Advancement of sulfur (S) cathode of lithium-sulfur (Li-S) batteries is hindered by issues such as insulating nature of sulfur, sluggish redox kinetics, polysulfide dissolution and shuttling. To address these issues, we initiate a study on applying an important amino acid of protein, arginine (Arg), as a functional additive into S cathode. Based on our simulation study, the positively charged Arg facilitates strong interactions with polysulfides. The experimental results indicate that the interaction enable capability of trapping polysulfides within the S cathode, responsible for reducing shuttle effects. Furthermore, the positively charged Arg also promotes efficient ion diffusion and polysulfides conversion. The new findings include that, with addition of only 1 wt % Arg, the resultant cathode demonstrates effectively enhanced electrolyte wettability, polysulfide adsorption and redox kinetics, leading to enhanced rate performance and long-term cycling stability. This study highlights the great potential of amino acids being able to act as effective functional bio-additives in S cathode, paving a new way to high-performance and sustainable energy storage solutions.
{"title":"Arginine as a Multifunctional Additive for High Performance S-Cathode.","authors":"Lulu Ren, Ying Guo, Chunhua Ying, Justin Tangxin Zhong, Jin Liu, Wei-Hong Katie Zhong","doi":"10.1002/cssc.202402284","DOIUrl":"10.1002/cssc.202402284","url":null,"abstract":"<p><p>Advancement of sulfur (S) cathode of lithium-sulfur (Li-S) batteries is hindered by issues such as insulating nature of sulfur, sluggish redox kinetics, polysulfide dissolution and shuttling. To address these issues, we initiate a study on applying an important amino acid of protein, arginine (Arg), as a functional additive into S cathode. Based on our simulation study, the positively charged Arg facilitates strong interactions with polysulfides. The experimental results indicate that the interaction enable capability of trapping polysulfides within the S cathode, responsible for reducing shuttle effects. Furthermore, the positively charged Arg also promotes efficient ion diffusion and polysulfides conversion. The new findings include that, with addition of only 1 wt % Arg, the resultant cathode demonstrates effectively enhanced electrolyte wettability, polysulfide adsorption and redox kinetics, leading to enhanced rate performance and long-term cycling stability. This study highlights the great potential of amino acids being able to act as effective functional bio-additives in S cathode, paving a new way to high-performance and sustainable energy storage solutions.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402284"},"PeriodicalIF":7.5,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Cover Feature shows how continuous-flow supercritical water treatment of birch followed by alkali extraction of lignin allowed the isolation of lignin and lignin carbohydrate complexes (LCCs) in 13–19 wt % yield with respect to the initial woody biomass with a high number of β-O-4 moieties up to 57/100 Ar. Such an approach may be extended to other biomass feedstocks, enabling the isolation of non-degraded lignins/LCCs with tunable structure and properties. More information can be found in the Research Article by D. Rigo, E. Capanema and co-workers. Cover design: Eric Gabriel.