Pub Date : 2025-01-01Epub Date: 2024-09-02DOI: 10.1177/08853282241280771
Fuhua Sun, Lishi Yang, Yi Zuo
To fabricate electroactive fibrous membranes and provide simulated bioelectric micro-environment for bone regeneration mimicking nature periosteum, a series of electroactive polyurethanes (PUAT) were synthesized using amino-capped aniline trimers (AT) and lysine derivatives as chain extenders. These PUAT were fabricated into fibrous membranes as guided bone tissue regeneration membranes (GBRMs) via electrospinning. The ultraviolet-visible (UV-vis) absorption spectroscopy and cyclic voltammetry (CV) of PUAT copolymers showed that the electroactive PUAT fibrous membranes had good electroactivity. Besides, the introduction of AT significantly improved the hydrophobicity and thermal stability of PUAT fibrous membranes and decreased the degradation rate of PUAT fibers in vitro. With the increasing content of AT incorporated into copolymers, the tensile strength and Young's modulus of PUAT fibrous membranes increased from 4 MPa (PUAT0) to 15 MPa (PUAT10) and from 2.1 MPa (PUAT0) to 18 MPa (PUAT10), respectively. The cell morphology and proliferation of rat mesenchymal stem cells (rMSCs) on PUAT fibers indicated that the incorporation of AT enhanced the cell attachment and proliferation. Moreover, the expression levels of OCN, CD31, and VEGF secreted by rMSCs on PUAT fibers increased with the increasing content of AT. In conclusion, an electroactive polyurethane fibrous membrane mimicking natural periosteum was prepared via electrospinning and showed good potential application in guiding bone tissue regeneration.
{"title":"Development of electrospun electroactive polyurethane membranes for bone repairing.","authors":"Fuhua Sun, Lishi Yang, Yi Zuo","doi":"10.1177/08853282241280771","DOIUrl":"10.1177/08853282241280771","url":null,"abstract":"<p><p>To fabricate electroactive fibrous membranes and provide simulated bioelectric micro-environment for bone regeneration mimicking nature periosteum, a series of electroactive polyurethanes (PUAT) were synthesized using amino-capped aniline trimers (AT) and lysine derivatives as chain extenders. These PUAT were fabricated into fibrous membranes as guided bone tissue regeneration membranes (GBRMs) via electrospinning. The ultraviolet-visible (UV-vis) absorption spectroscopy and cyclic voltammetry (CV) of PUAT copolymers showed that the electroactive PUAT fibrous membranes had good electroactivity. Besides, the introduction of AT significantly improved the hydrophobicity and thermal stability of PUAT fibrous membranes and decreased the degradation rate of PUAT fibers in vitro. With the increasing content of AT incorporated into copolymers, the tensile strength and Young's modulus of PUAT fibrous membranes increased from 4 MPa (PUAT0) to 15 MPa (PUAT10) and from 2.1 MPa (PUAT0) to 18 MPa (PUAT10), respectively. The cell morphology and proliferation of rat mesenchymal stem cells (rMSCs) on PUAT fibers indicated that the incorporation of AT enhanced the cell attachment and proliferation. Moreover, the expression levels of OCN, CD31, and VEGF secreted by rMSCs on PUAT fibers increased with the increasing content of AT. In conclusion, an electroactive polyurethane fibrous membrane mimicking natural periosteum was prepared via electrospinning and showed good potential application in guiding bone tissue regeneration.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"620-631"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-29DOI: 10.1177/08853282241280844
Xue Tian, Xiaoyue Ji, Ranran Zhang, Xiaojing Long, Jing Lin, Yingxue Zhang, Lu Zhan, Junjie Luan, Guiqiu Zhao, Xudong Peng
Objective: Fungal keratitis (FK) usually develops to a poor clinical prognosis due to the fungal invasion and excessive inflammatory reaction. In order to enhance the therapeutic effect of natamycin (NAT), we used the anti-inflammatory biological polysaccharide bletilla striata polysaccharide (BSP) combined with NAT to prepare a new eye drop -- oxidized bletilla striata polysaccharide-natamycin (OBN).
Methods: UV-vis, FT-IR, and fluorescence spectroscopy were used to identify the synthesis of OBN. Biocompatibility of OBN was determined by CCK-8, scratch assay, and corneal toxicity test. RAW264.7 cells and C57BL/6 mice were stimulated with A. fumigatus and treated with PBS, OBN, or NAT. The anti-inflammatory activity of OBN was detected by RT-PCR and ELISA. In mice with FK, the clinical scores were used to evaluate the effect of OBN; HE staining was performed to assess the corneal pathological changes; MPO assay and immunofluorescence staining were used to investigate neutrophil infiltration.
Results: OBN was synthesized by combining oxidized bletilla striata polysaccharide (OBSP) with NAT through Schiff base reaction. OBN did not affect cell viability at a concentration of 160 μg/mL in HCECs, RAW264.7 cells, and mouse corneas. OBN versus NAT significantly improved the prognosis of A. fumigatus keratitis by reducing disease severity, neutrophil infiltration, and expression of inflammatory factors in vivo. Additionally, OBN treatment down-regulated the mRNA and protein expression levels of inflammatory factors IL-1β, TNF-α, and IL-6 in RAW264.7 and mouse models.
Conclusion: OBN is a compound prepared by covalently linking OBSP to the imino group of NAT through Schiff base reaction. OBN treatment down-regulated inflammation and improved the prognosis of mice with A. fumigatus keratitis.
{"title":"Therapeutic effect of oxidized bletilla striata polysaccharide-natamycin eye drops on fungal keratitis.","authors":"Xue Tian, Xiaoyue Ji, Ranran Zhang, Xiaojing Long, Jing Lin, Yingxue Zhang, Lu Zhan, Junjie Luan, Guiqiu Zhao, Xudong Peng","doi":"10.1177/08853282241280844","DOIUrl":"10.1177/08853282241280844","url":null,"abstract":"<p><strong>Objective: </strong>Fungal keratitis (FK) usually develops to a poor clinical prognosis due to the fungal invasion and excessive inflammatory reaction. In order to enhance the therapeutic effect of natamycin (NAT), we used the anti-inflammatory biological polysaccharide bletilla striata polysaccharide (BSP) combined with NAT to prepare a new eye drop -- oxidized bletilla striata polysaccharide-natamycin (OBN).</p><p><strong>Methods: </strong>UV-vis, FT-IR, and fluorescence spectroscopy were used to identify the synthesis of OBN. Biocompatibility of OBN was determined by CCK-8, scratch assay, and corneal toxicity test. RAW264.7 cells and C57BL/6 mice were stimulated with <i>A. fumigatus</i> and treated with PBS, OBN, or NAT. The anti-inflammatory activity of OBN was detected by RT-PCR and ELISA. In mice with FK, the clinical scores were used to evaluate the effect of OBN; HE staining was performed to assess the corneal pathological changes; MPO assay and immunofluorescence staining were used to investigate neutrophil infiltration.</p><p><strong>Results: </strong>OBN was synthesized by combining oxidized bletilla striata polysaccharide (OBSP) with NAT through Schiff base reaction. OBN did not affect cell viability at a concentration of 160 μg/mL in HCECs, RAW264.7 cells, and mouse corneas. OBN versus NAT significantly improved the prognosis of <i>A. fumigatus</i> keratitis by reducing disease severity, neutrophil infiltration, and expression of inflammatory factors <i>in vivo</i>. Additionally, OBN treatment down-regulated the mRNA and protein expression levels of inflammatory factors IL-1β, TNF-α, and IL-6 in RAW264.7 and mouse models.</p><p><strong>Conclusion: </strong>OBN is a compound prepared by covalently linking OBSP to the imino group of NAT through Schiff base reaction. OBN treatment down-regulated inflammation and improved the prognosis of mice with <i>A. fumigatus</i> keratitis.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"487-497"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-09-26DOI: 10.1177/08853282241287916
Xin Qi Cheng, Wei Xu, Long Hui Shao, Hua Qiao Shen, Hong Wei Liu
The 3D printing of porous titanium scaffolds reduces the elastic modulus of titanium alloys and promotes osteogenic integration. However, due to the biological inertness of titanium alloy materials, the implant-bone tissue interface is weakly bonded. A calcium silicate (CS) coating doped with polymetallic ions can impart various biological properties to titanium alloy materials. In this study, CuO and SrO binary-doped CS coatings were prepared on the surface of 3D-printed porous titanium alloy scaffolds using atmospheric plasma spraying and characterized by SEM, EDS, and XRD. Both CuO and SrO were successfully incorporated into the CS coating. The in vivo osseointegration evaluation of the composite coating-modified 3D-printed porous titanium alloy scaffolds was conducted using a rabbit bone defect model, showing that the in vivo osseointegration of 2% CuO-10% SrO-CS-modified 3D-printed porous titanium alloy was improved. The in vitro antimicrobial properties of the 2% CuO-10% SrO-CS-modified 3D-printed porous titanium alloy were evaluated through bacterial platform coating, co-culture liquid absorbance detection, and crystal violet staining experiments, demonstrating that the composite coating exhibited good antimicrobial properties. In conclusion, the composite scaffold possesses both osteointegration-promoting and antimicrobial properties, indicating a broad potential for clinical applications.
{"title":"Enhanced osseointegration and antimicrobial properties of 3D-Printed porous titanium alloys with copper-strontium doped calcium silicate coatings.","authors":"Xin Qi Cheng, Wei Xu, Long Hui Shao, Hua Qiao Shen, Hong Wei Liu","doi":"10.1177/08853282241287916","DOIUrl":"10.1177/08853282241287916","url":null,"abstract":"<p><p>The 3D printing of porous titanium scaffolds reduces the elastic modulus of titanium alloys and promotes osteogenic integration. However, due to the biological inertness of titanium alloy materials, the implant-bone tissue interface is weakly bonded. A calcium silicate (CS) coating doped with polymetallic ions can impart various biological properties to titanium alloy materials. In this study, CuO and SrO binary-doped CS coatings were prepared on the surface of 3D-printed porous titanium alloy scaffolds using atmospheric plasma spraying and characterized by SEM, EDS, and XRD. Both CuO and SrO were successfully incorporated into the CS coating. The in vivo osseointegration evaluation of the composite coating-modified 3D-printed porous titanium alloy scaffolds was conducted using a rabbit bone defect model, showing that the in vivo osseointegration of 2% CuO-10% SrO-CS-modified 3D-printed porous titanium alloy was improved. The in vitro antimicrobial properties of the 2% CuO-10% SrO-CS-modified 3D-printed porous titanium alloy were evaluated through bacterial platform coating, co-culture liquid absorbance detection, and crystal violet staining experiments, demonstrating that the composite coating exhibited good antimicrobial properties. In conclusion, the composite scaffold possesses both osteointegration-promoting and antimicrobial properties, indicating a broad potential for clinical applications.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"607-619"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142347253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01Epub Date: 2024-08-29DOI: 10.1177/08853282241277477
Masanobu Kamitakahara, Kakeru Kato, Masaki Umetsu, Kumiko Yoshihara, Yasuhiro Yoshida
Novel calcium phosphate cements (CPCs) that can be resorbed into the human body need to be developed. One approach for improving bioresorbability is reducing the content of calcium phosphate in CPCs; however, this may induces difficulties in setting the cement and increases the risk of decay. Adding bioresorbable polymers to a liquid solution can shorten the setting time and inhibit decay during setting. A novel bioresorbable polymer, phosphorylated pullulan (PPL), was recently reported. The effect of adding PPL to α-tricalcium phosphate (α-TCP)-based CPCs was examined and compared to that of adding bioresorbable polymers such as collagen, chitosan, and alginate. Collagen did not significantly inhibit the conversion of α-TCP to hydroxyapatite (HA), and its combination with calcium phosphate decreased the setting time and suppressed decay; chitosan decreased the setting time when combined with calcium phosphate; and alginate inhibited the conversion of α-TCP to HA and contributed to suppressing the decay. In contrast, PPL slightly inhibited the conversion of α-TCP to HA; however, its combination with calcium phosphate decreased the setting time. Thus, selecting bioresorbable polymers can help effectively control the properties of CPCs.
{"title":"Design of bioresorbable calcium phosphate cement with high porosity via the addition of bioresorbable polymers.","authors":"Masanobu Kamitakahara, Kakeru Kato, Masaki Umetsu, Kumiko Yoshihara, Yasuhiro Yoshida","doi":"10.1177/08853282241277477","DOIUrl":"10.1177/08853282241277477","url":null,"abstract":"<p><p>Novel calcium phosphate cements (CPCs) that can be resorbed into the human body need to be developed. One approach for improving bioresorbability is reducing the content of calcium phosphate in CPCs; however, this may induces difficulties in setting the cement and increases the risk of decay. Adding bioresorbable polymers to a liquid solution can shorten the setting time and inhibit decay during setting. A novel bioresorbable polymer, phosphorylated pullulan (PPL), was recently reported. The effect of adding PPL to α-tricalcium phosphate (α-TCP)-based CPCs was examined and compared to that of adding bioresorbable polymers such as collagen, chitosan, and alginate. Collagen did not significantly inhibit the conversion of α-TCP to hydroxyapatite (HA), and its combination with calcium phosphate decreased the setting time and suppressed decay; chitosan decreased the setting time when combined with calcium phosphate; and alginate inhibited the conversion of α-TCP to HA and contributed to suppressing the decay. In contrast, PPL slightly inhibited the conversion of α-TCP to HA; however, its combination with calcium phosphate decreased the setting time. Thus, selecting bioresorbable polymers can help effectively control the properties of CPCs.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"557-565"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Deep vein thrombosis (DVT) is a major cause of cardiovascular disease-related deaths worldwide and is considered a thrombotic inflammatory disorder. IL-1β, as a key promoter of venous thrombus inflammation, is a potential target for DVT treatment. Constructing a nanocarrier system for intracellular delivery of siIL-1β to silence IL-1β may be an effective strategy for alleviating DVT. Methods: ELISA was used to detect the expression levels of IL-1β and t-PA in the serum of DVT patients and healthy individuals. In vitro, HUVEC cells were treated with IL-1β, and changes in VWF and t-PA expression levels were assessed. PBAE/MCM-41@siIL-1β (PM@siIL-1β) nano-complexes were synthesized, the characterization and biocompatibility of PM@siIL-1β were evaluated. A rat hind limb DVT model was established, and PM@siIL-1β was used to treat DVT rats. Morphology of the inferior vena cava, endothelial cell count, IL-1β, vWF, and t-PA levels, as well as changes in the p38 MAPK and NF-κB pathways, were examined in the different groups. Results: IL-1β and t-PA were highly expressed in DVT patients, and IL-1β treatment induced a decrease in VWF levels and an increase in t-PA levels in HUVEC cells. The synthesized PM@siIL-1β exhibited spherical shape, good stability, high encapsulation efficiency, and high drug loading capacity, with excellent biocompatibility. In the DVT model rats, the inferior vena cava was filled with blood clots, endothelial cells increased, IL-1β and VWF levels significantly increased, while t-PA levels were significantly downregulated. Treatment with PM@siIL-1β resulted in reduced thrombus formation, decreased endothelial cell count, and reversal of IL-1β, VWF, and t-PA levels. Furthermore, PM@siIL-1β treatment significantly inhibited p38 phosphorylation and upregulation of NF-κB expression in the DVT model group. Conclusion: IL-1β can be considered a therapeutic target for suppressing DVT inflammation. The synthesized PM@siIL-1β achieved efficient delivery and gene silencing of siIL-1β, demonstrating good therapeutic effects on rat hind limb DVT, including anti-thrombotic and anti-inflammatory effects, potentially mediated through the p38 MAPK and NF-κB pathways.
{"title":"Poly (β-amino esters)/Mobil Composition of Matter 41-mediated delivery of siIL-1β alleviates deep vein thrombosis in rat hind limbs.","authors":"Bingru Zheng, Jinjie Chen, Yizhou Xu, Wanrui Wu, Yu Zhu, Wei Cai, Weili Lin, Changsheng Shi","doi":"10.1177/08853282241280376","DOIUrl":"10.1177/08853282241280376","url":null,"abstract":"<p><p><b>Introduction:</b> Deep vein thrombosis (DVT) is a major cause of cardiovascular disease-related deaths worldwide and is considered a thrombotic inflammatory disorder. IL-1β, as a key promoter of venous thrombus inflammation, is a potential target for DVT treatment. Constructing a nanocarrier system for intracellular delivery of siIL-1β to silence IL-1β may be an effective strategy for alleviating DVT. <b>Methods:</b> ELISA was used to detect the expression levels of IL-1β and t-PA in the serum of DVT patients and healthy individuals. In vitro, HUVEC cells were treated with IL-1β, and changes in VWF and t-PA expression levels were assessed. PBAE/MCM-41@siIL-1β (PM@siIL-1β) nano-complexes were synthesized, the characterization and biocompatibility of PM@siIL-1β were evaluated. A rat hind limb DVT model was established, and PM@siIL-1β was used to treat DVT rats. Morphology of the inferior vena cava, endothelial cell count, IL-1β, vWF, and t-PA levels, as well as changes in the p38 MAPK and NF-κB pathways, were examined in the different groups. <b>Results:</b> IL-1β and t-PA were highly expressed in DVT patients, and IL-1β treatment induced a decrease in VWF levels and an increase in t-PA levels in HUVEC cells. The synthesized PM@siIL-1β exhibited spherical shape, good stability, high encapsulation efficiency, and high drug loading capacity, with excellent biocompatibility. In the DVT model rats, the inferior vena cava was filled with blood clots, endothelial cells increased, IL-1β and VWF levels significantly increased, while t-PA levels were significantly downregulated. Treatment with PM@siIL-1β resulted in reduced thrombus formation, decreased endothelial cell count, and reversal of IL-1β, VWF, and t-PA levels. Furthermore, PM@siIL-1β treatment significantly inhibited p38 phosphorylation and upregulation of NF-κB expression in the DVT model group. <b>Conclusion:</b> IL-1β can be considered a therapeutic target for suppressing DVT inflammation. The synthesized PM@siIL-1β achieved efficient delivery and gene silencing of siIL-1β, demonstrating good therapeutic effects on rat hind limb DVT, including anti-thrombotic and anti-inflammatory effects, potentially mediated through the p38 MAPK and NF-κB pathways.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"648-660"},"PeriodicalIF":2.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142107769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-24DOI: 10.1177/08853282241312089
Xuefang Guo, Ying Sun, Jing Qiao, Ben Fan, Xueqin Zhang
Silicone contact lenses (SCL), as an emerging ocular drug delivery system, achieve controlled drug release. However, the existing drug loading methods have limitations such as low drug uptake, complicated operation process, poor welling rate and transmittance of the lens after drug loading. In this study, an effective microemulsion soaking method was proposed to increase the drug-loading capacity of silicone contact lenses. Levofloxacin (LVF) was encapsulated into the microemulsion by direct agitation, then the microemulsion was loaded into silicone contact lenses using the immersion method. The adsorption capacity of levofloxacin and its effect on drug release kinetics were explored. The results showed that the particle size of the microemulsion was approximately 160 nm. The levofloxacin microemulsion soaking method (LVF-ME-SCL) significantly enhanced the drug loading of levofloxacin in the silicone contact lenses, achieving a maximum drug loading of 216.32 ± 1.15 μg/lens (p > 0.05). The total release rate of levofloxacin was 95.96% when the sustained release time was 10 h, and the drug leakage observed after 10 h was negligible. The survival rate of E. coli and S. aureus in LVF-ME-SCL-1 (LVF concentration was 4.8 mg/mL) group was 0 and 19.33 ± 0.02% (p < 0.0001), with a significant difference, indicating that the drug-loaded silicone contact lenses exhibited effective bactericidal properties against E. coli and S. aureus. Following the addition of maximum levofloxacin, the surface contact angle of silicone contact lenses decreased significantly to 32.88 ± 1.19° (p > 0.05), while the swelling, mechanical properties, and oxygen permeability remained relatively unchanged. There was no significant decrease in the transmittance of the contact lenses after the addition of levofloxacin, which remained above 95%. In conclusion, these results show that the microemulsion impregnation method effectively improves the drug loading and sustained release time of levofloxacin, and maintains lens performance stability before and after drug loading, so it is expected to be used in ophthalmic treatment.
{"title":"Levofloxacin-loaded silicone contact lenses materials for ocular drug delivery.","authors":"Xuefang Guo, Ying Sun, Jing Qiao, Ben Fan, Xueqin Zhang","doi":"10.1177/08853282241312089","DOIUrl":"https://doi.org/10.1177/08853282241312089","url":null,"abstract":"<p><p>Silicone contact lenses (SCL), as an emerging ocular drug delivery system, achieve controlled drug release. However, the existing drug loading methods have limitations such as low drug uptake, complicated operation process, poor welling rate and transmittance of the lens after drug loading. In this study, an effective microemulsion soaking method was proposed to increase the drug-loading capacity of silicone contact lenses. Levofloxacin (LVF) was encapsulated into the microemulsion by direct agitation, then the microemulsion was loaded into silicone contact lenses using the immersion method. The adsorption capacity of levofloxacin and its effect on drug release kinetics were explored. The results showed that the particle size of the microemulsion was approximately 160 nm. The levofloxacin microemulsion soaking method (LVF-ME-SCL) significantly enhanced the drug loading of levofloxacin in the silicone contact lenses, achieving a maximum drug loading of 216.32 ± 1.15 μg/lens (<i>p</i> > 0.05). The total release rate of levofloxacin was 95.96% when the sustained release time was 10 h, and the drug leakage observed after 10 h was negligible. The survival rate of <i>E. coli</i> and <i>S. aureus</i> in LVF-ME-SCL-1 (LVF concentration was 4.8 mg/mL) group was 0 and 19.33 ± 0.02% (<i>p</i> < 0.0001), with a significant difference, indicating that the drug-loaded silicone contact lenses exhibited effective bactericidal properties against <i>E. coli</i> and <i>S. aureus</i>. Following the addition of maximum levofloxacin, the surface contact angle of silicone contact lenses decreased significantly to 32.88 ± 1.19° (<i>p</i> > 0.05), while the swelling, mechanical properties, and oxygen permeability remained relatively unchanged. There was no significant decrease in the transmittance of the contact lenses after the addition of levofloxacin, which remained above 95%. In conclusion, these results show that the microemulsion impregnation method effectively improves the drug loading and sustained release time of levofloxacin, and maintains lens performance stability before and after drug loading, so it is expected to be used in ophthalmic treatment.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241312089"},"PeriodicalIF":2.3,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HA/Fe composites were prepared by powder metallurgy. The effects of ball milling time, pressing pressure, and sintering temperature on the porosity and hardness of the composites were investigated, and their mechanical properties and biocompatibility were evaluated. The results show that as the ball milling time increases (30∼60min), the average particle size initially decreases and then increases (82.91∼53.49∼77.98 μm). Additionally, an appropriate increase in pressing pressure and sintering temperature can decrease the composite's porosity and increase its hardness. When the pressing pressure is 27 KN and the sintering temperature is 1000°C, the composite material has excellent mechanical properties (hardness 268.5 Hv, compressive strength 106.736 MPa) and good in vitro biocompatibility. The hemolysis rate of the sample was 1.719518 %. When the concentration of the extract was 50 %, the cell proliferation rate could reach 136.26 %. Furthermore, the degradation properties of the composites were studied. At 12 months the corrosion rate of HA/Fe composites reached 0.3173 mm/a. It was also observed varying degradation mechanisms was different in different soaking cycles, and the dominant degradation mechanism was gradually changed from HA in the early stage to Fe in the later stage, which played a positive guiding role in the development of iron matrix composites with different degradation rates.
{"title":"The effects of process parameters on the mechanical properties and degradation behavior of Fe/HA biodegradable materials.","authors":"Yuzhen Feng, Nan Huang, Jing Guo, Shuwen Chen, Yingxue Teng, Shanshan Chen","doi":"10.1177/08853282241310592","DOIUrl":"https://doi.org/10.1177/08853282241310592","url":null,"abstract":"<p><p>HA/Fe composites were prepared by powder metallurgy. The effects of ball milling time, pressing pressure, and sintering temperature on the porosity and hardness of the composites were investigated, and their mechanical properties and biocompatibility were evaluated. The results show that as the ball milling time increases (30∼60min), the average particle size initially decreases and then increases (82.91∼53.49∼77.98 μm). Additionally, an appropriate increase in pressing pressure and sintering temperature can decrease the composite's porosity and increase its hardness. When the pressing pressure is 27 KN and the sintering temperature is 1000°C, the composite material has excellent mechanical properties (hardness 268.5 Hv, compressive strength 106.736 MPa) and good in vitro biocompatibility. The hemolysis rate of the sample was 1.719518 %. When the concentration of the extract was 50 %, the cell proliferation rate could reach 136.26 %. Furthermore, the degradation properties of the composites were studied. At 12 months the corrosion rate of HA/Fe composites reached 0.3173 mm/a. It was also observed varying degradation mechanisms was different in different soaking cycles, and the dominant degradation mechanism was gradually changed from HA in the early stage to Fe in the later stage, which played a positive guiding role in the development of iron matrix composites with different degradation rates.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241310592"},"PeriodicalIF":2.3,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-17DOI: 10.1177/08853282241307908
Bhavana Raj, Harika Sapa, Shona S Shaji, Kaladhar Kamalasanan
In this work, we are comparing biomimetic niosomal nanoparticles (BNNs) with biomimetic liposomal nanoparticles (BLNs) and studying their drug carrier properties. A-BNNs and A-BLNs are prepared by lipid hydration method and characterized using DLS for size and zeta potential analysis, surface morphology by SEM, structural details by TEM, crystallinity and phase change by XRD, thermodynamic properties by DSC, TGA and DTGA, drug carrier properties by entrapment efficiency, drug release studies by open-end tube method and its mechanistic assessment by fitting with various models such as zero order, first order, Higuchi and Korsmeyer-Peppas models. The A-BNNs had an average size of 157.0 ± 3.58 nm and A-BLNs had an average size of 173 ± 1.24 nm. The A-BNNs had an average zeta potential of -29.0 ± 1.11 mV and A-BLNs had an average zeta potential of -46.5 ± 1.11 mV. The A-BNNs have an average entrapment efficiency of 94 ± 0.4% and A-BLNs have an average entrapment efficiency of 98 ± 0.14%. The BNNs have an average drug release of 78.12 ± 1.57% and A-BLNs have an average release of 98.41 ± 1.87% over 24 hours. Our results show that the vesicular size dependence influences the resulting nanoparticle drug carrier properties. This is a robust demonstration of the phenomena at the nanoscale that the precursor vesicular system size dependency will be reflected in bulk-engineered nanoparticle properties. These novel nanoparticles are potential candidates for development as an injection to suppress clots in stroke and myocardial infarction.
{"title":"Biomimetic niosomal versus liposomal nanoparticle-based aspirin injection for treating stroke and myocardial infarction.","authors":"Bhavana Raj, Harika Sapa, Shona S Shaji, Kaladhar Kamalasanan","doi":"10.1177/08853282241307908","DOIUrl":"https://doi.org/10.1177/08853282241307908","url":null,"abstract":"<p><p>In this work, we are comparing biomimetic niosomal nanoparticles (BNNs) with biomimetic liposomal nanoparticles (BLNs) and studying their drug carrier properties. A-BNNs and A-BLNs are prepared by lipid hydration method and characterized using DLS for size and zeta potential analysis, surface morphology by SEM, structural details by TEM, crystallinity and phase change by XRD, thermodynamic properties by DSC, TGA and DTGA, drug carrier properties by entrapment efficiency, drug release studies by open-end tube method and its mechanistic assessment by fitting with various models such as zero order, first order, Higuchi and Korsmeyer-Peppas models. The A-BNNs had an average size of 157.0 ± 3.58 nm and A-BLNs had an average size of 173 ± 1.24 nm. The A-BNNs had an average zeta potential of -29.0 ± 1.11 mV and A-BLNs had an average zeta potential of -46.5 ± 1.11 mV. The A-BNNs have an average entrapment efficiency of 94 ± 0.4% and A-BLNs have an average entrapment efficiency of 98 ± 0.14%. The BNNs have an average drug release of 78.12 ± 1.57% and A-BLNs have an average release of 98.41 ± 1.87% over 24 hours. Our results show that the vesicular size dependence influences the resulting nanoparticle drug carrier properties. This is a robust demonstration of the phenomena at the nanoscale that the precursor vesicular system size dependency will be reflected in bulk-engineered nanoparticle properties. These novel nanoparticles are potential candidates for development as an injection to suppress clots in stroke and myocardial infarction.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241307908"},"PeriodicalIF":2.3,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142835702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-13DOI: 10.1177/08853282241306245
Yi Gui Zhou, Song Kai Li, Yun Xue, Bo Fan, Qiu Ming Gao, Long Wen Zhan, Rui Tang Liu, Yun Fei Li, Rui Long Sun, Yong Zheng Tian
The Diels-Alder reaction, a classical (4+2) cycloaddition process, holds significant standing within the realms of organic synthesis and polymer chemistry, frequently employed in areas such as pharmaceutical production and material science. Recently, hydrogels constructed via Diels-Alder reactions have garnered considerable attention from researchers. This review aims to summarize the advancements in utilizing the Diels-Alder reaction for hydrogel synthesis, exploring its impact on structural design, functionalization, and application domains. Initially, the fundamental principles of the Diels-Alder reaction are introduced alongside an examination of its benefits and characteristics in hydrogel fabrication. Subsequently, applications of Diels-Alder-generated hydrogels in biomedicine, smart responsive materials, drug delivery systems, among other fields, are comprehensively reviewed. Challenges and limitations encountered during hydrogel synthesis using this reaction are also discussed. Finally, prospective research directions and future prospects of Diels-Alder reactions in hydrogel synthesis are contemplated.
{"title":"Diels-Alder reaction in hydrogel synthesis: Mechanisms and functional aspects.","authors":"Yi Gui Zhou, Song Kai Li, Yun Xue, Bo Fan, Qiu Ming Gao, Long Wen Zhan, Rui Tang Liu, Yun Fei Li, Rui Long Sun, Yong Zheng Tian","doi":"10.1177/08853282241306245","DOIUrl":"https://doi.org/10.1177/08853282241306245","url":null,"abstract":"<p><p>The Diels-Alder reaction, a classical (4+2) cycloaddition process, holds significant standing within the realms of organic synthesis and polymer chemistry, frequently employed in areas such as pharmaceutical production and material science. Recently, hydrogels constructed via Diels-Alder reactions have garnered considerable attention from researchers. This review aims to summarize the advancements in utilizing the Diels-Alder reaction for hydrogel synthesis, exploring its impact on structural design, functionalization, and application domains. Initially, the fundamental principles of the Diels-Alder reaction are introduced alongside an examination of its benefits and characteristics in hydrogel fabrication. Subsequently, applications of Diels-Alder-generated hydrogels in biomedicine, smart responsive materials, drug delivery systems, among other fields, are comprehensively reviewed. Challenges and limitations encountered during hydrogel synthesis using this reaction are also discussed. Finally, prospective research directions and future prospects of Diels-Alder reactions in hydrogel synthesis are contemplated.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241306245"},"PeriodicalIF":2.3,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-08DOI: 10.1177/08853282241305362
Chao Xu, Yuanmin Pei, Yanli Wang, Wenpeng Li, Liu Yang, Aimei Chai, Ying Wang, Wenrong Fan, Huiquan Tan
Auto-concentrated growth factor (CGF) constitutes the latest generation of plasma extract, and has high concentrations of growth factors and white blood cells. Due to the continuous variable speed centrifugation used during preparation, the tensile strength of the fibrin is also higher. CGF preparation does not involve the use of animal serum, minimizing the risk of infection and immune rejection. Therefore, it has wide potential applications in various fields of regenerative medicine. This paper summarizes the history behind CGF development, reviews the clinical applications and research progress concerning single CGF therapy and CGF used in combination with other treatments in multiple wound repair, and summarizes its potential value as therapeutic agent. Finally, some constructive suggestions and research perspectives for the application of CGF in wound healing are put forward. The available evidence indicates that CGF can promote the healing of chronic refractory wounds and acute wound, promote the growth of granulation, accelerate the speed and improve the quality of wound healing, reduce scar formation, minimize the need for repeated wound dressing, and ameliorate the pain experienced by patients.
{"title":"Progress in the application of auto-concentrated growth factor (CGF) in wound repair.","authors":"Chao Xu, Yuanmin Pei, Yanli Wang, Wenpeng Li, Liu Yang, Aimei Chai, Ying Wang, Wenrong Fan, Huiquan Tan","doi":"10.1177/08853282241305362","DOIUrl":"https://doi.org/10.1177/08853282241305362","url":null,"abstract":"<p><p>Auto-concentrated growth factor (CGF) constitutes the latest generation of plasma extract, and has high concentrations of growth factors and white blood cells. Due to the continuous variable speed centrifugation used during preparation, the tensile strength of the fibrin is also higher. CGF preparation does not involve the use of animal serum, minimizing the risk of infection and immune rejection. Therefore, it has wide potential applications in various fields of regenerative medicine. This paper summarizes the history behind CGF development, reviews the clinical applications and research progress concerning single CGF therapy and CGF used in combination with other treatments in multiple wound repair, and summarizes its potential value as therapeutic agent. Finally, some constructive suggestions and research perspectives for the application of CGF in wound healing are put forward. The available evidence indicates that CGF can promote the healing of chronic refractory wounds and acute wound, promote the growth of granulation, accelerate the speed and improve the quality of wound healing, reduce scar formation, minimize the need for repeated wound dressing, and ameliorate the pain experienced by patients.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241305362"},"PeriodicalIF":2.3,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}