Pub Date : 2024-02-20eCollection Date: 2025-01-01DOI: 10.5458/jag.7201301
Yoshihisa Yoshimi, Theodora Tryfona, Paul Dupree
Different forms of plant biomass have been utilised for various applications in daily life and have gained increasing attention as replacements for fossil fuel-based products in the pursuit of a sustainable society. Plant cell walls, the primary carbon sink of plant biomass, have a high-order polysaccharide architecture consisting of cellulose, hemicelluloses, pectins, lignin and some proteins. Hemicelluloses are a group of polysaccharides that interact with cellulose, which is fundamental to the different properties and functionality of the plant cell walls. However, for industrial applications, the complex polysaccharide architecture poses a barrier to their efficient use. Understanding the molecular basis of plant cell walls - especially cellulose-hemicellulose interactions - is therefore critical to improving the utilisation of plant biomass. Recent research has revealed that the detailed structures, modification patterns, and conformation of hemicelluloses play an influential role in their interaction with cellulose. In this review, we discuss the latest insights into hemicelluloses across different forms of plant biomass and how their structures affect cell wall assembly. Additionally, we explore recent findings on how alterations in hemicellulose structure and modification patterns affect the usability of plant biomass, including the extractability of polysaccharides and the digestibility of biomass by glycoside hydrolases for biofuel production. Furthermore, we address unsolved questions in the field and propose future strategies to maximize the potential of plant biomass.
{"title":"Structure, Modification Pattern, and Conformation of Hemicellulose in Plant Biomass.","authors":"Yoshihisa Yoshimi, Theodora Tryfona, Paul Dupree","doi":"10.5458/jag.7201301","DOIUrl":"10.5458/jag.7201301","url":null,"abstract":"<p><p>Different forms of plant biomass have been utilised for various applications in daily life and have gained increasing attention as replacements for fossil fuel-based products in the pursuit of a sustainable society. Plant cell walls, the primary carbon sink of plant biomass, have a high-order polysaccharide architecture consisting of cellulose, hemicelluloses, pectins, lignin and some proteins. Hemicelluloses are a group of polysaccharides that interact with cellulose, which is fundamental to the different properties and functionality of the plant cell walls. However, for industrial applications, the complex polysaccharide architecture poses a barrier to their efficient use. Understanding the molecular basis of plant cell walls - especially cellulose-hemicellulose interactions - is therefore critical to improving the utilisation of plant biomass. Recent research has revealed that the detailed structures, modification patterns, and conformation of hemicelluloses play an influential role in their interaction with cellulose. In this review, we discuss the latest insights into hemicelluloses across different forms of plant biomass and how their structures affect cell wall assembly. Additionally, we explore recent findings on how alterations in hemicellulose structure and modification patterns affect the usability of plant biomass, including the extractability of polysaccharides and the digestibility of biomass by glycoside hydrolases for biofuel production. Furthermore, we address unsolved questions in the field and propose future strategies to maximize the potential of plant biomass.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"72 1","pages":"7201301"},"PeriodicalIF":1.2,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11975222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143811507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
α-Xylosidase releases xylopyranosyl side chains from xyloglucan oligosaccharides and is vital for xyloglucan degradation. Previously, we identified and characterized two α-xylosidases, intracellular AxyA and extracellular AxyB, in Aspergillus oryzae. In this study, we identified a third α-xylosidase, termed AxyC, in A. oryzae. These three A. oryzae α-xylosidases belong to the glycoside hydrolase family 31, but there are clear differences in substrate specificity. Both AxyA and AxyB showed much higher hydrolytic activity toward isoprimeverose (α-D-xylopyranosyl-1,6-glucose) than p-nitrophenyl α-D-xylopyranoside. In contrast, the specific activity of AxyC toward the p-nitrophenyl substrate was approximately 950-fold higher than that toward isoprimeverose. Our study revealed that there are multiple α-xylosidases with different substrate specificities in A. oryzae.
α-木糖苷酶从低聚木葡聚糖中释放木吡喃基侧链,对木葡聚糖的降解至关重要。此前,我们鉴定并鉴定了米曲霉胞内AxyA和胞外AxyB两种α-木糖苷酶。在这项研究中,我们鉴定出了第三种α-木糖苷酶,命名为AxyC。这三种米霉α-木糖苷酶同属糖苷水解酶家族31,但在底物特异性上存在明显差异。AxyA和AxyB对异戊糖(α- d -木pyranoyl -1,6-葡萄糖)的水解活性明显高于对硝基苯α- d -木pyranoside。相比之下,AxyC对对硝基苯底物的比活性比异戊糖高约950倍。我们的研究表明,稻瘟病菌中存在多种具有不同底物特异性的α-木糖苷酶。
{"title":"Identification and characterization of novel intracellular α-xylosidase in <i>Aspergillus oryzae</i>","authors":"Tomohiko Matsuzawa, Yusuke Nakamichi, Naoki Shimada","doi":"10.5458/jag.jag.jag-2023_0007","DOIUrl":"https://doi.org/10.5458/jag.jag.jag-2023_0007","url":null,"abstract":"α-Xylosidase releases xylopyranosyl side chains from xyloglucan oligosaccharides and is vital for xyloglucan degradation. Previously, we identified and characterized two α-xylosidases, intracellular AxyA and extracellular AxyB, in Aspergillus oryzae. In this study, we identified a third α-xylosidase, termed AxyC, in A. oryzae. These three A. oryzae α-xylosidases belong to the glycoside hydrolase family 31, but there are clear differences in substrate specificity. Both AxyA and AxyB showed much higher hydrolytic activity toward isoprimeverose (α-D-xylopyranosyl-1,6-glucose) than p-nitrophenyl α-D-xylopyranoside. In contrast, the specific activity of AxyC toward the p-nitrophenyl substrate was approximately 950-fold higher than that toward isoprimeverose. Our study revealed that there are multiple α-xylosidases with different substrate specificities in A. oryzae.","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135098727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.5458/jag.jag.JAG-2022_0011
Daichi Ito, Shuichi Karita, Midori Umekawa
Lytic polysaccharide monooxygenases (LPMO) are key enzymes for the efficient degradation of lignocellulose biomass with cellulases. A lignocellulose-degradative strain, Paenibacillus xylaniclasticus TW1, has LPMO-encoding PxAA10A gene. Neither the C1/C4-oxidizing selectivity nor the enzyme activity of PxAA10A has ever been characterized. In this study, the C1/C4-oxidizing selectivity of PxAA10A and the boosting effect for cellulose degradation with a cellulase cocktail were investigated. The full-length PxAA10A (rPxAA10A) and the catalytic domain (rPxAA10A-CD) were heterologously expressed in Escherichia coli and purified. To identify the C1/C4-oxidizing selectivity of PxAA10A, cellohexaose was used as a substrate with the use of rPxAA10A-CD, and the products were analyzed by MALDI-TOF/MS. As a result, aldonic acid cellotetraose and cellotetraose, the products from C1-oxidization and C4-oxidization, respectively, were detected. These results indicate that PxAA10A is a C1/C4-oxidizing LPMO. It was also found that the addition of rPxAA10A into a cellulase cocktail enhanced the cellulose-degradation efficiency.
{"title":"A C1/C4-Oxidizing AA10 Lytic Polysaccharide Monooxygenase from <i>Paenibacillus xylaniclasticus</i> Strain TW1.","authors":"Daichi Ito, Shuichi Karita, Midori Umekawa","doi":"10.5458/jag.jag.JAG-2022_0011","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2022_0011","url":null,"abstract":"<p><p>Lytic polysaccharide monooxygenases (LPMO) are key enzymes for the efficient degradation of lignocellulose biomass with cellulases. A lignocellulose-degradative strain, <i>Paenibacillus xylaniclasticus</i> TW1, has LPMO-encoding <i>Px</i>AA10A gene. Neither the C1/C4-oxidizing selectivity nor the enzyme activity of <i>Px</i>AA10A has ever been characterized. In this study, the C1/C4-oxidizing selectivity of <i>Px</i>AA10A and the boosting effect for cellulose degradation with a cellulase cocktail were investigated. The full-length <i>Px</i>AA10A (r<i>Px</i>AA10A) and the catalytic domain (r<i>Px</i>AA10A-CD) were heterologously expressed in <i>Escherichia coli</i> and purified. To identify the C1/C4-oxidizing selectivity of <i>Px</i>AA10A, cellohexaose was used as a substrate with the use of r<i>Px</i>AA10A-CD, and the products were analyzed by MALDI-TOF/MS. As a result, aldonic acid cellotetraose and cellotetraose, the products from C1-oxidization and C4-oxidization, respectively, were detected. These results indicate that <i>Px</i>AA10A is a C1/C4-oxidizing LPMO. It was also found that the addition of r<i>Px</i>AA10A into a cellulase cocktail enhanced the cellulose-degradation efficiency.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"70 1","pages":"39-42"},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a3/4f/70_jag.JAG-2022_0011.PMC10074029.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9272436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dextran α-1,2-debranching enzyme (DDE) releases glucose with hydrolyzing α-(1→2)-glucosidic linkages in α-glucans, which are made up of dextran with α-(1→2)-branches and are generated by Leuconostoc bacteria. DDE was isolated from Microbacterium dextranolyticum (formerly known as Flavobacterium sp. M-73) 40 years ago, although the amino acid sequence of the enzyme has not been determined. Herein, we found a gene for this enzyme based on the partial amino acid sequences from native DDE and characterized the recombinant enzyme. DDE had a signal peptide, a glycoside hydrolase family 65 domain, a carbohydrate-binding module family 35 domain, a domain (D-domain) similar to the C-terminal domain of Arthrobacter globiformis glucodextranase, and a transmembrane region at the C-terminus. Recombinant DDE released glucose from α-(1→2)-branched α-glucans produced by Leuconostoc citreum strains B-1299, S-32, and S-64 and showed weak hydrolytic activity with kojibiose and kojitriose. No activity was detected for commercial dextran and Leuconostoc citreum B-1355 α-glucan, which do not contain α-(1→2)-linkages. The removal of the D-domain decreased the affinity for α-(1→2)-branched α-glucans but not for kojioligosaccharides, suggesting that D-domain plays a role in α-glucan binding. Genes for putative dextranases, oligo-1,6-glucosidase, sugar-binding protein, and permease were present in the vicinity of the DDE gene, and as a result these gene products may be necessary for the use of α-(1→2)-branched glucans. Our findings shed new light on how actinobacteria utilize polysaccharides produced by lactic acid bacteria.
{"title":"Identification and Characterization of Dextran α-1,2-Debranching Enzyme from <i>Microbacterium dextranolyticum</i>.","authors":"Takatsugu Miyazaki, Hidekazu Tanaka, Shuntaro Nakamura, Hideo Dohra, Kazumi Funane","doi":"10.5458/jag.jag.JAG-2022_0013","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2022_0013","url":null,"abstract":"<p><p>Dextran α-1,2-debranching enzyme (DDE) releases glucose with hydrolyzing α-(1→2)-glucosidic linkages in α-glucans, which are made up of dextran with α-(1→2)-branches and are generated by <i>Leuconostoc</i> bacteria. DDE was isolated from <i>Microbacterium dextranolyticum</i> (formerly known as <i>Flavobacterium</i> sp. M-73) 40 years ago, although the amino acid sequence of the enzyme has not been determined. Herein, we found a gene for this enzyme based on the partial amino acid sequences from native DDE and characterized the recombinant enzyme. DDE had a signal peptide, a glycoside hydrolase family 65 domain, a carbohydrate-binding module family 35 domain, a domain (D-domain) similar to the C-terminal domain of <i>Arthrobacter globiformis</i> glucodextranase, and a transmembrane region at the C-terminus. Recombinant DDE released glucose from α-(1→2)-branched α-glucans produced by <i>Leuconostoc citreum</i> strains B-1299, S-32, and S-64 and showed weak hydrolytic activity with kojibiose and kojitriose. No activity was detected for commercial dextran and <i>Leuconostoc citreum</i> B-1355 α-glucan, which do not contain α-(1→2)-linkages. The removal of the D-domain decreased the affinity for α-(1→2)-branched α-glucans but not for kojioligosaccharides, suggesting that D-domain plays a role in α-glucan binding. Genes for putative dextranases, oligo-1,6-glucosidase, sugar-binding protein, and permease were present in the vicinity of the DDE gene, and as a result these gene products may be necessary for the use of α-(1→2)-branched glucans. Our findings shed new light on how actinobacteria utilize polysaccharides produced by lactic acid bacteria.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"70 1","pages":"15-24"},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/3b/70_jag.JAG-2022_0013.PMC10074034.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9272442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.5458/jag.jag.JAG-2022_0014
Wataru Saburi, Tomoya Ota, Koji Kato, Takayoshi Tagami, Keitaro Yamashita, Min Yao, Haruhide Mori
β-Galactosidase (EC 3.2.1.23) hydrolyzes β-D-galactosidic linkages at the non-reducing end of substrates to produce β-D-galactose. Lacticaseibacillus casei is one of the most widely utilized probiotic species of lactobacilli. It possesses a putative β-galactosidase belonging to glycoside hydrolase family 35 (GH35). This enzyme is encoded by the gene included in the gene cluster for utilization of lacto-N-biose I (LNB; Galβ1-3GlcNAc) and galacto-N-biose (GNB; Galβ1-3GalNAc) via the phosphoenolpyruvate: sugar phosphotransferase system. The GH35 protein (GnbG) from L. casei BL23 is predicted to be 6-phospho-β-galactosidase (EC 3.2.1.85). However, its 6-phospho-β-galactosidase activity has not yet been examined, whereas its hydrolytic activity against LNB and GNB has been demonstrated. In this study, L. casei JCM1134 LBCZ_0230, homologous to GnbG, was characterized enzymatically and structurally. A recombinant LBCZ_0230, produced in Escherichia coli, exhibited high hydrolytic activity toward o-nitrophenyl β-D-galactopyranoside, p-nitrophenyl β-D-galactopyranoside, LNB, and GNB, but not toward o-nitrophenyl 6-phospho-β-D-galactopyranoside. Crystal structure analysis indicates that the structure of subsite -1 of LBCZ_0230 is very similar to that of Streptococcus pneumoniae β-galactosidase BgaC and not suitable for binding to 6-phospho-β-D-galactopyranoside. These biochemical and structural analyses indicate that LBCZ_0230 is a β-galactosidase. According to the prediction of LNB's binding mode, aromatic residues, Trp190, Trp240, Trp243, Phe244, and Tyr458, form hydrophobic interactions with N-acetyl-D-glucosamine residue of LNB at subsite +1.
β-半乳糖苷酶(EC 3.2.1.23)水解底物非还原端β- d -半乳糖键生成β- d -半乳糖。干酪乳杆菌是乳酸菌中应用最广泛的益生菌之一。它具有一种推定的β-半乳糖苷酶,属于糖苷水解酶家族35 (GH35)。该酶由利用乳酸- n -二糖I (LNB;半乳糖β1- 3glcnac和半乳糖- n -二糖(GNB;Galβ1-3GalNAc)通过磷酸烯醇丙酮酸:糖磷酸转移酶系统。预测干酪乳杆菌BL23的GH35蛋白(GnbG)为6-磷酸-β-半乳糖苷酶(EC 3.2.1.85)。然而,其6-磷酸-β-半乳糖苷酶活性尚未被检测,而其对LNB和GNB的水解活性已被证实。本研究对与GnbG同源的干酪乳杆菌JCM1134 LBCZ_0230进行了酶学和结构鉴定。重组菌株LBCZ_0230对邻硝基苯基β- d -半乳糖苷、对硝基苯基β- d -半乳糖苷、LNB和GNB具有较高的水解活性,但对邻硝基苯基6-磷酸-β- d -半乳糖苷无水解活性。晶体结构分析表明,LBCZ_0230亚位-1的结构与肺炎链球菌β-半乳糖苷酶BgaC非常相似,不适合与6-磷酸-β- d -半乳糖苷结合。这些生化和结构分析表明LBCZ_0230是一种β-半乳糖苷酶。根据LNB结合模式的预测,芳香残基Trp190、Trp240、Trp243、Phe244、Tyr458与LNB的n -乙酰- d -氨基葡萄糖残基在亚位+1处形成疏水相互作用。
{"title":"Function and Structure of <i>Lacticaseibacillus casei</i> GH35 β-Galactosidase LBCZ_0230 with High Hydrolytic Activity to Lacto-<i>N</i>-biose I and Galacto-<i>N</i>-biose.","authors":"Wataru Saburi, Tomoya Ota, Koji Kato, Takayoshi Tagami, Keitaro Yamashita, Min Yao, Haruhide Mori","doi":"10.5458/jag.jag.JAG-2022_0014","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2022_0014","url":null,"abstract":"<p><p>β-Galactosidase (EC 3.2.1.23) hydrolyzes β-D-galactosidic linkages at the non-reducing end of substrates to produce β-D-galactose. <i>Lacticaseibacillus casei</i> is one of the most widely utilized probiotic species of lactobacilli. It possesses a putative β-galactosidase belonging to glycoside hydrolase family 35 (GH35). This enzyme is encoded by the gene included in the gene cluster for utilization of lacto-<i>N</i>-biose I (LNB; Galβ1-3GlcNAc) and galacto-<i>N</i>-biose (GNB; Galβ1-3GalNAc) <i>via</i> the phosphoenolpyruvate: sugar phosphotransferase system. The GH35 protein (GnbG) from <i>L. casei</i> BL23 is predicted to be 6-phospho-β-galactosidase (EC 3.2.1.85). However, its 6-phospho-β-galactosidase activity has not yet been examined, whereas its hydrolytic activity against LNB and GNB has been demonstrated. In this study, <i>L. casei</i> JCM1134 LBCZ_0230, homologous to GnbG, was characterized enzymatically and structurally. A recombinant LBCZ_0230, produced in <i>Escherichia coli</i>, exhibited high hydrolytic activity toward <i>o</i>-nitrophenyl β-D-galactopyranoside, <i>p</i>-nitrophenyl β-D-galactopyranoside, LNB, and GNB, but not toward <i>o</i>-nitrophenyl 6-phospho-β-D-galactopyranoside. Crystal structure analysis indicates that the structure of subsite -1 of LBCZ_0230 is very similar to that of <i>Streptococcus pneumoniae</i> β-galactosidase BgaC and not suitable for binding to 6-phospho-β-D-galactopyranoside. These biochemical and structural analyses indicate that LBCZ_0230 is a β-galactosidase. According to the prediction of LNB's binding mode, aromatic residues, Trp190, Trp240, Trp243, Phe244, and Tyr458, form hydrophobic interactions with <i>N</i>-acetyl-D-glucosamine residue of LNB at subsite +1.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"70 2","pages":"43-52"},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/39/70_jag.JAG-2022_0014.PMC10432377.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10404620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.5458/jag.jag.JAG-2023_0001
Yuki Yoshitomi, Kiyoshi Kawai
The purpose of this study was to understand the effect of relative humidity (RH) on amylose-lipid complex (ALC) formation in amylose-lauric acid blend powder held at 50 °C (temperature slightly higher than the melting point of lauric acid) using differential scanning calorimetry (DSC) and X-ray diffraction. From DSC curves, the melting of crystalized lauric acid and two melting peaks of ALC were observed depending on RH. ALC formation was confirmed by X-ray diffraction pattern. The melting enthalpy (∆Hm) of lauric acid in the sample held at RH 0 % was lower than that of lauric acid only though there was no ALC formation. This suggests that crystallization of lauric acid was prevented by amylose. The ∆Hm of lauric acid increased with an increase in RH up to 79.0 % because liquid lauric acid would have fused as the result of enhanced repulsive force between liquid lauric acid and hydrated amylose. The ∆Hm of ALC increased with an increase in RH between 79.0 and 95.0 %. For ALC formation, amylose has to be mobile in the system, but dehydrated amylose is in a glassy (immobilize) state. According to the glass to rubber transition behavior of amorphous polymer, amylose held at 50 °C is suggested to become rubbery (mobile) state at RH 76.0 %. This interpretation will explain the reason why ALC formation began to be observed at the RH range between 72.4 and 79.0 %.
{"title":"Effect of Water Vapor Sorption on Complex Formation in Amylose-lauric Acid Blend Powder.","authors":"Yuki Yoshitomi, Kiyoshi Kawai","doi":"10.5458/jag.jag.JAG-2023_0001","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2023_0001","url":null,"abstract":"<p><p>The purpose of this study was to understand the effect of relative humidity (RH) on amylose-lipid complex (ALC) formation in amylose-lauric acid blend powder held at 50 °C (temperature slightly higher than the melting point of lauric acid) using differential scanning calorimetry (DSC) and X-ray diffraction. From DSC curves, the melting of crystalized lauric acid and two melting peaks of ALC were observed depending on RH. ALC formation was confirmed by X-ray diffraction pattern. The melting enthalpy (∆<i>H</i><sub>m</sub>) of lauric acid in the sample held at RH 0 % was lower than that of lauric acid only though there was no ALC formation. This suggests that crystallization of lauric acid was prevented by amylose. The ∆<i>H</i><sub>m</sub> of lauric acid increased with an increase in RH up to 79.0 % because liquid lauric acid would have fused as the result of enhanced repulsive force between liquid lauric acid and hydrated amylose. The ∆<i>H</i><sub>m</sub> of ALC increased with an increase in RH between 79.0 and 95.0 %. For ALC formation, amylose has to be mobile in the system, but dehydrated amylose is in a glassy (immobilize) state. According to the glass to rubber transition behavior of amorphous polymer, amylose held at 50 °C is suggested to become rubbery (mobile) state at RH 76.0 %. This interpretation will explain the reason why ALC formation began to be observed at the RH range between 72.4 and 79.0 %.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"70 2","pages":"53-58"},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/65/a9/70_jag.JAG-2023_0001.PMC10432376.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10423718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.5458/jag.jag.JAG-2022_0010
Naoto Suzuki, Isao Hanashiro, Naoko Fujita
Starch is comprised of very large α-glucan molecules composed primarily of linear amylose and highly branched amylopectin. Most methods for analyses of starch structure use hydrolytic enzymes to cleave starch. When undegraded, whole starch structures can be analyzed by gel-permeation chromatography (GPC), but this typically yields a single peak each for amylopectin and amylose. The objective of this study was to stably separate amylopectins in whole starch based on their molecular weight using GPC, and to determine the structure of each peak. When alkali-gelatinized whole starch was applied to GPC columns (Toyopearl HW75S × 2, HW65S, and HW55S), it was separated into three peaks. Iodine staining and chain length distribution analyses of debranched samples showed that peaks were mainly composed of high-molecular weight (MW) amylopectin consisting of many clusters, low-MW amylopectin consisting of a small number of clusters, and amylose.
{"title":"Molecular Weight Distribution of Whole Starch in Rice Endosperm by Gel-permeation Chromatography.","authors":"Naoto Suzuki, Isao Hanashiro, Naoko Fujita","doi":"10.5458/jag.jag.JAG-2022_0010","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2022_0010","url":null,"abstract":"<p><p>Starch is comprised of very large α-glucan molecules composed primarily of linear amylose and highly branched amylopectin. Most methods for analyses of starch structure use hydrolytic enzymes to cleave starch. When undegraded, whole starch structures can be analyzed by gel-permeation chromatography (GPC), but this typically yields a single peak each for amylopectin and amylose. The objective of this study was to stably separate amylopectins in whole starch based on their molecular weight using GPC, and to determine the structure of each peak. When alkali-gelatinized whole starch was applied to GPC columns (Toyopearl HW75S × 2, HW65S, and HW55S), it was separated into three peaks. Iodine staining and chain length distribution analyses of debranched samples showed that peaks were mainly composed of high-molecular weight (MW) amylopectin consisting of many clusters, low-MW amylopectin consisting of a small number of clusters, and amylose.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"70 1","pages":"25-32"},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ed/2f/70_jag.JAG-2022_0010.PMC10074033.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9272437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Algal sulfated polysaccharides are known to be effective hyaluronidase inhibitors. We evaluated hyaluronidase inhibitory activity of sulfated polysaccharide (SP) from Caulerpa lentillifera. Results showed that SP with IC50 of 163 µg/mL appears to allosterically inhibit the hyaluronidase activity. Main sugar composition and sulfate content of SP was estimated to be Gal, Glc, Xyl, Man, uronic acids, and sulfate in the weight percent of 27.7: 28.9: 14.6: 22.5: 3.4: 21.7. We modified the SP by desulfation and partial hydrolysis with trifluoroacetic acid (TFA) to investigate the effect of sulfate content and molecular weight on inhibition. Hyaluronidase inhibitory activity of desulfated SP, 0.1 M TFA-hydrolyzed SP and 0.5 M TFA-hydrolyzed SP were significantly lower than that of native SP, revealing that sulfate content or molecular weight is important for hyaluronidase inhibition.
藻类硫酸酸化多糖是已知的有效的透明质酸酶抑制剂。研究了小扁豆硫酸酸化多糖(SP)的透明质酸酶抑制活性。结果表明,IC50为163µg/mL的SP具有变构性抑制透明质酸酶活性的作用。SP的主要糖组成和硫酸盐含量为Gal、Glc、Xyl、Man、醛酸和硫酸盐,重量百分比分别为27.7:28.9:14.6:22.5:3.4:21.7。用三氟乙酸(TFA)对SP进行了脱硫和部分水解改性,考察了硫酸盐含量和分子量对抑制作用的影响。脱硫SP、0.1 M tfa -水解SP和0.5 M tfa -水解SP的透明质酸酶抑制活性显著低于天然SP,表明硫酸盐含量或分子量对透明质酸酶的抑制作用很重要。
{"title":"Hyaluronidase-inhibiting Polysaccharide from <i>Caulerpa lentillifera</i>.","authors":"Mahanama Geegana Gamage Awanthi, Saki Nagamoto, Hirosuke Oku, Kanefumi Kitahara, Teruko Konishi","doi":"10.5458/jag.jag.JAG-2022_0004","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2022_0004","url":null,"abstract":"<p><p>Algal sulfated polysaccharides are known to be effective hyaluronidase inhibitors. We evaluated hyaluronidase inhibitory activity of sulfated polysaccharide (SP) from <i>Caulerpa lentillifera.</i> Results showed that SP with IC<sub>50</sub> of 163 µg/mL appears to allosterically inhibit the hyaluronidase activity. Main sugar composition and sulfate content of SP was estimated to be Gal, Glc, Xyl, Man, uronic acids, and sulfate in the weight percent of 27.7: 28.9: 14.6: 22.5: 3.4: 21.7. We modified the SP by desulfation and partial hydrolysis with trifluoroacetic acid (TFA) to investigate the effect of sulfate content and molecular weight on inhibition. Hyaluronidase inhibitory activity of desulfated SP, 0.1 M TFA-hydrolyzed SP and 0.5 M TFA-hydrolyzed SP were significantly lower than that of native SP, revealing that sulfate content or molecular weight is important for hyaluronidase inhibition.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"70 1","pages":"1-7"},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b3/b8/70_jag.JAG-2022_0004.PMC10077112.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9272438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.5458/jag.jag.JAG-2022_0012
Motomitsu Kitaoka
We created a Microsoft Excel file, Enzyme_Kinetics_Calculator, which includes macro programs that automatically calculates kinetic parameters for typical kinetic equations of enzymatic reactions, accompanied by their standard errors, by minimizing the residual sum of squares thereof. The [S]-v plot is automatically drawn with the theoretical lines and, similarly, the 1/[S]-1/v plot in the case of linear theoretical lines. Enzyme_Kinetics_Calculator is available as a supplementary file for this paper (see J. Appl. Glycosci. Web site).
{"title":"Automatic Calculation of the Kinetic Parameters of Enzymatic Reactions with Their Standard Errors Using Microsoft Excel.","authors":"Motomitsu Kitaoka","doi":"10.5458/jag.jag.JAG-2022_0012","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2022_0012","url":null,"abstract":"<p><p>We created a Microsoft Excel file, Enzyme_Kinetics_Calculator, which includes macro programs that automatically calculates kinetic parameters for typical kinetic equations of enzymatic reactions, accompanied by their standard errors, by minimizing the residual sum of squares thereof. The [<i>S</i>]-<i>v</i> plot is automatically drawn with the theoretical lines and, similarly, the 1/[<i>S</i>]-1/<i>v</i> plot in the case of linear theoretical lines. Enzyme_Kinetics_Calculator is available as a supplementary file for this paper (see J. Appl. Glycosci. Web site).</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"70 1","pages":"33-37"},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b5/e7/70_jag.JAG-2022_0012.PMC10074026.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9273038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.5458/jag.jag.JAG-2022_0009
Rikako Tsukida, Makoto Yoshida, Satoshi Kaneko
Woody biomass is anticipated to be a resource for a decarbonized society, but the difficulty of isolating woody components is a significant challenge. Brown-rot fungi, a type of wood rotting fungi, decompose hemicellulose particularly efficiently. However, there are few reports on the hemicellulases from brown-rot fungi. An α-L-arabinofuranosidase belonging to glycoside hydrolase family 51 (GH51) from the brown-rot fungus Gloeophyllum trabeum (GtAbf51A) was cloned and characterized in the present study. Analyses of the phylogeny of GH51 enzymes in wood rotting fungi revealed the existence of two groups, intercellular and extracellular enzymes. After deglycosylation, the recombinant GtAbf51A produced by Pichia pastoris appeared on SDS-PAGE as approximately 71,777 daltons, which is the expected molecular weight based on the amino acid sequence of GtAbf51A. Maximum enzyme activity occurred between pH 2.2 and 4.0 and at 50 °C, while it was stable between pH 2.2 and 10.0 and up to 40 °C. Due to the presence of a signal peptide, GtAbf51A was thought to hydrolyze polysaccharide containing arabinose. However, the hydrolysis rate of arabinosyl linkages in polysaccharides was only 3-5 % for arabinoxylan and 18 % for arabinan. GtAbf51A, in contrast, efficiently hydrolyzed arabinoxylooligosaccharides, particularly O-α-L-arabinofuranosyl-(1→3)-O-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose, which is the principal product of GH10 β-xylanase. These data suggest that GtAbf51A cooperates with other xylan-degrading enzymes, such as β-xylanase, to degrade xylan in nature.
木质生物质有望成为脱碳社会的一种资源,但分离木质成分的困难是一个重大挑战。褐腐真菌是一种木材腐烂真菌,它能特别有效地分解半纤维素。然而,关于褐腐菌半纤维素酶的报道很少。本研究从褐腐菌Gloeophyllum trabeum (GtAbf51A)中克隆并鉴定了一种α-L-arabinofuranosidase (α-L-arabinofuranosidase),属于糖苷水解酶51家族(GH51)。对腐木真菌GH51酶的系统发育分析表明,GH51酶可分为胞间酶和胞外酶两类。去糖基化后,毕赤酵母重组GtAbf51A在SDS-PAGE上的分子量约为71777道尔顿,这是基于GtAbf51A氨基酸序列的预期分子量。酶活性在pH 2.2 ~ 4.0和50℃时达到最大值,在pH 2.2 ~ 10.0和高达40℃时保持稳定。由于信号肽的存在,GtAbf51A被认为可以水解含有阿拉伯糖的多糖。然而,阿拉伯木聚糖多糖中阿拉伯糖基键的水解率仅为3- 5%,阿拉伯糖聚糖为18%。相比之下,GtAbf51A能有效水解阿拉伯糖低聚糖,特别是O-α- l-阿拉伯糖糠基-(1→3)-O-β- d -木吡喃基-(1→4)-β- d -木吡喃糖,这是GH10 β-木聚糖酶的主要产物。这些数据表明GtAbf51A在自然界中与其他木聚糖降解酶如β-木聚糖酶协同降解木聚糖。
{"title":"Characterization of an α-L-Arabinofuranosidase GH51 from the Brown-rot Fungus <i>Gloeophyllum trabeum</i>.","authors":"Rikako Tsukida, Makoto Yoshida, Satoshi Kaneko","doi":"10.5458/jag.jag.JAG-2022_0009","DOIUrl":"https://doi.org/10.5458/jag.jag.JAG-2022_0009","url":null,"abstract":"<p><p>Woody biomass is anticipated to be a resource for a decarbonized society, but the difficulty of isolating woody components is a significant challenge. Brown-rot fungi, a type of wood rotting fungi, decompose hemicellulose particularly efficiently. However, there are few reports on the hemicellulases from brown-rot fungi. An α-L-arabinofuranosidase belonging to glycoside hydrolase family 51 (GH51) from the brown-rot fungus <i>Gloeophyllum trabeum</i> (<i>Gt</i>Abf51A) was cloned and characterized in the present study. Analyses of the phylogeny of GH51 enzymes in wood rotting fungi revealed the existence of two groups, intercellular and extracellular enzymes. After deglycosylation, the recombinant <i>Gt</i>Abf51A produced by <i>Pichia pastoris</i> appeared on SDS-PAGE as approximately 71,777 daltons, which is the expected molecular weight based on the amino acid sequence of <i>Gt</i>Abf51A. Maximum enzyme activity occurred between pH 2.2 and 4.0 and at 50 °C, while it was stable between pH 2.2 and 10.0 and up to 40 °C. Due to the presence of a signal peptide, <i>Gt</i>Abf51A was thought to hydrolyze polysaccharide containing arabinose. However, the hydrolysis rate of arabinosyl linkages in polysaccharides was only 3-5 % for arabinoxylan and 18 % for arabinan. <i>Gt</i>Abf51A, in contrast, efficiently hydrolyzed arabinoxylooligosaccharides, particularly <i>O</i>-α-L-arabinofuranosyl-(1→3)-<i>O</i>-β-D-xylopyranosyl-(1→4)-β-D-xylopyranose, which is the principal product of GH10 β-xylanase. These data suggest that <i>Gt</i>Abf51A cooperates with other xylan-degrading enzymes, such as β-xylanase, to degrade xylan in nature.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"70 1","pages":"9-14"},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a0/08/70_jag.JAG-2022_0009.PMC10074032.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9272439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}