Pub Date : 2024-10-16DOI: 10.1177/08853282241288323
Bing Shao, Yang Fu, Bo Li, Siming Huo, Jiayu Du, Xuliang Zhang, Xin Yin, Yanfei Li, Zheng Cao, Miao Song
Faced with infectious bone defects, the development of a thermosensitive hydrogel containing icariin (ICA) represents a promising therapeutic strategy targeting infection control and bone regeneration. In this study, we prepared and evaluated the physicochemical properties, in vitro and in vivo drug release, antimicrobial activity, anti-inflammatory properties, and bone repair effects of ICA/Chitosan/β-Glycerophosphate (ICA/CTS/β-GP) thermosensitive hydrogel. Our findings demonstrate that the ICA/CTS/β-GP thermosensitive hydrogel undergoes a liquid-to-gel transition at body temperature, which is crucial for maintaining local drug release at the defect site. Additionally, the hydrogel exhibited sustained release of ICA over 28 days, showing high antimicrobial activity against Staphylococcus aureus and good biocompatibility in blood compatibility tests. In a canine model of infectious bone defects, the ICA/CTS/β-GP thermosensitive hydrogel showed effective infection control and modulated inflammation, vascular formation, and bone factor expression, while also activating the Wnt/β-catenin signaling pathway. In conclusion, the ICA/CTS/β-GP thermosensitive hydrogel could control infection and repair bone tissue. Its antimicrobial and osteogenic properties provide hope for its clinical application.
{"title":"Icariin-loaded chitosan/β-glycerophosphate thermosensitive hydrogel enhanced infection control and bone regeneration in canine with infectious bone defects.","authors":"Bing Shao, Yang Fu, Bo Li, Siming Huo, Jiayu Du, Xuliang Zhang, Xin Yin, Yanfei Li, Zheng Cao, Miao Song","doi":"10.1177/08853282241288323","DOIUrl":"https://doi.org/10.1177/08853282241288323","url":null,"abstract":"<p><p>Faced with infectious bone defects, the development of a thermosensitive hydrogel containing icariin (ICA) represents a promising therapeutic strategy targeting infection control and bone regeneration. In this study, we prepared and evaluated the physicochemical properties, in vitro and in vivo drug release, antimicrobial activity, anti-inflammatory properties, and bone repair effects of ICA/Chitosan/β-Glycerophosphate (ICA/CTS/β-GP) thermosensitive hydrogel. Our findings demonstrate that the ICA/CTS/β-GP thermosensitive hydrogel undergoes a liquid-to-gel transition at body temperature, which is crucial for maintaining local drug release at the defect site. Additionally, the hydrogel exhibited sustained release of ICA over 28 days, showing high antimicrobial activity against <i>Staphylococcus aureus</i> and good biocompatibility in blood compatibility tests. In a canine model of infectious bone defects, the ICA/CTS/β-GP thermosensitive hydrogel showed effective infection control and modulated inflammation, vascular formation, and bone factor expression, while also activating the Wnt/β-catenin signaling pathway. In conclusion, the ICA/CTS/β-GP thermosensitive hydrogel could control infection and repair bone tissue. Its antimicrobial and osteogenic properties provide hope for its clinical application.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241288323"},"PeriodicalIF":2.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The challenge of effectively managing long-term pain after surgery remains a significant issue in clinical settings. Although local anesthetics are preferred for their effective pain relief and few side effects, their short-lasting effect does not fully meet the pain relief needs after surgery. Articaine, widely used for postoperative pain relief as a local anesthetic, is pharmacologically limited by its short half-life, which reduces the duration of its pain-relieving effects. To overcome this issue, this study presents a new approach using poly (lactic-co-glycolic acid) (PLGA) microspheres for controlled articaine release, aiming to extend its analgesic effect while reducing potential toxicity. The PLGA microspheres were shown to extend the release of articaine for at least 72 h in lab tests, displaying excellent biocompatibility and low toxicity. When used in a rodent model for postoperative pain, the microspheres provided significantly prolonged pain relief, effectively reducing pain for up to 3 days post-surgery, without causing inflammation or tissue damage for over 72 h after being administered. The extended release and high safety profile of these PLGA microspheres highlight their promise as a new method for delivering local anesthetics, opening up new possibilities for pain management in the future.
{"title":"Sustainable release artifact in PLGA microspheres for prolonged local aesthetics in postoperative pain management.","authors":"Chong Chen, Yejun Zhao, Kaijia Tang, Honglong Ning, Xiaohua Yu, Yueliang Zhu, Qingyu Shi","doi":"10.1177/08853282241290141","DOIUrl":"https://doi.org/10.1177/08853282241290141","url":null,"abstract":"<p><p>The challenge of effectively managing long-term pain after surgery remains a significant issue in clinical settings. Although local anesthetics are preferred for their effective pain relief and few side effects, their short-lasting effect does not fully meet the pain relief needs after surgery. Articaine, widely used for postoperative pain relief as a local anesthetic, is pharmacologically limited by its short half-life, which reduces the duration of its pain-relieving effects. To overcome this issue, this study presents a new approach using poly (lactic-co-glycolic acid) (PLGA) microspheres for controlled articaine release, aiming to extend its analgesic effect while reducing potential toxicity. The PLGA microspheres were shown to extend the release of articaine for at least 72 h in lab tests, displaying excellent biocompatibility and low toxicity. When used in a rodent model for postoperative pain, the microspheres provided significantly prolonged pain relief, effectively reducing pain for up to 3 days post-surgery, without causing inflammation or tissue damage for over 72 h after being administered. The extended release and high safety profile of these PLGA microspheres highlight their promise as a new method for delivering local anesthetics, opening up new possibilities for pain management in the future.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241290141"},"PeriodicalIF":2.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Although the human amniotic membrane (hAM) has been demonstrated to promote angiogenesis, its efficacy in healing ischemic wounds remains unknown. Therefore, the current study aimed to evaluate the potential of hAM as a dressing for treating ischemic wounds. The inferior abdominal wall arteries and veins of male rats were divided, and an ischemic wound was created on each side of the abdominal wall. Of the two ischemic wounds created, only one was covered with hAM, and its wound healing effect was determined by measuring the wound area. Angiogenesis was assessed by measuring microvessel density (MVD). On day 5, the mean wound area changed from 400 mm2 to 335.4 (260-450) mm2 in the hAM group and to 459 (306-570) mm2 in the control group (p = 0.0051). MVD was 19.0 (10.4-24.6) in the hAM group and 15.1 (10.6-20.8) in the control group (p = 0.0026). No significant differences in local pro- and anti-inflammatory cytokine levels were observed between the two groups. Histological examination revealed no rejection of the transplanted hAM. Therefore, the hAM may serve as a novel wound dressing that can promote angiogenesis and healing in ischemic wounds.
{"title":"Effects of human amniotic membrane on the angiogenesis and healing of ischemic wounds in a rat model.","authors":"Masato Sato, Kazuaki Tokodai, Kaoru Okada, Hiroyuki Ogasawara, Miyako Tanaka, Tetsuro Hoshiai, Masatoshi Saito, Hirofumi Sugawara, Daijirou Akamatsu, Michiaki Unno, Masafumi Goto, Takashi Kamei","doi":"10.1177/08853282241289919","DOIUrl":"https://doi.org/10.1177/08853282241289919","url":null,"abstract":"<p><p>Although the human amniotic membrane (hAM) has been demonstrated to promote angiogenesis, its efficacy in healing ischemic wounds remains unknown. Therefore, the current study aimed to evaluate the potential of hAM as a dressing for treating ischemic wounds. The inferior abdominal wall arteries and veins of male rats were divided, and an ischemic wound was created on each side of the abdominal wall. Of the two ischemic wounds created, only one was covered with hAM, and its wound healing effect was determined by measuring the wound area. Angiogenesis was assessed by measuring microvessel density (MVD). On day 5, the mean wound area changed from 400 mm<sup>2</sup> to 335.4 (260-450) mm<sup>2</sup> in the hAM group and to 459 (306-570) mm<sup>2</sup> in the control group (<i>p</i> = 0.0051). MVD was 19.0 (10.4-24.6) in the hAM group and 15.1 (10.6-20.8) in the control group (<i>p</i> = 0.0026). No significant differences in local pro- and anti-inflammatory cytokine levels were observed between the two groups. Histological examination revealed no rejection of the transplanted hAM. Therefore, the hAM may serve as a novel wound dressing that can promote angiogenesis and healing in ischemic wounds.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241289919"},"PeriodicalIF":2.3,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-23DOI: 10.1177/08853282241265920
Huidong Wang, Hongyu Li, Pin Zhao, Hongbing Zhang, Saman Jalili
The skin injuries pose a substantial public health challenge, not only due to their physical trauma but also the accompanying pain and complexities in wound healing. In the current research, Inula helenium extract and lidocaine were loaded into electrospun PVA/calcium alginate nanofibers to promote skin wounds healing and alleviate the resulting pain. Various in vitro experiments were utilized to characterize these dressings. Wound healing potential of these constructs and their analgesic effects were studied in a rat model of skin wounds. Our developed scaffolds released the loaded drugs in a slow manner and showed antioxidative and anti-inflammatory activities. Fiber size measurement showed that drug-loaded and drug-free scaffolds had around 418.025 ± 140.11 nm and 505.51 ± 93.29 nm mean fiber size, respectively. Bacterial penetration assay confirmed that drug-loaded scaffolds reduced bacterial infiltration through the matrices. Wound healing study showed that on day 14th, the dressings loaded with inula helenium extract and lidocaine could close the wounds up to 91.26 ± 5.93%. In addition, these scaffolds significantly reduced the animals pain sensitivity. ELISA assay results implied that these dressings modulated inflammation and reduced tissue's oxidative stress.
{"title":"Inula helenium extract and lidocaine-loaded electrospun wound dressings for managing skin wounds pain and their healing: An in vitro and in vivo study.","authors":"Huidong Wang, Hongyu Li, Pin Zhao, Hongbing Zhang, Saman Jalili","doi":"10.1177/08853282241265920","DOIUrl":"10.1177/08853282241265920","url":null,"abstract":"<p><p>The skin injuries pose a substantial public health challenge, not only due to their physical trauma but also the accompanying pain and complexities in wound healing. In the current research, <i>Inula helenium</i> extract and lidocaine were loaded into electrospun PVA/calcium alginate nanofibers to promote skin wounds healing and alleviate the resulting pain. Various in vitro experiments were utilized to characterize these dressings. Wound healing potential of these constructs and their analgesic effects were studied in a rat model of skin wounds. Our developed scaffolds released the loaded drugs in a slow manner and showed antioxidative and anti-inflammatory activities. Fiber size measurement showed that drug-loaded and drug-free scaffolds had around 418.025 ± 140.11 nm and 505.51 ± 93.29 nm mean fiber size, respectively. Bacterial penetration assay confirmed that drug-loaded scaffolds reduced bacterial infiltration through the matrices. Wound healing study showed that on day 14<sup>th</sup>, the dressings loaded with inula helenium extract and lidocaine could close the wounds up to 91.26 ± 5.93%. In addition, these scaffolds significantly reduced the animals pain sensitivity. ELISA assay results implied that these dressings modulated inflammation and reduced tissue's oxidative stress.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"367-376"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-30DOI: 10.1177/08853282241268669
Danny T Akkad, Sunjeev S Phull, Mark R Towler
Lidocaine hydrochloride is used as an anesthetic for clinical applications. This study considers the effects of the substitution of 2% lidocaine hydrochloride for deionized (DI) water on the rheological, mechanical, ion release, pH and injectable properties of two formulations of aluminum-free glass polyalkenoate cements (GPCs) using two distinct poly(acrylic) acids (PAA), E9 and E11, which have different molecular weights (Mw). The substitution of 2% lidocaine hydrochloride demonstrated increased injectability, but did not affect mechanical properties. The mechanical properties increased with time, as expected, and, in general, E9-based GPCs displayed significantly higher strengths over E11-based GPCs. With respect to ion release, which includes calcium (Ca), strontium (Sr), zinc (Zn) and silicon (Si); all ions displayed a steady and consistent increased release over time. Ca and Sr showed similar ion release patterns, whereby the GPC made with E11 PAA and lidocaine hydrochloride released significantly more ions than all other compositions likely due to similar chemical kinetics. However, Zn is also divalent in nature, but displayed only one significant difference across the GPC series at all time points, which was attributed to its higher electronegativity allowing for increased participation in the setting reaction. Finally, an analysis of the pH confirmed an increase in pH with time, suggesting that H+ ions were attacking the glass structure to allow for ion release. After 1 and 7 days, water-based GPCs environments achieved a higher pH than lidocaine hydrochloride-based GPCs, indicating that the lidocaine hydrochloride may be releasing additional protons upon bond formation with PAA.
{"title":"Evaluating the physico-chemical properties of water-based and 2% lidocaine hydrochloride-based aluminum-free glass polyalkenoate cements for distal radius fixation.","authors":"Danny T Akkad, Sunjeev S Phull, Mark R Towler","doi":"10.1177/08853282241268669","DOIUrl":"10.1177/08853282241268669","url":null,"abstract":"<p><p>Lidocaine hydrochloride is used as an anesthetic for clinical applications. This study considers the effects of the substitution of 2% lidocaine hydrochloride for deionized (DI) water on the rheological, mechanical, ion release, pH and injectable properties of two formulations of aluminum-free glass polyalkenoate cements (GPCs) using two distinct poly(acrylic) acids (PAA), E9 and E11, which have different molecular weights (Mw). The substitution of 2% lidocaine hydrochloride demonstrated increased injectability, but did not affect mechanical properties. The mechanical properties increased with time, as expected, and, in general, E9-based GPCs displayed significantly higher strengths over E11-based GPCs. With respect to ion release, which includes calcium (Ca), strontium (Sr), zinc (Zn) and silicon (Si); all ions displayed a steady and consistent increased release over time. Ca and Sr showed similar ion release patterns, whereby the GPC made with E11 PAA and lidocaine hydrochloride released significantly more ions than all other compositions likely due to similar chemical kinetics. However, Zn is also divalent in nature, but displayed only one significant difference across the GPC series at all time points, which was attributed to its higher electronegativity allowing for increased participation in the setting reaction. Finally, an analysis of the pH confirmed an increase in pH with time, suggesting that H<sup>+</sup> ions were attacking the glass structure to allow for ion release. After 1 and 7 days, water-based GPCs environments achieved a higher pH than lidocaine hydrochloride-based GPCs, indicating that the lidocaine hydrochloride may be releasing additional protons upon bond formation with PAA.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"343-354"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-24DOI: 10.1177/08853282241265769
Sepehr Zamani, Nariman Rezaei Kolarijani, Mahdi Naeiji, Ahmad Vaez, Hasan Maghsoodifar, Seyed Amir Hossein Sadeghi Douki, Majid Salehi
Hydrogels have several characteristics, including biocompatibility, physical similarity with the skin's extracellular matrix, and regeneration capacity. Cell migration and proliferation are facilitated by natural polymers such as gelatin (Gel) and carboxymethyl cellulose (CMC). Gelatin dressing acts as a structural framework for cell migration into the wound area, stimulating cell division and promoting granulation tissue formation. Omega-3 fatty acids from fish oil may prevent wound infection and improve the healing of wounds in the early stages. We studied the preparation of wound dressing containing Omega-3 and its ability to heal wounds. In this study, CMC-Gel hydrogels containing different concentrations of Omega-3 were investigated in full-thickness wounds. After the fabrication of the hydrogels by using surfactant (tween 20) and microemulsion method (oil in water), various tests such as SEM, Water uptake evaluation, weight loss, cell viability, blood compatibility, and in vivo study in rat cutaneous modeling during 14 days were performed to evaluate the properties of the fabricated hydrogels. The analysis of the hydrogels revealed that they possess porous structures with interconnected pores, with an average size of 83.23 ± 6.43 μm. The hydrogels exhibited a swelling capacity of up to 60% of their initial weight within 24 h, as indicated by the weight loss and swelling measurements. Cell viability study with the MTT technique showed that no cytotoxicity was observed at the recommended dosage, however, increasing the amount of omega-3 caused hemolysis, cell death, and inhibition of coagulation activity. An in vivo study in adult male rats with a full-thickness model showed greater than 91% improvement of the primary wound region after 2 weeks of treatment. Histological analysis demonstrated Omega-3 in hydrogels, which is a promising approach for topical skin treatment to prevent scar, and has shown efficacy as wound dressing by improving the repair process at the defect site.
{"title":"Development of carboxymethyl cellulose/gelatin hydrogel loaded with Omega-3 for skin regeneration.","authors":"Sepehr Zamani, Nariman Rezaei Kolarijani, Mahdi Naeiji, Ahmad Vaez, Hasan Maghsoodifar, Seyed Amir Hossein Sadeghi Douki, Majid Salehi","doi":"10.1177/08853282241265769","DOIUrl":"10.1177/08853282241265769","url":null,"abstract":"<p><p>Hydrogels have several characteristics, including biocompatibility, physical similarity with the skin's extracellular matrix, and regeneration capacity. Cell migration and proliferation are facilitated by natural polymers such as gelatin (Gel) and carboxymethyl cellulose (CMC). Gelatin dressing acts as a structural framework for cell migration into the wound area, stimulating cell division and promoting granulation tissue formation. Omega-3 fatty acids from fish oil may prevent wound infection and improve the healing of wounds in the early stages. We studied the preparation of wound dressing containing Omega-3 and its ability to heal wounds. In this study, CMC-Gel hydrogels containing different concentrations of Omega-3 were investigated in full-thickness wounds. After the fabrication of the hydrogels by using surfactant (tween 20) and microemulsion method (oil in water), various tests such as SEM, Water uptake evaluation, weight loss, cell viability, blood compatibility, and in vivo study in rat cutaneous modeling during 14 days were performed to evaluate the properties of the fabricated hydrogels. The analysis of the hydrogels revealed that they possess porous structures with interconnected pores, with an average size of 83.23 ± 6.43 μm. The hydrogels exhibited a swelling capacity of up to 60% of their initial weight within 24 h, as indicated by the weight loss and swelling measurements. Cell viability study with the MTT technique showed that no cytotoxicity was observed at the recommended dosage, however, increasing the amount of omega-3 caused hemolysis, cell death, and inhibition of coagulation activity. An in vivo study in adult male rats with a full-thickness model showed greater than 91% improvement of the primary wound region after 2 weeks of treatment. Histological analysis demonstrated Omega-3 in hydrogels, which is a promising approach for topical skin treatment to prevent scar, and has shown efficacy as wound dressing by improving the repair process at the defect site.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"377-395"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-29DOI: 10.1177/08853282241267867
Olivia Abril Cuevas-Tapia, Mariana Gutiérrez-Sánchez, Amaury Pozos-Guillén, Juan Valerio Cauich-Rodríguez, Diana María Escobar-García
Objective: to evaluate a membrane based on type B gelatin (G) and porcine urinary bladder extracellular matrix (PUB-EM), highlighting the potential effect of the combination evaluated by biocompatibility and regulation of the expression of transcription factors involved in tissue regeneration. G-PUB-EM membranes were prepared at 12.5, 25, and 50% w/v, and evaluated for biocompatibility with Fibroblast. Chemical characterization by FTIR-ATR showed complex spectra during crosslinking process with glutaraldehyde. Physical tests were performed in deionized water and PBS for 48 h. A significant increase in swelling was observed during the first 2 h. Biocompatibility testing (MTS) and evaluation of the expression profile of genes involved in the cell cycle (Cyclin-D1 VEGF, TNF and NF-κ-B) by PCR showed an increase in viability in a PUB-EM content-dependent way, except for 50% PUB-EM membrane which showed cytotoxic effects with a decrease in cell viability below 70%. The membranes showed an increase in the expression of some factors of cell cycle, as well as inflammatory processes that could promote tissue repair. 12.5 and 25% gelatin type B/porcine urinary bladder extracellular matrix (G/PUB-EM) based membranes have potential for tissue regeneration applications.
Impact statement: The use of membranes based on type B gelatin and porcine urinary bladder for tissue engineering represents a novel strategy. Biocompatibility and signaling pathways play a primary role in tissue repair and wound recovery. Transcription factors that mediate signaling, cell division and vascularization are part of molecules that intervene in the regenerative potential of cells. These techniques will have a significant impact on tissue repair and regeneration and thus stop depending on tissue donors or other surgical sites from the same patient, as is the case with burn patients.
{"title":"Biocompatibility and expression of transcription factors of a type B gelatin-Extracellular Matrix of Porcin Urinary Blader scaffold.","authors":"Olivia Abril Cuevas-Tapia, Mariana Gutiérrez-Sánchez, Amaury Pozos-Guillén, Juan Valerio Cauich-Rodríguez, Diana María Escobar-García","doi":"10.1177/08853282241267867","DOIUrl":"10.1177/08853282241267867","url":null,"abstract":"<p><strong>Objective: </strong>to evaluate a membrane based on type B gelatin (G) and porcine urinary bladder extracellular matrix (PUB-EM), highlighting the potential effect of the combination evaluated by biocompatibility and regulation of the expression of transcription factors involved in tissue regeneration. G-PUB-EM membranes were prepared at 12.5, 25, and 50% w/v, and evaluated for biocompatibility with Fibroblast. Chemical characterization by FTIR-ATR showed complex spectra during crosslinking process with glutaraldehyde. Physical tests were performed in deionized water and PBS for 48 h. A significant increase in swelling was observed during the first 2 h. Biocompatibility testing (MTS) and evaluation of the expression profile of genes involved in the cell cycle (Cyclin-D1 VEGF, TNF and NF-κ-B) by PCR showed an increase in viability in a PUB-EM content-dependent way, except for 50% PUB-EM membrane which showed cytotoxic effects with a decrease in cell viability below 70%. The membranes showed an increase in the expression of some factors of cell cycle, as well as inflammatory processes that could promote tissue repair. 12.5 and 25% gelatin type B/porcine urinary bladder extracellular matrix (G/PUB-EM) based membranes have potential for tissue regeneration applications.</p><p><strong>Impact statement: </strong>The use of membranes based on type B gelatin and porcine urinary bladder for tissue engineering represents a novel strategy. Biocompatibility and signaling pathways play a primary role in tissue repair and wound recovery. Transcription factors that mediate signaling, cell division and vascularization are part of molecules that intervene in the regenerative potential of cells. These techniques will have a significant impact on tissue repair and regeneration and thus stop depending on tissue donors or other surgical sites from the same patient, as is the case with burn patients.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"288-297"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141788141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-06-20DOI: 10.1177/08853282241264095
Wang Liu, Hao Wang, Jiaqi Liu, Yuen Y Cheng, Yanchun Guan, Kedong Song
The release of antibiotics or anions by traditional bacteriostatic agents led to the development of bacterial drug resistance and environmental pollution. Ionic liquids (ILs) have become important choices for antibacterial agents because of their excellent physical, chemical and biological properties. In this paper, the bioactivities of 1-vinyl-3-butylimidazolium chloride ([VBIM]Cl, IL) and poly (1-vinyl-3-butylimidazolium chloride) (P[VBIM]Cl, PIL) were evaluated, and the potential antibacterial material was used to synthesize hydrogels. Using the colony formation assay and the Oxford cup method, antibacterial effect of IL and PIL were tested. Cell-Counting-Kit-8 (CCK-8) experiments were used to study the IC50 (half maximal inhibitory concentration) values of IL and showed 1.47 mg/mL, 0.35 mg/mL and 0.33 mg/mL at 24 h, 48 h and 72 h, respectively. The IC50 value of PIL were 12.15 μg/mL, 12.06 μg/mL and 11.76 μg/mL at 24 h, 48 h and 72 h, respectively. The PIL is further crosslinked with polyvinyl alcohol (PVA) to form a novel hydrogel through freeze-thaw cycles. The newly fabricated hydrogel exhibited a high water content, excellent water absorption properties and outstanding mechanical performance. Using the colony formation assay and the inhibition zone assay, the hydrogels exhibited favorable antibacterial effects (against E.coli and S.aureus) such that nearly 100% of the bacteria were killed in liquid medium while cultivating with H4 (synthesized by 0.5 g PIL and 1g PVA). In addition, the cytotoxicity of PIL was significantly reduced through hydrogen bond crosslinking. H4 showed the highest antibacterial activity and a good biocompatibility. The results indicated that the PVA&PIL hydrogels had great potential for wound dressing.
{"title":"A novel biological antibacterial polyvinyl alcohol/polyionic liquid hydrogel for wound dressing.","authors":"Wang Liu, Hao Wang, Jiaqi Liu, Yuen Y Cheng, Yanchun Guan, Kedong Song","doi":"10.1177/08853282241264095","DOIUrl":"10.1177/08853282241264095","url":null,"abstract":"<p><p>The release of antibiotics or anions by traditional bacteriostatic agents led to the development of bacterial drug resistance and environmental pollution. Ionic liquids (ILs) have become important choices for antibacterial agents because of their excellent physical, chemical and biological properties. In this paper, the bioactivities of 1-vinyl-3-butylimidazolium chloride ([VBIM]Cl, IL) and poly (1-vinyl-3-butylimidazolium chloride) (P[VBIM]Cl, PIL) were evaluated, and the potential antibacterial material was used to synthesize hydrogels. Using the colony formation assay and the Oxford cup method, antibacterial effect of IL and PIL were tested. Cell-Counting-Kit-8 (CCK-8) experiments were used to study the IC<sub>50</sub> (half maximal inhibitory concentration) values of IL and showed 1.47 mg/mL, 0.35 mg/mL and 0.33 mg/mL at 24 h, 48 h and 72 h, respectively. The IC<sub>50</sub> value of PIL were 12.15 μg/mL, 12.06 μg/mL and 11.76 μg/mL at 24 h, 48 h and 72 h, respectively. The PIL is further crosslinked with polyvinyl alcohol (PVA) to form a novel hydrogel through freeze-thaw cycles. The newly fabricated hydrogel exhibited a high water content, excellent water absorption properties and outstanding mechanical performance. Using the colony formation assay and the inhibition zone assay, the hydrogels exhibited favorable antibacterial effects (against <i>E.coli</i> and <i>S.aureus</i>) such that nearly 100% of the bacteria were killed in liquid medium while cultivating with H4 (synthesized by 0.5 g PIL and 1g PVA). In addition, the cytotoxicity of PIL was significantly reduced through hydrogen bond crosslinking. H4 showed the highest antibacterial activity and a good biocompatibility. The results indicated that the PVA&PIL hydrogels had great potential for wound dressing.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"355-366"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141432042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-30DOI: 10.1177/08853282241268682
Bünyamin Aksakal, Sinan Sezek, Cevher Kürşat Macit
Although low mechanical properties, Zinc (Zn) alloy systems with Copper (Cu) and Silver (Ag) as alloying elements have strong biocompatibility and biodegradability characteristics. This study examined the effects of rolling parameters and Ag alloying on the mechanical, biodegradable, and final structure of an alloy based on Zn. Comparing treated and untreated specimens, the addition of Ag led to a considerable improvement in both hardness and compressive strength. The produced alloys with varying amounts of Ag (between 1 and 4 wt%) were cold rolled at 400-800 r/min and friction coefficients between 0.3 and 0.5. The alloys' ultimate strength rose with an increase in rolling speed for Zn1Cu4Ag, and hardness and compressive strengths rose to 80HV and 470 MPa, respectively. It was demonstrated that rolling force rose somewhat with Ag concentration but significantly increased with rolling speed and friction. E. Coli and S. aureus were used to assess the biodegradable alloys' antibacterial properties. For the Zn-1Cu-2Ag alloy, the inclusion of Ag resulted in a considerable (50%) rise in antibacterial activity that exceeded the effects seen in other alloy systems.
以铜(Cu)和银(Ag)为合金元素的锌(Zn)合金体系虽然机械性能较低,但具有很强的生物相容性和生物降解性。本研究考察了轧制参数和 Ag 合金对锌基合金的机械性能、生物降解性和最终结构的影响。将处理过的试样与未处理的试样进行比较,发现添加 Ag 后,硬度和抗压强度均有显著提高。在 400-800 r/min 的转速和 0.3-0.5 之间的摩擦系数条件下,对所生产的含不同量 Ag(1-4 wt%)的合金进行冷轧。Zn1Cu4Ag 的合金极限强度随着轧制速度的增加而提高,硬度和抗压强度分别达到 80HV 和 470 兆帕。研究表明,轧制力随银浓度的增加而增加,但随轧制速度和摩擦力的增加而显著增加。大肠杆菌和金黄色葡萄球菌被用来评估可生物降解合金的抗菌性能。就 Zn-1Cu-2Ag 合金而言,加入 Ag 后,抗菌活性显著提高(50%),超过了其他合金体系的抗菌效果。
{"title":"The effect of Silver addition and deformation parameters on mechanostructure, biodegradation, antimicrobial and mechanical properties of Zn-based biodegradable alloys.","authors":"Bünyamin Aksakal, Sinan Sezek, Cevher Kürşat Macit","doi":"10.1177/08853282241268682","DOIUrl":"10.1177/08853282241268682","url":null,"abstract":"<p><p>Although low mechanical properties, Zinc (Zn) alloy systems with Copper (Cu) and Silver (Ag) as alloying elements have strong biocompatibility and biodegradability characteristics. This study examined the effects of rolling parameters and Ag alloying on the mechanical, biodegradable, and final structure of an alloy based on Zn. Comparing treated and untreated specimens, the addition of Ag led to a considerable improvement in both hardness and compressive strength. The produced alloys with varying amounts of Ag (between 1 and 4 wt%) were cold rolled at 400-800 r/min and friction coefficients between 0.3 and 0.5. The alloys' ultimate strength rose with an increase in rolling speed for Zn1Cu4Ag, and hardness and compressive strengths rose to 80HV and 470 MPa, respectively. It was demonstrated that rolling force rose somewhat with Ag concentration but significantly increased with rolling speed and friction. E. Coli and <i>S. aureus</i> were used to assess the biodegradable alloys' antibacterial properties. For the Zn-1Cu-2Ag alloy, the inclusion of Ag resulted in a considerable (50%) rise in antibacterial activity that exceeded the effects seen in other alloy systems.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"298-316"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-18DOI: 10.1177/08853282241265059
Yilin She, Yixin Sun, Nan Jiang
The temporomandibular joint (TMJ) disc is an essential protective but vulnerable fibrocartilage. Their high mechanical strength is vital in absorbing loads, reducing friction, and protecting the condylar surface. Many diseases can lead to the destruction or degeneration of the mechanical function of the TMJ disc. Unfortunately, conservative treatment is ineffective in restoring the defective mechanical properties of the discs. Tissue engineering has been investigated as a promising alternative treatment approach to approximate the properties of native tissue. However, it is difficult for tissue-engineered discs to obtain sufficient mechanical properties. Several approaches have been proposed to improve the mechanical properties of tissue-engineered constructs. In this review, we summarized the mechanical properties of native TMJ discs and discussed the current mechanical testing methods. We then summarized the current advances in improving the mechanical properties of TMJ disc tissue-engineered constructs. Moreover, existing challenges and outbreak directions are discussed. This review assists future research in better understanding the mechanical properties of both native and tissue-engineered TMJ discs. It provides new insights into future mechanical property enhancement for TMJ disc tissue engineering.
{"title":"The mechanics of tissue-engineered temporomandibular joint discs: Current status and prospects for enhancement.","authors":"Yilin She, Yixin Sun, Nan Jiang","doi":"10.1177/08853282241265059","DOIUrl":"10.1177/08853282241265059","url":null,"abstract":"<p><p>The temporomandibular joint (TMJ) disc is an essential protective but vulnerable fibrocartilage. Their high mechanical strength is vital in absorbing loads, reducing friction, and protecting the condylar surface. Many diseases can lead to the destruction or degeneration of the mechanical function of the TMJ disc. Unfortunately, conservative treatment is ineffective in restoring the defective mechanical properties of the discs. Tissue engineering has been investigated as a promising alternative treatment approach to approximate the properties of native tissue. However, it is difficult for tissue-engineered discs to obtain sufficient mechanical properties. Several approaches have been proposed to improve the mechanical properties of tissue-engineered constructs. In this review, we summarized the mechanical properties of native TMJ discs and discussed the current mechanical testing methods. We then summarized the current advances in improving the mechanical properties of TMJ disc tissue-engineered constructs. Moreover, existing challenges and outbreak directions are discussed. This review assists future research in better understanding the mechanical properties of both native and tissue-engineered TMJ discs. It provides new insights into future mechanical property enhancement for TMJ disc tissue engineering.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"269-287"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}