the glycomonomer precursors, respectively, followed by radical copolymerization of the resulting glycomonomer and excess glycomonomer precursor without isolating the glycomonomers. The resulting glycopolymers bearing galactose moieties exhibited specific and strong interactions with the lectin peanut agglutinin as glycoclusters.
{"title":"Aqueous One-pot Synthesis of Glycopolymers by Glycosidase-catalyzed Glycomonomer Synthesis Using 4,6-Dimetoxy Triazinyl Glycoside Followed by Radical Polymerization.","authors":"Tomonari Tanaka, Ayane Matsuura, Yuji Aso, Hitomi Ohara","doi":"10.5458/jag.jag.JAG-2020_0010","DOIUrl":"10.5458/jag.jag.JAG-2020_0010","url":null,"abstract":"<p><p>Glycopolymers have attracted increased attention as functional polymeric materials, and simple methods for synthesizing glycopolymers remain needed. This paper reports the aqueous one-pot and chemoenzymatic synthesis of four types of glycopolymers via two reactions: the β-galactosidase-catalyzed glycomonomer synthesis using 4,6-dimetoxy triazinyl β-D-galactopyranoside and hydroxy group-containing (meth)acrylamide and (meth)acrylate derivatives as the activated glycosyl donor substrate and as the glycomonomer precursors, respectively, followed by radical copolymerization of the resulting glycomonomer and excess glycomonomer precursor without isolating the glycomonomers. The resulting glycopolymers bearing galactose moieties exhibited specific and strong interactions with the lectin peanut agglutinin as glycoclusters.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/91/d2/JAG-67-119.PMC8116861.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-20eCollection Date: 2020-01-01DOI: 10.5458/jag.jag.JAG-2020_0008
Alex Eduardo Alvino Granados, Kiyoshi Kawai
The browning, gelatinization of starch, water sorption, glass transition, and caking properties of freeze-dried maca ( Lepidium meyenii Walpers) powders were investigated and compared with a commercial maca powder. The freeze-dried maca powders had lower optical density (browning) and higher enthalpy change for starch gelatinization than the commercial maca. This resulted from a difference in thermal history. The equilibrium water contents of the freeze-dried maca powders were higher than those of commercial maca at each water activity ( aw ) because of differences in amorphous part. The glass transition temperature ( Tg ) was evaluated by differential scanning calorimetry. There was a negligible difference in the anhydrous Tg (79.5-80.2 ºC) among the samples. The Tg -depression of freeze-dried maca powders induced by water sorption was more gradual than that of the commercial maca due to a difference in water insoluble material content. From the results, critical water activity ( awc ) was determined as the aw at which Tg becomes 25 ºC. There was negligible caking below aw = 0.328. At higher aw , the degree of caking remarkably increased with a large variation depending on the samples. The degree of caking could be described uniformly as a function of aw / awc . From these results, we propose an empirical approach to predict the caking of maca powders.
研究了冻干玛卡(Lepidium meyenii Walpers)粉末的褐变、淀粉糊化、吸水性、玻璃化转变和结块特性,并与商用玛卡粉进行了比较。与商品玛咖相比,冻干玛咖粉的光密度(褐变)更低,淀粉糊化焓变更高。这是由于热历史不同造成的。由于无定形部分的差异,在每个水活度(a w)下,冻干玛咖粉的平衡含水量都高于商品玛咖粉。差示扫描量热法评估了玻璃化转变温度(T g)。不同样品的无水 T g(79.5-80.2 ºC)差异微乎其微。由于不溶于水的物质含量不同,冻干玛咖粉吸水引起的 T g 下降比商品玛咖粉更缓慢。根据研究结果,临界水活度(a wc)被确定为 T g 变为 25 ºC 时的 a w。a w = 0.328 以下的结块可以忽略不计。当 a w 越高时,结块程度显著增加,不同样品之间的差异很大。结块程度可统一描述为 a w / a wc 的函数。根据这些结果,我们提出了一种预测玛咖粉结块的经验方法。
{"title":"Browning, Starch Gelatinization, Water Sorption, Glass Transition, and Caking Properties of Freeze-dried Maca ( <i>Lepidium meyenii</i> Walpers) Powders.","authors":"Alex Eduardo Alvino Granados, Kiyoshi Kawai","doi":"10.5458/jag.jag.JAG-2020_0008","DOIUrl":"10.5458/jag.jag.JAG-2020_0008","url":null,"abstract":"<p><p>The browning, gelatinization of starch, water sorption, glass transition, and caking properties of freeze-dried maca ( <i>Lepidium meyenii</i> Walpers) powders were investigated and compared with a commercial maca powder. The freeze-dried maca powders had lower optical density (browning) and higher enthalpy change for starch gelatinization than the commercial maca. This resulted from a difference in thermal history. The equilibrium water contents of the freeze-dried maca powders were higher than those of commercial maca at each water activity ( <i>a</i> <sub>w</sub> ) because of differences in amorphous part. The glass transition temperature ( <i>T</i> <sub>g</sub> ) was evaluated by differential scanning calorimetry. There was a negligible difference in the anhydrous <i>T</i> <sub>g</sub> (79.5-80.2 ºC) among the samples. The <i>T</i> <sub>g</sub> -depression of freeze-dried maca powders induced by water sorption was more gradual than that of the commercial maca due to a difference in water insoluble material content. From the results, critical water activity ( <i>a</i> <sub>wc</sub> ) was determined as the <i>a</i> <sub>w</sub> at which <i>T</i> <sub>g</sub> becomes 25 ºC. There was negligible caking below <i>a</i> <sub>w</sub> = 0.328. At higher <i>a</i> <sub>w</sub> , the degree of caking remarkably increased with a large variation depending on the samples. The degree of caking could be described uniformly as a function of <i>a</i> <sub>w</sub> / <i>a</i> <sub>wc</sub> . From these results, we propose an empirical approach to predict the caking of maca powders.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6e/c2/JAG-67-111.PMC8116860.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-29eCollection Date: 2020-01-01DOI: 10.5458/jag.jag.JAG-2019_0014
Yuya Furushiro, Takashi Kobayashi
Glucose and fructose were treated in subcritical water in the presence of alkali or alkaline earth metal chlorides. All salts accelerated the conversion of saccharides, and alkaline earth metal chloride greatly promoted the isomerization of glucose to fructose. In contrast, alkali metal salts only slightly promoted this isomerization and facilitated the decomposition of glucose to byproducts such as organic acids. The selectivity of the glucose-to-fructose isomerization was higher at lower conversions of glucose and in the presence of alkaline earth metal chlorides. The pH of the reaction mixture also greatly affected the selectivity, which decreased rapidly at lower pH due to the generated organic acids. At low pH, decomposition of glucose became dominant over isomerization, but further conversion of glucose was suppressed. This result was elucidated by the suppression of the alkali-induced isomerization of glucose at low pH. Fructose underwent decomposition during the treatment of the fructose solution, but its isomerization to glucose was not observed. The added salts autocatalytically promoted the decomposition of fructose, and the reaction mechanism of fructose decomposition differed from that of glucose.
{"title":"Reaction Behavior of Glucose and Fructose in Subcritical Water in the Presence of Various Salts.","authors":"Yuya Furushiro, Takashi Kobayashi","doi":"10.5458/jag.jag.JAG-2019_0014","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2019_0014","url":null,"abstract":"<p><p>Glucose and fructose were treated in subcritical water in the presence of alkali or alkaline earth metal chlorides. All salts accelerated the conversion of saccharides, and alkaline earth metal chloride greatly promoted the isomerization of glucose to fructose. In contrast, alkali metal salts only slightly promoted this isomerization and facilitated the decomposition of glucose to byproducts such as organic acids. The selectivity of the glucose-to-fructose isomerization was higher at lower conversions of glucose and in the presence of alkaline earth metal chlorides. The pH of the reaction mixture also greatly affected the selectivity, which decreased rapidly at lower pH due to the generated organic acids. At low pH, decomposition of glucose became dominant over isomerization, but further conversion of glucose was suppressed. This result was elucidated by the suppression of the alkali-induced isomerization of glucose at low pH. Fructose underwent decomposition during the treatment of the fructose solution, but its isomerization to glucose was not observed. The added salts autocatalytically promoted the decomposition of fructose, and the reaction mechanism of fructose decomposition differed from that of glucose.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2019_0014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39354575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
α-L-Rhamnosidases (α-L-Rha-ases, EC 3.2.1.40) are glycosyl hydrolases (GHs) that hydrolyze a terminal α-linked L-rhamnose residue from a wide spectrum of substrates such as heteropolysaccharides, glycosylated proteins, and natural flavonoids. As a result, they are considered catalysts of interest for various biotechnological applications. α-L-rhamnose (6-deoxy-L-mannose) is structurally similar to the rare sugar α-L-mannose. Here we have examined whether microbial α-L-Rha-ases possess α-L-mannosidase activity by synthesizing the substrate 4-nitrophenyl α-L-mannopyranoside. Four α-L-Rha-ases from GH78 and GH106 families were expressed and purified from Escherichia coli cells. All four enzymes exhibited both α-L-rhamnosyl-hydrolyzing activity and weak α-L-mannosyl-hydrolyzing activity. SpRhaM, a GH106 family α-L-Rha-ase from Sphingomonas paucimobilis FP2001, was found to have relatively higher α-L-mannosidase activity as compared with three GH78 α-L-Rha-ases. The α-L-mannosidase activity of SpRhaM showed pH dependence, with highest activity observed at pH 7.0. In summary, we have shown that α-L-Rha-ases also have α-L-mannosidase activity. Our findings will be useful in the identification and structural determination of α-L-mannose-containing polysaccharides from natural sources for use in the pharmaceutical and food industries.
α-l -鼠李糖苷酶(α- l - rhas -ases, EC 3.2.1.40)是一种糖基水解酶(GHs),可以水解末端α-连接的l -鼠李糖残基,这些残基来自多种底物,如杂多糖、糖基化蛋白和天然黄酮类化合物。因此,它们被认为是各种生物技术应用感兴趣的催化剂。α- l -鼠李糖(6-脱氧- l -甘露糖)在结构上与稀有糖α- l -甘露糖相似。在这里,我们通过合成底物4-硝基苯α- l -甘露葡萄糖苷来检测微生物α- l - rhaa酶是否具有α- l -甘露葡萄糖苷酶活性。从大肠杆菌细胞中表达并纯化了GH78和GH106家族的4个α- l - rhaa酶。4种酶均具有α- l-鼠李糖基水解活性和弱α- l-甘露糖基水解活性。spsprham是来自Sphingomonas paucimobilis FP2001的GH106家族α- l - rhaa酶,与GH78 α- l - rhaa酶相比,spsprham具有较高的α- l -甘露糖苷酶活性。SpRhaM α- l -甘露糖苷酶活性呈pH依赖性,在pH 7.0时活性最高。综上所述,我们已经证明α- l - rhaa酶也具有α- l -甘露糖苷酶活性。我们的发现将有助于从天然来源的α- l -甘露糖多糖的鉴定和结构测定,用于制药和食品工业。
{"title":"Microbial α-L-Rhamnosidases of Glycosyl Hydrolase Families GH78 and GH106 Have Broad Substrate Specificities toward α-L-Rhamnosyl- and α-L-Mannosyl-Linkages.","authors":"Feunai Agape Papalii Tautau, Minoru Izumi, Emiko Matsunaga, Yujiro Higuchi, Kaoru Takegawa","doi":"10.5458/jag.jag.JAG-2020_0005","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0005","url":null,"abstract":"<p><p>α-L-Rhamnosidases (α-L-Rha-ases, EC 3.2.1.40) are glycosyl hydrolases (GHs) that hydrolyze a terminal α-linked L-rhamnose residue from a wide spectrum of substrates such as heteropolysaccharides, glycosylated proteins, and natural flavonoids. As a result, they are considered catalysts of interest for various biotechnological applications. α-L-rhamnose (6-deoxy-L-mannose) is structurally similar to the rare sugar α-L-mannose. Here we have examined whether microbial α-L-Rha-ases possess α-L-mannosidase activity by synthesizing the substrate 4-nitrophenyl α-L-mannopyranoside. Four α-L-Rha-ases from GH78 and GH106 families were expressed and purified from <i>Escherichia coli</i> cells. All four enzymes exhibited both α-L-rhamnosyl-hydrolyzing activity and weak α-L-mannosyl-hydrolyzing activity. SpRhaM, a GH106 family α-L-Rha-ase from <i>Sphingomonas paucimobilis</i> FP2001, was found to have relatively higher α-L-mannosidase activity as compared with three GH78 α-L-Rha-ases. The α-L-mannosidase activity of SpRhaM showed pH dependence, with highest activity observed at pH 7.0. In summary, we have shown that α-L-Rha-ases also have α-L-mannosidase activity. Our findings will be useful in the identification and structural determination of α-L-mannose-containing polysaccharides from natural sources for use in the pharmaceutical and food industries.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a4/56/67_jag.JAG-2020_0005.PMC8132073.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39282088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pyranose 2-oxidases catalyze the oxidation of various pyranose sugars at the C2 position. However, their potential application for detecting sugars other than glucose in blood is hindered by relatively high activity towards glucose. In this study, in order to find a mutant enzyme with enhanced specificity for 1,5-anhydro-D-glucitol (1,5-AG), which is a biomarker for diabetes mellitus, we conducted site-directed mutagenesis of pyranose 2-oxidase from the basidiomycete Phanerochaete chrysosporium ( Pc POX). Considering the three-dimensional structure of the substrate-binding site of Pc POX and the structural difference between glucose and 1,5-AG, we selected alanine 551 of Pc POX as a target residue for mutation. Kinetic studies of the 19 mutants of Pc POX expressed as recombinant proteins in E. coli revealed that the ratio of kcat / Km for 1,5-AG to kcat / Km for glucose was three times higher for the A551L mutant than for wild-type Pc POX. Although the A551L mutant has lower specific activity towards each substrate than the wild-type enzyme, its increased specificity for 1,5-AG makes it a promising lead for the development of POX-based 1,5-AG detection systems.
{"title":"Single Amino Acid Mutation of Pyranose 2-Oxidase Results in Increased Specificity for Diabetes Biomarker 1,5-Anhydro-D-Glucitol.","authors":"Takahiro Fujii, Kiyohiko Igarashi, Masahiro Samejima","doi":"10.5458/jag.jag.JAG-2020_0002","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0002","url":null,"abstract":"<p><p>Pyranose 2-oxidases catalyze the oxidation of various pyranose sugars at the C2 position. However, their potential application for detecting sugars other than glucose in blood is hindered by relatively high activity towards glucose. In this study, in order to find a mutant enzyme with enhanced specificity for 1,5-anhydro-D-glucitol (1,5-AG), which is a biomarker for diabetes mellitus, we conducted site-directed mutagenesis of pyranose 2-oxidase from the basidiomycete <i>Phanerochaete chrysosporium</i> ( <i>Pc</i> POX). Considering the three-dimensional structure of the substrate-binding site of <i>Pc</i> POX and the structural difference between glucose and 1,5-AG, we selected alanine 551 of <i>Pc</i> POX as a target residue for mutation. Kinetic studies of the 19 mutants of <i>Pc</i> POX expressed as recombinant proteins in <i>E. coli</i> revealed that the ratio of <i>k</i> <sub>cat</sub> / <i>K</i> <sub>m</sub> for 1,5-AG to <i>k</i> <sub>cat</sub> / <i>K</i> <sub>m</sub> for glucose was three times higher for the A551L mutant than for wild-type <i>Pc</i> POX. Although the A551L mutant has lower specific activity towards each substrate than the wild-type enzyme, its increased specificity for 1,5-AG makes it a promising lead for the development of POX-based 1,5-AG detection systems.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/05/78/JAG-67-073.PMC8135088.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39282086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-03eCollection Date: 2020-01-01DOI: 10.5458/jag.jag.JAG-2020_0004
Sora Yamaguchi, Naoki Sunagawa, Mikako Tachioka, Kiyohiko Igarashi, Masahiro Samejima
Thermal inactivation of saccharifying enzymes is a crucial issue for the efficient utilization of cellulosic biomass as a renewable resource. Cellobiohydrolases (CBHs) are a kind of cellulase. In general, CBHs belonging to glycoside hydrolase (GH) family 6 (Cel6) act synergistically with CBHs of GH family 7 (Cel7) and other carbohydrate-active enzymes during the degradation of cellulosic biomass. However, while the catalytic rate of enzymes generally becomes faster at higher temperatures, Cel6 CBHs are inactivated at lower temperatures than Cel7 CBHs, and this represents a limiting factor for industrial utilization. In this study, we produced a series of mutants of the glycoside hydrolase family 6 cellobiohydrolase Pc Cel6A from the fungus Phanerochaete chrysosporium , and compared their thermal stability. Eight mutants from a random mutagenesis library and one rationally designed mutant were selected as candidate thermostable mutants and produced by heterologous expression in the yeast Pichia pastoris . Comparison of the hydrolytic activities at 50 and 60 °C indicated that the thermal stability of Pc Cel6A is influenced by the number and position of cysteine residues that are not involved in disulfide bonds.
{"title":"Thermostable Mutants of Glycoside Hydrolase Family 6 Cellobiohydrolase from the Basidiomycete <i>Phanerochaete chrysosporium</i>.","authors":"Sora Yamaguchi, Naoki Sunagawa, Mikako Tachioka, Kiyohiko Igarashi, Masahiro Samejima","doi":"10.5458/jag.jag.JAG-2020_0004","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0004","url":null,"abstract":"<p><p>Thermal inactivation of saccharifying enzymes is a crucial issue for the efficient utilization of cellulosic biomass as a renewable resource. Cellobiohydrolases (CBHs) are a kind of cellulase. In general, CBHs belonging to glycoside hydrolase (GH) family 6 (Cel6) act synergistically with CBHs of GH family 7 (Cel7) and other carbohydrate-active enzymes during the degradation of cellulosic biomass. However, while the catalytic rate of enzymes generally becomes faster at higher temperatures, Cel6 CBHs are inactivated at lower temperatures than Cel7 CBHs, and this represents a limiting factor for industrial utilization. In this study, we produced a series of mutants of the glycoside hydrolase family 6 cellobiohydrolase <i>Pc</i> Cel6A from the fungus <i>Phanerochaete chrysosporium</i> , and compared their thermal stability. Eight mutants from a random mutagenesis library and one rationally designed mutant were selected as candidate thermostable mutants and produced by heterologous expression in the yeast <i>Pichia pastoris</i> . Comparison of the hydrolytic activities at 50 and 60 °C indicated that the thermal stability of <i>Pc</i> Cel6A is influenced by the number and position of cysteine residues that are not involved in disulfide bonds.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b6/ec/67_jag.JAG-2020_0004.PMC8132074.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39282087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D-Allose (D-All), a C-3 epimer of D-glucose (D-Glc), is a naturally rare monosaccharide, which shows anti-proliferative activity against several human cancer cell lines. Unlike conventional anticancer drugs, D-All targets glucose metabolism and is non-toxic to normal cells. Therefore, it has attracted attention as a unique "seed" compound for anticancer agents. However, the anti-proliferative activities of the other rare aldohexoses have not been examined yet. In this study, we evaluated the anti-proliferative activity of rare aldohexoses against human leukemia MOLT-4F and human prostate cancer DU-145 cell lines. We found that D-All and D-idose (D-Ido) at 5 mM inhibited cell proliferation of MOLT-4F cells by 46 % and 60 %, respectively. On the other hand, the rare aldohexoses at 5 mM did not show specific anti-proliferative activity against DU-145 cells. To explore the structure-activity relationship of D-Ido, we evaluated the anti-proliferative activity of D-sorbose (D-Sor), 6-deoxy-D-Ido, and L-xylose (L-Xyl) against MOLT-4F cells and found that D-Sor, 6-deoxy-D-Ido, and L-Xyl showed no inhibitory activity at 5 mM, suggesting that the aldose structure and the C-6 hydroxy group of D-Ido are important for its activity. Cellular glucose uptake assay and western blotting analysis of thioredoxin-interacting protein (TXNIP) expression suggested that the anti-proliferative activity of D-Ido is induced by inhibition of glucose uptake via TXNIP-independent pathway.
{"title":"Evaluation of the Anti-Proliferative Activity of Rare Aldohexoses against MOLT-4F and DU-145 Human Cancer Cell Line and Structure-Activity Relationship of D-Idose.","authors":"Hironobu Ishiyama, Ryo C Yanagita, Kazune Takemoto, Natsumi Kitaguchi, Yuuki Uezato, Yasunori Sugiyama, Masashi Sato, Yasuhiro Kawanami","doi":"10.5458/jag.jag.JAG-2020_0006","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2020_0006","url":null,"abstract":"<p><p>D-Allose (D-All), a C-3 epimer of D-glucose (D-Glc), is a naturally rare monosaccharide, which shows anti-proliferative activity against several human cancer cell lines. Unlike conventional anticancer drugs, D-All targets glucose metabolism and is non-toxic to normal cells. Therefore, it has attracted attention as a unique \"seed\" compound for anticancer agents. However, the anti-proliferative activities of the other rare aldohexoses have not been examined yet. In this study, we evaluated the anti-proliferative activity of rare aldohexoses against human leukemia MOLT-4F and human prostate cancer DU-145 cell lines. We found that D-All and D-idose (D-Ido) at 5 mM inhibited cell proliferation of MOLT-4F cells by 46 % and 60 %, respectively. On the other hand, the rare aldohexoses at 5 mM did not show specific anti-proliferative activity against DU-145 cells. To explore the structure-activity relationship of D-Ido, we evaluated the anti-proliferative activity of D-sorbose (D-Sor), 6-deoxy-D-Ido, and L-xylose (L-Xyl) against MOLT-4F cells and found that D-Sor, 6-deoxy-D-Ido, and L-Xyl showed no inhibitory activity at 5 mM, suggesting that the aldose structure and the C-6 hydroxy group of D-Ido are important for its activity. Cellular glucose uptake assay and western blotting analysis of thioredoxin-interacting protein (TXNIP) expression suggested that the anti-proliferative activity of D-Ido is induced by inhibition of glucose uptake via TXNIP-independent pathway.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8e/37/JAG-67-095.PMC8132072.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39282089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}