首页 > 最新文献

Journal of applied glycoscience最新文献

英文 中文
Functional Characterization of the GH10 and GH11 Xylanases from Streptomyces olivaceoviridis E-86 Provide Insights into the Advantage of GH11 Xylanase in Catalyzing Biomass Degradation. Olivaceoviridis E-86 链霉菌 GH10 和 GH11 木聚糖酶的功能特性分析揭示了 GH11 木聚糖酶在催化生物质降解过程中的优势。
IF 1.1 Pub Date : 2019-02-20 eCollection Date: 2019-01-01 DOI: 10.5458/jag.jag.JAG-2018_0008
Haruka Yagi, Ryo Takehara, Aika Tamaki, Koji Teramoto, Sosyu Tsutsui, Satoshi Kaneko

We functionally characterized the GH10 xylanase (SoXyn10A) and the GH11 xylanase (SoXyn11B) derived from the actinomycete Streptomyces olivaceoviridis E-86. Each enzyme exhibited differences in the produced reducing power upon degradation of xylan substrates. SoXyn10A produced higher reducing power than SoXyn11B. Gel filtration of the hydrolysates generated by both enzymes revealed that the original substrate was completely decomposed. Enzyme mixtures of SoXyn10A and SoXyn11B produced the same level of reducing power as SoXyn10A alone. These observations were in good agreement with the composition of the hydrolysis products. The hydrolysis products derived from the incubation of soluble birchwood xylan with a mixture of SoXyn10A and SoXyn11B produced the same products as SoXyn10A alone with similar compositions. Furthermore, the addition of SoXyn10A following SoXyn11B-mediated digestion of xylan produced the same products as SoXyn10A alone with similar compositions. Thus, it was hypothesized that SoXyn10A could degrade xylans to a smaller size than SoXyn11B. In contrast to the soluble xylans as the substrate, the produced reducing power generated by both enzymes was not significantly different when pretreated milled bagasses were used as substrates. Quantification of the pentose content in the milled bagasse residues after the enzyme digestions revealed that SoXyn11B hydrolyzed xylans in pretreated milled bagasses much more efficiently than SoXyn10A. These data suggested that the GH10 xylanases can degrade soluble xylans smaller than the GH11 xylanases. However, the GH11 xylanases may be more efficient at catalyzing xylan degradation in natural environments (e.g. biomass) where xylans interact with celluloses and lignins.

我们从功能上鉴定了源自放线菌 Streptomyces olivaceoviridis E-86 的 GH10 木聚糖酶(SoXyn10A)和 GH11 木聚糖酶(SoXyn11B)。每种酶在降解木聚糖底物时产生的还原力都有所不同。SoXyn10A 产生的还原力高于 SoXyn11B。对两种酶产生的水解物进行凝胶过滤发现,原始底物已完全分解。SoXyn10A 和 SoXyn11B 的酶混合物产生的还原力与 SoXyn10A 单独产生的还原力水平相同。这些观察结果与水解产物的成分十分吻合。将可溶性桦木木聚糖与 SoXyn10A 和 SoXyn11B 的混合物一起培养所产生的水解产物与单独使用 SoXyn10A 所产生的产物相同,且成分相似。此外,在 SoXyn11B 介导的木聚糖消化后加入 SoXyn10A,产生的产物与单独使用 SoXyn10A 产生的产物相同,成分也相似。因此,我们推测 SoXyn10A 比 SoXyn11B 能将木聚糖降解得更小。以可溶性木聚糖为底物时,两种酶产生的还原力没有明显差异。对酶消化后碾磨甘蔗渣中戊糖含量的定量分析显示,SoXyn11B 比 SoXyn10A 更有效地水解了预处理过的碾磨甘蔗渣中的木聚糖。这些数据表明,GH10 木聚糖酶降解可溶性木聚糖的能力比 GH11 木聚糖酶小。不过,在木聚糖与纤维素和木质素相互作用的自然环境(如生物质)中,GH11 木聚糖酶催化木聚糖降解的效率可能更高。
{"title":"Functional Characterization of the GH10 and GH11 Xylanases from <i>Streptomyces olivaceoviridis</i> E-86 Provide Insights into the Advantage of GH11 Xylanase in Catalyzing Biomass Degradation.","authors":"Haruka Yagi, Ryo Takehara, Aika Tamaki, Koji Teramoto, Sosyu Tsutsui, Satoshi Kaneko","doi":"10.5458/jag.jag.JAG-2018_0008","DOIUrl":"10.5458/jag.jag.JAG-2018_0008","url":null,"abstract":"<p><p>We functionally characterized the GH10 xylanase (SoXyn10A) and the GH11 xylanase (SoXyn11B) derived from the actinomycete <i>Streptomyces olivaceoviridis</i> E-86. Each enzyme exhibited differences in the produced reducing power upon degradation of xylan substrates. SoXyn10A produced higher reducing power than SoXyn11B. Gel filtration of the hydrolysates generated by both enzymes revealed that the original substrate was completely decomposed. Enzyme mixtures of SoXyn10A and SoXyn11B produced the same level of reducing power as SoXyn10A alone. These observations were in good agreement with the composition of the hydrolysis products. The hydrolysis products derived from the incubation of soluble birchwood xylan with a mixture of SoXyn10A and SoXyn11B produced the same products as SoXyn10A alone with similar compositions. Furthermore, the addition of SoXyn10A following SoXyn11B-mediated digestion of xylan produced the same products as SoXyn10A alone with similar compositions. Thus, it was hypothesized that SoXyn10A could degrade xylans to a smaller size than SoXyn11B. In contrast to the soluble xylans as the substrate, the produced reducing power generated by both enzymes was not significantly different when pretreated milled bagasses were used as substrates. Quantification of the pentose content in the milled bagasse residues after the enzyme digestions revealed that SoXyn11B hydrolyzed xylans in pretreated milled bagasses much more efficiently than SoXyn10A. These data suggested that the GH10 xylanases can degrade soluble xylans smaller than the GH11 xylanases. However, the GH11 xylanases may be more efficient at catalyzing xylan degradation in natural environments (e.g. biomass) where xylans interact with celluloses and lignins.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fc/6d/JAG-66-029.PMC8056901.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sugar Composition in Asparagus Spears and Its Relationship to Soil Chemical Properties. 芦笋茎中糖组成及其与土壤化学性质的关系
IF 1.1 Pub Date : 2019-02-20 eCollection Date: 2019-01-01 DOI: 10.5458/jag.jag.JAG-2018_0007
Hideyuki Takahashi, Chiharu Yoshida, Takumi Takeda

Glycoside hydrolases require carboxyl groups as catalysts for their activity. A retaining xylanase from Streptomyces olivaceoviridis E-86 belonging to glycoside hydrolase family 10 possesses Glu128 and Glu236 that respectively function as acid/base and nucleophile. We previously developed a unique mutant of the retaining xylanase, N127S/E128H, whose deglycosylation is triggered by azide. A crystallographic study reported that the transient formation of a Ser-His catalytic dyad in the reaction cycle possibly reduced the azidolysis reaction. In the present study, we engineered a catalytic dyad with enhanced stability by site-directed mutagenesis and crystallographic study of N127S/E128H. Comparison of the Michaelis complexes of N127S/E128H with pNP-X2 and with xylopentaose showed that Ser127 could form an alternative hydrogen bond with Thr82, which disrupts the formation of the Ser-His catalytic dyad. The introduction of T82A mutation in N127S/E128H produces an enhanced first-order rate constant (6 times that of N127S/E128H). We confirmed the presence of a stable Ser-His hydrogen bond in the Michaelis complex of the triple mutant, which forms the productive tautomer of His128 that acts as an acid catalyst. Because the glycosyl azide is applicable in the bioconjugation of glycans by using click chemistry, the enzyme-assisted production of the glycosyl azide may contribute to the field of glycobiology.

糖苷水解酶的活性需要羧基作为催化剂。橄榄绿链霉菌E-86中的一种保留木聚糖酶属于糖苷水解酶家族10,具有Glu128和Glu236,分别具有酸/碱和亲核试剂的功能。我们之前开发了一种独特的保留木聚糖酶突变体N127S/E128H,其去糖基化是由叠氮化物触发的。晶体学研究表明,在反应循环中,ser - he催化二元体的短暂形成可能降低了叠氮解反应。在本研究中,我们通过位点诱变和对N127S/E128H的晶体学研究,设计了一种具有增强稳定性的催化二元体。N127S/E128H与pNP-X2和木戊糖的Michaelis配合物比较表明,Ser127可以与Thr82形成替代氢键,从而破坏Ser-His催化二元体的形成。在N127S/E128H中引入T82A突变,提高了一阶速率常数(是N127S/E128H的6倍)。我们证实了在三突变体的Michaelis复合体中存在一个稳定的Ser-His氢键,它形成了His128的生产性互变异构体,作为酸催化剂。由于叠氮糖基可应用于click化学的聚糖生物偶联,因此酶辅助合成叠氮糖基可为糖生物学领域的研究做出贡献。
{"title":"Sugar Composition in Asparagus Spears and Its Relationship to Soil Chemical Properties.","authors":"Hideyuki Takahashi,&nbsp;Chiharu Yoshida,&nbsp;Takumi Takeda","doi":"10.5458/jag.jag.JAG-2018_0007","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2018_0007","url":null,"abstract":"<p><p>Glycoside hydrolases require carboxyl groups as catalysts for their activity. A retaining xylanase from <i>Streptomyces olivaceoviridis</i> E-86 belonging to glycoside hydrolase family 10 possesses Glu128 and Glu236 that respectively function as acid/base and nucleophile. We previously developed a unique mutant of the retaining xylanase, N127S/E128H, whose deglycosylation is triggered by azide. A crystallographic study reported that the transient formation of a Ser-His catalytic dyad in the reaction cycle possibly reduced the azidolysis reaction. In the present study, we engineered a catalytic dyad with enhanced stability by site-directed mutagenesis and crystallographic study of N127S/E128H. Comparison of the Michaelis complexes of N127S/E128H with pNP-X<sub>2</sub> and with xylopentaose showed that Ser127 could form an alternative hydrogen bond with Thr82, which disrupts the formation of the Ser-His catalytic dyad. The introduction of T82A mutation in N127S/E128H produces an enhanced first-order rate constant (6 times that of N127S/E128H). We confirmed the presence of a stable Ser-His hydrogen bond in the Michaelis complex of the triple mutant, which forms the productive tautomer of His128 that acts as an acid catalyst. Because the glycosyl azide is applicable in the bioconjugation of glycans by using click chemistry, the enzyme-assisted production of the glycosyl azide may contribute to the field of glycobiology.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2018_0007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Three Major Nucleotide Polymorphisms in the Waxy Gene Correlated with the Amounts of Extra-long Chains of Amylopectin in Rice Cultivars with S or L-type Amylopectin. 水稻S型和l型支链淀粉品种中蜡质基因的三个主要核苷酸多态性与支链淀粉超长链数量相关。
IF 1.1 Pub Date : 2019-02-20 eCollection Date: 2019-01-01 DOI: 10.5458/jag.jag.JAG-2018_005
Naoko Crofts, Ayaka Itoh, Misato Abe, Satoko Miura, Naoko F Oitome, Jinsong Bao, Naoko Fujita

Extra-long chains (ELC) of amylopectin in rice endosperm are synthesized by granule-bound starch synthase I encoded by the Waxy (Wx) gene, which primarily synthesizes amylose. Previous studies showed that single nucleotide polymorphisms (SNP) in intron 1 and exon 6 of the Wx gene influences ELC amount. However, whether these SNPs are conserved among rice cultivars and if any other SNPs are present in the Wx gene remained unknown. Here, we sequenced the Wx gene from 17 rice cultivars with S or L-type amylopectin, including those with known ELC content and those originating in China with unique starch properties, as well as typical japonica and indica cultivars. In addition to the two SNPs described above, an additional SNP correlating with ELC content was found in exon 10. Low ELC cultivars (<3.0 %) had thymine at the splicing donor site of intron 1, Tyr224 in exon 6, and Pro415 in exon 10. Cultivars with moderate ELC content (4.1-6.9 %) had guanine at the splicing donor site of intron 1, Ser224 in exon 6, and Pro415 in exon 10. Cultivars with high ELC content (7.7-13.9 %) had guanine at the splicing donor site of intron 1, Tyr224 in exon 6, and Ser415 in exon 10. The chain length distribution pattern of amylopectin was correlated with the amounts of SSIIa found in starch granules and gelatinization temperature, but not with ELC content. The combinations of SNPs in the Wx gene found in this study may provide useful information for screening specific cultivars with different ELC content.

水稻胚乳中支链淀粉的超长链(ELC)是由Waxy (Wx)基因编码的颗粒结合淀粉合成酶I合成的,该基因主要合成直链淀粉。以往的研究表明,Wx基因内含子1和外显子6的单核苷酸多态性(SNP)影响ELC的数量。然而,这些snp是否在水稻品种中保守,以及Wx基因中是否存在其他snp,目前尚不清楚。本研究对17个具有S型或l型支链淀粉的水稻品种的Wx基因进行了测序,其中包括已知ELC含量的水稻品种、中国原产的具有独特淀粉特性的水稻品种以及典型的粳稻和籼稻品种。除了上述两个SNP外,外显子10还发现了一个与ELC含量相关的SNP。本研究发现的低ELC品种(Wx基因)可为筛选不同ELC含量的特定品种提供有用信息。
{"title":"Three Major Nucleotide Polymorphisms in the <i>Waxy</i> Gene Correlated with the Amounts of Extra-long Chains of Amylopectin in Rice Cultivars with S or L-type Amylopectin.","authors":"Naoko Crofts,&nbsp;Ayaka Itoh,&nbsp;Misato Abe,&nbsp;Satoko Miura,&nbsp;Naoko F Oitome,&nbsp;Jinsong Bao,&nbsp;Naoko Fujita","doi":"10.5458/jag.jag.JAG-2018_005","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2018_005","url":null,"abstract":"<p><p>Extra-long chains (ELC) of amylopectin in rice endosperm are synthesized by granule-bound starch synthase I encoded by the <i>Waxy</i> (<i>Wx</i>) gene, which primarily synthesizes amylose. Previous studies showed that single nucleotide polymorphisms (SNP) in intron 1 and exon 6 of the <i>Wx</i> gene influences ELC amount. However, whether these SNPs are conserved among rice cultivars and if any other SNPs are present in the <i>Wx</i> gene remained unknown. Here, we sequenced the <i>Wx</i> gene from 17 rice cultivars with S or L-type amylopectin, including those with known ELC content and those originating in China with unique starch properties, as well as typical japonica and indica cultivars. In addition to the two SNPs described above, an additional SNP correlating with ELC content was found in exon 10. Low ELC cultivars (<3.0 %) had thymine at the splicing donor site of intron 1, Tyr224 in exon 6, and Pro415 in exon 10. Cultivars with moderate ELC content (4.1-6.9 %) had guanine at the splicing donor site of intron 1, Ser224 in exon 6, and Pro415 in exon 10. Cultivars with high ELC content (7.7-13.9 %) had guanine at the splicing donor site of intron 1, Tyr224 in exon 6, and Ser415 in exon 10. The chain length distribution pattern of amylopectin was correlated with the amounts of SSIIa found in starch granules and gelatinization temperature, but not with ELC content. The combinations of SNPs in the <i>Wx</i> gene found in this study may provide useful information for screening specific cultivars with different ELC content.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2018_005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Reusable Floating Beads with Immobilized Xylose-Fermenting Yeast Cells for Simultaneous Saccharification and Fermentation of Lime-Pretreated Rice Straw. 固定化木糖发酵酵母细胞的可重复使用浮珠在石灰预处理稻草糖化和发酵中的应用。
IF 1.1 Pub Date : 2019-02-20 eCollection Date: 2019-01-01 DOI: 10.5458/jag.jag.JAG-2018_0006
Di Guan, Rui Zhao, Yuan Li, Yoshikiyo Sakakibara, Masakazu Ike, Ken Tokuyasu

Novel bioreactor beads for simultaneous saccharification and fermentation (SSF) of lime-pretreated rice straw (RS) into ethanol were prepared. Genetically modified Saccharomyces cerevisiae cells expressing genes encoding xylose reductase, xylitol dehydrogenase, and xylulokinase were immobilized in calcium alginate beads containing inorganic lightweight filler particles to reduce specific gravity. For SSF experiments, the beads were floated in slurry composed of lime-pretreated RS and enzymes and incubated under CO2 atmosphere to reduce the pH for saccharification and fermentation. Following this reaction, beads were readily picked up from the upper part of the slurry and were directly transferred to the next vessel with slurry. After 240 h of incubation, ethanol production by the beads was equivalent to that by free cells, a trend that was repeated in nine additional runs, with slightly improved ethanol yields. Slurry with pre-saccharified lime-pretreated RS was subjected to SSF with floating beads for 168 h. Although higher cell concentrations in beads resulted in more rapid initial ethanol production rates, with negligible diauxic behavior for glucose and xylose utilization, no improvement in the ethanol yield was observed. A fermentor-scale SSF experiment with floating beads was successfully performed twice, with repeated use of the beads, resulting in the production of 40.0 and 39.7 g/L ethanol. There was no decomposition of the beads during agitation at 60 rpm. Thus, this bioreactor enables reuse of yeast cells for efficient ethanol production by SSF of lignocellulosic feedstock, without the need for instruments for centrifugation or filtration of whole slurry.

制备了一种新型生物反应器珠粒,用于石灰预处理稻秆(RS)同时糖化发酵(SSF)制乙醇。将表达木糖还原酶、木糖醇脱氢酶和木糖激酶基因的转基因酿酒酵母细胞固定在含有无机轻质填料颗粒的海藻酸钙珠中以降低比重。在SSF实验中,将微球漂浮在由石灰预处理的RS和酶组成的浆液中,在CO2气氛下培养以降低pH值进行糖化和发酵。在这个反应之后,珠子很容易从浆液的上部捡起,并直接转移到下一个有浆液的容器中。孵育240小时后,微球的乙醇产量与游离细胞的乙醇产量相当,这一趋势在另外9次运行中重复出现,乙醇产量略有提高。预糖化石灰预处理RS的浆体用浮珠进行SSF处理168小时。虽然浮珠中较高的细胞浓度导致更快的初始乙醇生产速率,对葡萄糖和木糖利用的双重氧化行为可以忽略不计,但没有观察到乙醇产量的提高。利用浮珠成功进行了两次发酵规模的SSF实验,反复使用浮珠,得到了40.0和39.7 g/L的乙醇。在60 rpm的搅拌过程中,珠粒没有分解。因此,这种生物反应器可以再利用酵母细胞,通过木质纤维素原料的SSF高效地生产乙醇,而不需要对整个浆料进行离心或过滤的仪器。
{"title":"Reusable Floating Beads with Immobilized Xylose-Fermenting Yeast Cells for Simultaneous Saccharification and Fermentation of Lime-Pretreated Rice Straw.","authors":"Di Guan,&nbsp;Rui Zhao,&nbsp;Yuan Li,&nbsp;Yoshikiyo Sakakibara,&nbsp;Masakazu Ike,&nbsp;Ken Tokuyasu","doi":"10.5458/jag.jag.JAG-2018_0006","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2018_0006","url":null,"abstract":"<p><p>Novel bioreactor beads for simultaneous saccharification and fermentation (SSF) of lime-pretreated rice straw (RS) into ethanol were prepared. Genetically modified <i>Saccharomyces</i> <i>cerevisiae</i> cells expressing genes encoding xylose reductase, xylitol dehydrogenase, and xylulokinase were immobilized in calcium alginate beads containing inorganic lightweight filler particles to reduce specific gravity. For SSF experiments, the beads were floated in slurry composed of lime-pretreated RS and enzymes and incubated under CO<sub>2</sub> atmosphere to reduce the pH for saccharification and fermentation. Following this reaction, beads were readily picked up from the upper part of the slurry and were directly transferred to the next vessel with slurry. After 240 h of incubation, ethanol production by the beads was equivalent to that by free cells, a trend that was repeated in nine additional runs, with slightly improved ethanol yields. Slurry with pre-saccharified lime-pretreated RS was subjected to SSF with floating beads for 168 h. Although higher cell concentrations in beads resulted in more rapid initial ethanol production rates, with negligible diauxic behavior for glucose and xylose utilization, no improvement in the ethanol yield was observed. A fermentor-scale SSF experiment with floating beads was successfully performed twice, with repeated use of the beads, resulting in the production of 40.0 and 39.7 g/L ethanol. There was no decomposition of the beads during agitation at 60 rpm. Thus, this bioreactor enables reuse of yeast cells for efficient ethanol production by SSF of lignocellulosic feedstock, without the need for instruments for centrifugation or filtration of whole slurry.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2018_0006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Washing Lime-Pretreated Rice Straw with Carbonated Water Facilitates Calcium Removal and Sugar Recovery in Subsequent Enzymatic Saccharification. 用碳酸水洗涤石灰预处理过的稻草有利于后续酶解糖化过程中钙的去除和糖的回收。
IF 1.1 Pub Date : 2019-01-20 eCollection Date: 2019-01-01 DOI: 10.5458/jag.jag.JAG-2018_0003
Kenji Yamagishi, Masakazu Ike, Di Guan, Ken Tokuyasu

Generally, Ca(OH)2 pretreatment of lignocellulosics for fermentable sugar recovery requires a subsequent washing step for calcium removal and pH control for optimized saccharification. However, washing Ca(OH)2-pretreated feedstock with water is considered problematic because of the low solubility of Ca(OH)2 and its adsorption to biomass. In this study, we estimated the availability of carbonated water for calcium removal from the slurry of Ca(OH)2-pretreated rice straw (RS). We tested two kinds of countercurrent washing sequences, four washings exclusively with water (W4) and two washings with water and subsequent two washings with carbonated water (W2C2). The ratios of calcium removal from pretreatment slurry after washing were 64.2 % for the W4 process and 92.1 % for the W2C2 process. In the W2C2 process, 49 % of the initially added calcium was recovered as CaO by calcination. In enzymatic saccharification tests under a CO2 atmosphere at 1.5 atm, in terms of recovery of both glucose and xylose, pretreated, feedstock washed through the W2C2 process surpassed that washed through the W4 process, which could be attributed to the pH difference during saccharification: 5.6 in the W2C2 process versus 6.3 in the W4 process. Additionally, under an unpressurized CO2 atmosphere at 1 atm, the feedstock washed through the W2C2 process released 78.5 % of total glucose residues and 90.0 % of total xylose residues. Thus, efficient removal of calcium from pretreatment slurry would lead to not only the recovery of added calcium but also the proposal of a new, simple saccharification system to be used under an unpressurized CO2 atmosphere condition.

通常,用于可发酵糖回收的木质纤维素的Ca(OH)2预处理需要随后的洗涤步骤以去除钙并控制pH以优化糖化。然而,用水洗涤Ca(OH)2预处理的原料被认为是有问题的,因为Ca(OH)2的溶解度低,它对生物质的吸附。在这项研究中,我们估计了从Ca(OH)2预处理稻秆(RS)浆中去除钙的碳酸水的可用性。我们测试了两种逆流洗涤顺序,四次纯水洗涤(W4)和两次纯水洗涤和随后的两次碳酸水洗涤(W2C2)。水洗后预处理浆中钙的去除率W4工艺为64.2%,W2C2工艺为92.1%。在W2C2工艺中,49%的初始添加钙通过煅烧回收为CaO。在1.5 atm CO2气氛下的酶解糖化试验中,经过W2C2工艺洗涤的预处理原料的葡萄糖和木糖的回收率超过了通过W4工艺洗涤的原料,这可能是由于糖化过程中的pH值差异:W2C2工艺为5.6,而W4工艺为6.3。此外,在1atm的无加压CO2气氛下,经W2C2工艺洗涤的原料释放出总葡萄糖残基的78.5%和总木糖残基的90.0%。因此,有效地去除预处理料浆中的钙不仅可以回收添加的钙,还可以提出一种新的、简单的糖化系统,该系统可以在无加压的CO2气氛条件下使用。
{"title":"Washing Lime-Pretreated Rice Straw with Carbonated Water Facilitates Calcium Removal and Sugar Recovery in Subsequent Enzymatic Saccharification.","authors":"Kenji Yamagishi,&nbsp;Masakazu Ike,&nbsp;Di Guan,&nbsp;Ken Tokuyasu","doi":"10.5458/jag.jag.JAG-2018_0003","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2018_0003","url":null,"abstract":"<p><p>Generally, Ca(OH)<sub>2</sub> pretreatment of lignocellulosics for fermentable sugar recovery requires a subsequent washing step for calcium removal and pH control for optimized saccharification. However, washing Ca(OH)<sub>2</sub>-pretreated feedstock with water is considered problematic because of the low solubility of Ca(OH)<sub>2</sub> and its adsorption to biomass. In this study, we estimated the availability of carbonated water for calcium removal from the slurry of Ca(OH)<sub>2</sub>-pretreated rice straw (RS). We tested two kinds of countercurrent washing sequences, four washings exclusively with water (W4) and two washings with water and subsequent two washings with carbonated water (W2C2). The ratios of calcium removal from pretreatment slurry after washing were 64.2 % for the W4 process and 92.1 % for the W2C2 process. In the W2C2 process, 49 % of the initially added calcium was recovered as CaO by calcination. In enzymatic saccharification tests under a CO<sub>2</sub> atmosphere at 1.5 atm, in terms of recovery of both glucose and xylose, pretreated, feedstock washed through the W2C2 process surpassed that washed through the W4 process, which could be attributed to the pH difference during saccharification: 5.6 in the W2C2 process <i>versus</i> 6.3 in the W4 process. Additionally, under an unpressurized CO<sub>2</sub> atmosphere at 1 atm, the feedstock washed through the W2C2 process released 78.5 % of total glucose residues and 90.0 % of total xylose residues. Thus, efficient removal of calcium from pretreatment slurry would lead to not only the recovery of added calcium but also the proposal of a new, simple saccharification system to be used under an unpressurized CO<sub>2</sub> atmosphere condition.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2018_0003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epimerization and Decomposition of Kojibiose and Sophorose by Heat Treatment under Neutral pH Conditions. 在中性 pH 值条件下通过热处理使高吉糖和槐糖发生外聚和分解。
IF 1.1 Pub Date : 2019-01-20 eCollection Date: 2019-01-01 DOI: 10.5458/jag.jag.JAG-2018_0002
Kazuhiro Chiku, Mami Wada, Haruka Atsuji, Arisa Hosonuma, Mitsuru Yoshida, Hiroshi Ono, Motomitsu Kitaoka

We evaluated the stabilities of kojibiose and sophorose when heated under neutral pH conditions. Kojibiose and sophorose epimerized at the C-2 position of glucose on the reducing end, resulting in the production of 2-O-α-D-glucopyranosyl-D-mannose and 2-O-β-D-glucopyranosyl-D-mannose, respectively. Under weak alkaline conditions, kojibiose was decomposed due to heating into its mono-dehydrated derivatives, including 3-deoxy-2,3-unsaturated compounds and bicyclic 3,6-anhydro compounds. Following these experiments, we propose a kinetic model for the epimerization and decomposition of kojibiose and sophorose by heat treatment under neutral pH and alkaline conditions. The proposed model shows a good fit with the experimental data collected in this study. The rate constants of a reversible epimerization of kojibiose at pH 7.5 and 90 °C were (1.6 ± 0.1) × 10-5 s-1 and (3.2 ± 0.2) × 10-5 s-1 for the forward and reverse reactions, respectively, and were almost identical to those [(1.5 ± 0.1) × 10-5 s-1 and (3.5 ± 0.4) × 10-5 s-1] of sophorose. The rate constant of the decomposition reaction for kojibiose was (4.7 ± 1.1) × 10-7 s-1 whereas that for sophorose [(3.7 ± 0.2) × 10-6 s-1] was about ten times higher. The epimerization reaction was not significantly affected by the variation in the buffer except for a borate buffer, and depended instead upon the pH value (concentration of hydroxide ions), indicating that epimerization occurred as a function of the hydroxide ion. These instabilities are an extension of the neutral pH conditions for keto-enol tautomerization that are often observed under strong alkaline conditions.

我们评估了柯吉糖和槐糖在中性 pH 条件下加热时的稳定性。高吉糖和槐糖在还原端葡萄糖的 C-2 位上发生了二聚反应,分别生成了 2-O-α-D-Glucopyranosyl-D-mannose 和 2-O-β-D-glucopyranosyl-D-mannose。在弱碱性条件下,高吉糖受热分解成单脱水衍生物,包括 3-脱氧-2,3-不饱和化合物和 3,6-双环脱水化合物。根据这些实验,我们提出了一个在中性 pH 值和碱性条件下热处理考基比奥糖和槐糖的表聚和分解动力学模型。所提出的模型与本研究收集的实验数据非常吻合。在 pH 值为 7.5、温度为 90 ℃ 的条件下,柯西比奥糖的正反应和逆反应的可逆表聚速率常数分别为 (1.6 ± 0.1) × 10-5 s-1 和 (3.2 ± 0.2) × 10-5 s-1,与槐糖的速率常数[(1.5 ± 0.1) × 10-5 s-1 和 (3.5 ± 0.4) × 10-5 s-1]几乎相同。高麦芽糖的分解反应速率常数为 (4.7 ± 1.1) × 10-7 s-1,而山梨糖的分解反应速率常数[(3.7 ± 0.2) × 10-6 s-1]高出约 10 倍。除硼酸盐缓冲液外,表聚反应受缓冲液变化的影响不大,而是取决于 pH 值(氢氧根离子的浓度),这表明表聚反应的发生是氢氧根离子的函数。这些不稳定性是在强碱性条件下经常观察到的酮烯醇共聚的中性 pH 条件的延伸。
{"title":"Epimerization and Decomposition of Kojibiose and Sophorose by Heat Treatment under Neutral pH Conditions.","authors":"Kazuhiro Chiku, Mami Wada, Haruka Atsuji, Arisa Hosonuma, Mitsuru Yoshida, Hiroshi Ono, Motomitsu Kitaoka","doi":"10.5458/jag.jag.JAG-2018_0002","DOIUrl":"10.5458/jag.jag.JAG-2018_0002","url":null,"abstract":"<p><p>We evaluated the stabilities of kojibiose and sophorose when heated under neutral pH conditions. Kojibiose and sophorose epimerized at the C-2 position of glucose on the reducing end, resulting in the production of 2-<i>O</i>-α-D-glucopyranosyl-D-mannose and 2-<i>O</i>-β-D-glucopyranosyl-D-mannose, respectively. Under weak alkaline conditions, kojibiose was decomposed due to heating into its mono-dehydrated derivatives, including 3-deoxy-2,3-unsaturated compounds and bicyclic 3,6-anhydro compounds. Following these experiments, we propose a kinetic model for the epimerization and decomposition of kojibiose and sophorose by heat treatment under neutral pH and alkaline conditions. The proposed model shows a good fit with the experimental data collected in this study. The rate constants of a reversible epimerization of kojibiose at pH 7.5 and 90 °C were (1.6 ± 0.1) × 10<sup>-5</sup> s<sup>-1</sup> and (3.2 ± 0.2) × 10<sup>-5</sup> s<sup>-1</sup> for the forward and reverse reactions, respectively, and were almost identical to those [(1.5 ± 0.1) × 10<sup>-5</sup> s<sup>-1</sup> and (3.5 ± 0.4) × 10<sup>-5</sup> s<sup>-1</sup>] of sophorose. The rate constant of the decomposition reaction for kojibiose was (4.7 ± 1.1) × 10<sup>-7</sup> s<sup>-1</sup> whereas that for sophorose [(3.7 ± 0.2) × 10<sup>-6</sup> s<sup>-1</sup>] was about ten times higher. The epimerization reaction was not significantly affected by the variation in the buffer except for a borate buffer, and depended instead upon the pH value (concentration of hydroxide ions), indicating that epimerization occurred as a function of the hydroxide ion. These instabilities are an extension of the neutral pH conditions for keto-enol tautomerization that are often observed under strong alkaline conditions.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2019-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c5/13/JAG-66-001.PMC8056910.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellulase Production of Trichoderma reesei (Hypocrea jecorina) by Continuously Fed Cultivation Using Sucrose as Primary Carbon Source. 以蔗糖为主要碳源连续栽培里氏木霉生产纤维素酶的研究。
IF 1.1 Pub Date : 2018-11-20 eCollection Date: 2018-01-01 DOI: 10.5458/jag.jag.JAG-2018_0005
Masakazu Ike, Ken Tokuyasu

To expand the range of soluble carbon sources for our enzyme production system, we investigated the properties of sucrose utilization and its effect on cellulase production by Trichoderma reesei M2-1. We performed batch cultivation of T. reesei M2-1 on sucrose and related sugars along with cellobiose, which was used as a cellulase inducer. The results clearly revealed that the hydrolysis products of sucrose, i.e. glucose and fructose, but not sucrose, can be used as a carbon source for enzyme production. In a 10-day continuous feeding experiment using invertase-treated sucrose/cellobiose, the fungal strain produced cellulases with a filter paper-degrading activity of 20.3 U/mL and production efficiency of 254 U/g-carbon sources. These values were comparable with those of glucose/cellobiose feeding (21.2 U/mL and 265 U/g-carbon sources, respectively). Furthermore, the comparison of the specific activities clearly indicated that the compositions of both produced enzymes were similar. Therefore, enzymatically hydrolyzed sucrose can be utilized as an alternative carbon source to glucose in our enzyme production system with T. reesei M2-1.

为了扩大我们的酶生产系统的可溶性碳源范围,我们研究了里氏木霉M2-1利用蔗糖的特性及其对纤维素酶生产的影响。利用纤维素二糖作为纤维素酶诱导剂,在蔗糖及相关糖和纤维素二糖上进行了分批培养T. reesei M2-1。结果清楚地表明,蔗糖的水解产物,即葡萄糖和果糖,而不是蔗糖,可以作为酶生产的碳源。在10 d的蔗糖/纤维素二糖连续饲养试验中,该真菌菌株产生的纤维素酶降解滤纸活性为20.3 U/mL,碳源生产效率为254 U/g。这些数值与葡萄糖/纤维素二糖饲喂(分别为21.2 U/mL和265 U/g碳源)相当。此外,比活性的比较清楚地表明,两种酶的组成相似。因此,酶解蔗糖可以作为葡萄糖的替代碳源,在我们的T. reesei M2-1酶生产系统中使用。
{"title":"Cellulase Production of <i>Trichoderma reesei</i> (<i>Hypocrea jecorina</i>) by Continuously Fed Cultivation Using Sucrose as Primary Carbon Source.","authors":"Masakazu Ike,&nbsp;Ken Tokuyasu","doi":"10.5458/jag.jag.JAG-2018_0005","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2018_0005","url":null,"abstract":"<p><p>To expand the range of soluble carbon sources for our enzyme production system, we investigated the properties of sucrose utilization and its effect on cellulase production by <i>Trichoderma reesei</i> M2-1. We performed batch cultivation of <i>T. reesei</i> M2-1 on sucrose and related sugars along with cellobiose, which was used as a cellulase inducer. The results clearly revealed that the hydrolysis products of sucrose, <i>i.e.</i> glucose and fructose, but not sucrose, can be used as a carbon source for enzyme production. In a 10-day continuous feeding experiment using invertase-treated sucrose/cellobiose, the fungal strain produced cellulases with a filter paper-degrading activity of 20.3 U/mL and production efficiency of 254 U/g-carbon sources. These values were comparable with those of glucose/cellobiose feeding (21.2 U/mL and 265 U/g-carbon sources, respectively). Furthermore, the comparison of the specific activities clearly indicated that the compositions of both produced enzymes were similar. Therefore, enzymatically hydrolyzed sucrose can be utilized as an alternative carbon source to glucose in our enzyme production system with <i>T. reesei</i> M2-1.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/30/ad/JAG-65-051.PMC8056898.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Preparation of a Molecular Library of Branched β-Glucan Oligosaccharides Derived from Laminarin. 层粘胶蛋白衍生的支链β-葡聚糖低聚糖分子文库的制备。
IF 1.1 Pub Date : 2018-11-20 eCollection Date: 2018-01-01 DOI: 10.5458/jag.jag.JAG-2018_004
Shunji Natsuka, Aki Tachibana, Wataru Sumiyoshi, Shin-Ichi Nakakita, Noriko Suzuki

To study the structure of β-glucans, we developed a separation method and molecular library of β-glucan oligosaccharides. The oligosaccharides were prepared by partial acid hydrolysis from laminarin, which is a β-glucan of Laminaria digitata. They were labeled with the 2-aminopyridine fluorophore and separated to homogeneity by size-fractionation and reversed phase high-performance liquid chromatography (HPLC). Branching structures of all isomeric oligosaccharides from trimers to pentamers were determined, and a two-dimensional (2D)-HPLC map of the β-glucan oligosaccharides was made based on the data. Next, structural analysis of the longer β-glucan oligosaccharide was performed using the 2D-HPLC map. A branched decamer oligosaccharide was isolated from the β-glucan and cleaved to smaller oligosaccharides by partial acid hydrolysis. The structure of the longer oligosaccharide was successfully elucidated from the fragment structures determined by the 2D-HPLC map. The molecular library and the 2D-HPLC map described in this study will be useful for the structural analysis of β-glucans.

为了研究β-葡聚糖的结构,我们建立了β-葡聚糖低聚糖的分离方法和分子文库。以海带的β-葡聚糖海带素为原料,采用部分酸水解法制备低聚糖。用2-氨基吡啶荧光基团标记,采用粒径分馏法和反相高效液相色谱(HPLC)分离均匀。测定了从三聚体到五聚体的所有同分异构体低聚糖的分支结构,并根据这些数据绘制了β-葡聚糖低聚糖的二维(2D) hplc图谱。接下来,使用2D-HPLC图谱对长β-葡聚糖低聚糖进行结构分析。从β-葡聚糖中分离出一个支链十聚体低聚糖,并通过部分酸水解裂解成更小的低聚糖。通过二维高效液相色谱图谱确定的片段结构,成功地阐明了较长低聚糖的结构。本研究建立的分子文库和2D-HPLC图谱将有助于β-葡聚糖的结构分析。
{"title":"Preparation of a Molecular Library of Branched β-Glucan Oligosaccharides Derived from Laminarin.","authors":"Shunji Natsuka,&nbsp;Aki Tachibana,&nbsp;Wataru Sumiyoshi,&nbsp;Shin-Ichi Nakakita,&nbsp;Noriko Suzuki","doi":"10.5458/jag.jag.JAG-2018_004","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2018_004","url":null,"abstract":"<p><p>To study the structure of β-glucans, we developed a separation method and molecular library of β-glucan oligosaccharides. The oligosaccharides were prepared by partial acid hydrolysis from laminarin, which is a β-glucan of <i>Laminaria digitata</i>. They were labeled with the 2-aminopyridine fluorophore and separated to homogeneity by size-fractionation and reversed phase high-performance liquid chromatography (HPLC). Branching structures of all isomeric oligosaccharides from trimers to pentamers were determined, and a two-dimensional (2D)-HPLC map of the β-glucan oligosaccharides was made based on the data. Next, structural analysis of the longer β-glucan oligosaccharide was performed using the 2D-HPLC map. A branched decamer oligosaccharide was isolated from the β-glucan and cleaved to smaller oligosaccharides by partial acid hydrolysis. The structure of the longer oligosaccharide was successfully elucidated from the fragment structures determined by the 2D-HPLC map. The molecular library and the 2D-HPLC map described in this study will be useful for the structural analysis of β-glucans.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2018_004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39280255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Molecular Design and Synthesis of a Novel Substrate for Assaying Lysozyme Activity. 检测溶菌酶活性的新型底物的分子设计与合成
IF 1.1 Pub Date : 2018-08-20 eCollection Date: 2018-01-01 DOI: 10.5458/jag.jag.JAG-2018_003
Megumi Matsui, Haruka Kono, Makoto Ogata

A novel substrate {Galβ1,4GlcNAcβ1,4GlcNAc-β-pNP [Gal(GlcNAc)2-β-pNP]} for assaying lysozyme activity has been designed using docking simulations and enzymatic synthesis via β-1,4-galactosyltransferase-mediated transglycosylation from UDP-Gal as the donor to (GlcNAc)2-β-pNP as the acceptor. Hydrolysis of the synthesized Gal(GlcNAc)2-β-pNP and related compounds using hen egg-white lysozyme (HEWL) demonstrated that the substrate was specifically cleaved to Gal(GlcNAc)2 and p-nitrophenol (pNP). A combination of kinetic studies and docking simulation was further conducted to elucidate the mode of substrate binding. The results demonstrate that Gal(GlcNAc)2-β-pNP selectively binds to a subsite of lysozyme to liberate the Gal(GlcNAc)2 and pNP products. The work therefore describes a new colorimetric method for quantifying lysozyme on the basis of the determination of pNP liberated from the substrate.

通过对接模拟设计了一种用于检测溶菌酶活性的新型底物 {Galβ1,4GlcNAcβ1,4GlcNAc-β-pNP [Gal(GlcNAc)2-β-pNP]},并通过β-1,4-半乳糖基转移酶介导的转糖基化将 UDP-Gal 作为供体与 (GlcNAc)2-β-pNP 作为受体进行酶法合成。用母鸡卵白溶菌酶(HEWL)水解合成的Gal(GlcNAc)2-β-pNP和相关化合物的结果表明,底物被特异性地裂解为Gal(GlcNAc)2和对硝基苯酚(pNP)。为了阐明底物的结合模式,研究人员进一步将动力学研究和对接模拟相结合。结果表明,Gal(GlcNAc)2-β-pNP 可选择性地与溶菌酶的一个位点结合,从而释放出 Gal(GlcNAc)2 和 pNP 产物。因此,该研究描述了一种新的比色法,可根据从底物中释放出的 pNP 的测定结果对溶菌酶进行定量。
{"title":"Molecular Design and Synthesis of a Novel Substrate for Assaying Lysozyme Activity.","authors":"Megumi Matsui, Haruka Kono, Makoto Ogata","doi":"10.5458/jag.jag.JAG-2018_003","DOIUrl":"10.5458/jag.jag.JAG-2018_003","url":null,"abstract":"<p><p>A novel substrate {Galβ1,4GlcNAcβ1,4GlcNAc-β-<i>p</i>NP [Gal(GlcNAc)<sub>2</sub>-β-<i>p</i>NP]} for assaying lysozyme activity has been designed using docking simulations and enzymatic synthesis via β-1,4-galactosyltransferase-mediated transglycosylation from UDP-Gal as the donor to (GlcNAc)<sub>2</sub>-β-<i>p</i>NP as the acceptor. Hydrolysis of the synthesized Gal(GlcNAc)<sub>2</sub>-β-<i>p</i>NP and related compounds using hen egg-white lysozyme (HEWL) demonstrated that the substrate was specifically cleaved to Gal(GlcNAc)<sub>2</sub> and <i>p</i>-nitrophenol (<i>p</i>NP). A combination of kinetic studies and docking simulation was further conducted to elucidate the mode of substrate binding. The results demonstrate that Gal(GlcNAc)<sub>2</sub>-β-<i>p</i>NP selectively binds to a subsite of lysozyme to liberate the Gal(GlcNAc)<sub>2</sub> and <i>p</i>NP products. The work therefore describes a new colorimetric method for quantifying lysozyme on the basis of the determination of <i>p</i>NP liberated from the substrate.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2018-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/bf/a7/JAG-65-031.PMC8056892.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39279800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glucosamine Extends the Lifespan of Caenorhabditis elegans via Autophagy Induction. 葡萄糖胺通过诱导自噬延长秀丽隐杆线虫的寿命。
IF 1.1 Pub Date : 2018-08-20 eCollection Date: 2018-01-01 DOI: 10.5458/jag.jag.JAG-2018_002
Tomoya Shintani, Yuhei Kosuge, Hisashi Ashida

Glucosamine (GlcN) is commonly used as a dietary supplement to promote cartilage health in humans. We previously reported that GlcN could induce autophagy in cultured mammalian cells. Autophagy is known to be involved in the prevention of various diseases and aging. Here, we showed that GlcN extended the lifespan of the nematode Caenorhabditis elegans by inducing autophagy. Autophagy induction by GlcN was demonstrated by western blotting for LGG-1 (an ortholog of mammalian LC3) and by detecting autophagosomal dots in seam cells by fluorescence microscopy. Lifespan assays revealed that GlcN-induced lifespan extension was achieved with at least 5 mM GlcN. A maximum lifespan extension of approximately 30 % was achieved with 20 mM GlcN (p<0.0001). GlcN-induced lifespan extension was not dependent on the longevity genes daf-16 and sir-2.1 but dependent on the autophagy-essential gene atg-18. Therefore, we suggest that oral administration of GlcN could help delay the aging process via autophagy induction.

葡萄糖胺(GlcN)通常被用作促进人类软骨健康的膳食补充剂。我们之前报道过GlcN可以诱导培养的哺乳动物细胞自噬。自噬被认为参与预防各种疾病和衰老。在这里,我们发现GlcN通过诱导自噬来延长秀丽隐杆线虫的寿命。GlcN诱导自噬通过lcg -1(哺乳动物LC3的同源物)的western blotting和荧光显微镜检测缝细胞中的自噬体点证实。寿命分析显示,至少5 mM的GlcN可以延长GlcN诱导的寿命。使用20 mM GlcN (pdaf-16和sir-2.1)可最大延长约30%的寿命,但依赖于自噬必需基因atg-18。因此,我们认为口服GlcN可以通过诱导自噬来延缓衰老过程。
{"title":"Glucosamine Extends the Lifespan of <i>Caenorhabditis elegans</i> via Autophagy Induction.","authors":"Tomoya Shintani,&nbsp;Yuhei Kosuge,&nbsp;Hisashi Ashida","doi":"10.5458/jag.jag.JAG-2018_002","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2018_002","url":null,"abstract":"<p><p>Glucosamine (GlcN) is commonly used as a dietary supplement to promote cartilage health in humans. We previously reported that GlcN could induce autophagy in cultured mammalian cells. Autophagy is known to be involved in the prevention of various diseases and aging. Here, we showed that GlcN extended the lifespan of the nematode <i>Caenorhabditis elegans</i> by inducing autophagy. Autophagy induction by GlcN was demonstrated by western blotting for LGG-1 (an ortholog of mammalian LC3) and by detecting autophagosomal dots in seam cells by fluorescence microscopy. Lifespan assays revealed that GlcN-induced lifespan extension was achieved with at least 5 mM GlcN. A maximum lifespan extension of approximately 30 % was achieved with 20 mM GlcN (<i>p</i><0.0001). GlcN-induced lifespan extension was not dependent on the longevity genes <i>daf-16</i> and <i>sir-2.1</i> but dependent on the autophagy-essential gene <i>atg-18</i>. Therefore, we suggest that oral administration of GlcN could help delay the aging process via autophagy induction.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2018-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2018_002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39279801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
期刊
Journal of applied glycoscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1