首页 > 最新文献

Journal of Biomaterials Applications最新文献

英文 中文
Preparation, characterization, and liver targeting evaluation of a novel sustained-release brucine self-assembled micelle mediated by glycyrrhetinic acid. 甘草亭酸介导的新型缓释布鲁宾自组装胶束的制备、表征和肝脏靶向评估
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-01 Epub Date: 2024-07-20 DOI: 10.1177/08853282241258161
Qingxia Guan, Han Yang, Zhaorui Xia, Xiuyan Li, Yue Zhang, Zeyu Lin, Shaung Sun, Zhixin Yang, Xiaoying Zhou, Shaowa Lv, Yanhong Wang

Background: Cancer is a serious threat to human life, health and social development. In recent years, nanomicelles, as an emerging drug carrier material, have gradually entered people's field of vision because of their advantages of improving bioavailability, maintaining drug levels, reducing systemic side effects and increasing drug accumulation at target sites. Methods: In this study, B-GPSG nano-micelles were prepared by film dispersion hydration method using brucine as model drug and glycyrrhetinic acid-polyethylene glycol-3-methylene glycol-dithiodipropionic acid-glycerol monostearate polymer as nano-carrier. The preparation process, characterization, drug release in vitro, pharmacokinetics and liver targeting were investigated. Results: The results showed that the range of particle size, polydispersion index and Zeta potential were 102.7 ± 1.09 nm, 0.201 ± 0.02 and -24.5 ± 0.19 mV respectively. The entrapment efficiency and drug loading were 83.79 ± 2.13% and 12.56 ± 0.09%, respectively. The drug release experiments in vitro and pharmacokinetic experiments showed that it had obvious sustained release effect. For pharmacokinetics study, it shows that both the B-GPSG solution group and the B-PSG solution group changed the metabolic kinetic parameters of brucine, but the B-GPSG solution group had a better effect. Compared with the B-PSG solution group, the drug was more prolonged in rats. The half-life in the body and the retention time in the body of B-GPSG are more helpful to improve the bioavailability of the drug and play a long-term effect. The tail vein injection results of mice indicate that B-GPSG can target and accumulate brucine in the liver without affecting other key organs. Cell uptake experiments and tissue distribution experiments in vivo show that glycyrrhetinic acid modified nano-micelles can increase the accumulation of brucine in hepatocytes, has a good liver targeting effect, and can be used as a new preparation for the treatment of liver cancer. Conclusion: The B-SPSG prepared in this experiment can provide a new treatment method and research idea for the treatment of liver cancer.

背景:癌症严重威胁着人类的生命健康和社会发展。近年来,纳米细胞作为一种新兴的药物载体材料,因其具有提高生物利用度、维持药物浓度、减少全身副作用、增加药物在靶点蓄积等优点,逐渐进入人们的视野。研究方法本研究以布鲁新为模型药物,甘草亭酸-聚乙二醇-3-亚甲基乙二醇-二硫代二丙酸-单硬脂酸甘油酯聚合物为纳米载体,采用薄膜分散水合法制备了B-GPSG纳米微胶囊。对其制备过程、表征、体外药物释放、药代动力学和肝脏靶向性进行了研究。结果表明结果表明,粒度范围、多分散指数和 Zeta 电位分别为 102.7 ± 1.09 nm、0.201 ± 0.02 和 -24.5 ± 0.19 mV。药物包埋效率和载药量分别为 83.79 ± 2.13% 和 12.56 ± 0.09%。体外药物释放实验和药代动力学实验表明,它具有明显的缓释效果。药代动力学研究表明,B-GPSG 溶液组和 B-PSG 溶液组均改变了布鲁宾的代谢动力学参数,但 B-GPSG 溶液组的效果更好。与 B-PSG 溶液组相比,该药物在大鼠体内的作用时间更长。B-GPSG 在体内的半衰期和在体内的滞留时间更有利于提高药物的生物利用度,发挥长效作用。小鼠尾静脉注射结果表明,B-GPSG 能在肝脏中靶向蓄积布鲁氨酸,而不影响其他关键器官。体内细胞摄取实验和组织分布实验表明,甘草亭酸修饰的纳米微球可增加布鲁氨酸在肝细胞中的蓄积,具有良好的肝脏靶向作用,可作为治疗肝癌的新制剂。结论本实验制备的 B-SPSG 可为肝癌的治疗提供一种新的治疗方法和研究思路。
{"title":"Preparation, characterization, and liver targeting evaluation of a novel sustained-release brucine self-assembled micelle mediated by glycyrrhetinic acid.","authors":"Qingxia Guan, Han Yang, Zhaorui Xia, Xiuyan Li, Yue Zhang, Zeyu Lin, Shaung Sun, Zhixin Yang, Xiaoying Zhou, Shaowa Lv, Yanhong Wang","doi":"10.1177/08853282241258161","DOIUrl":"10.1177/08853282241258161","url":null,"abstract":"<p><p><b>Background:</b> Cancer is a serious threat to human life, health and social development. In recent years, nanomicelles, as an emerging drug carrier material, have gradually entered people's field of vision because of their advantages of improving bioavailability, maintaining drug levels, reducing systemic side effects and increasing drug accumulation at target sites. <b>Methods:</b> In this study, B-GPSG nano-micelles were prepared by film dispersion hydration method using brucine as model drug and glycyrrhetinic acid-polyethylene glycol-3-methylene glycol-dithiodipropionic acid-glycerol monostearate polymer as nano-carrier. The preparation process, characterization, drug release in vitro, pharmacokinetics and liver targeting were investigated. <b>Results:</b> The results showed that the range of particle size, polydispersion index and Zeta potential were 102.7 ± 1.09 nm, 0.201 ± 0.02 and -24.5 ± 0.19 mV respectively. The entrapment efficiency and drug loading were 83.79 ± 2.13% and 12.56 ± 0.09%, respectively. The drug release experiments in vitro and pharmacokinetic experiments showed that it had obvious sustained release effect. For pharmacokinetics study, it shows that both the B-GPSG solution group and the B-PSG solution group changed the metabolic kinetic parameters of brucine, but the B-GPSG solution group had a better effect. Compared with the B-PSG solution group, the drug was more prolonged in rats. The half-life in the body and the retention time in the body of B-GPSG are more helpful to improve the bioavailability of the drug and play a long-term effect. The tail vein injection results of mice indicate that B-GPSG can target and accumulate brucine in the liver without affecting other key organs. Cell uptake experiments and tissue distribution experiments in vivo show that glycyrrhetinic acid modified nano-micelles can increase the accumulation of brucine in hepatocytes, has a good liver targeting effect, and can be used as a new preparation for the treatment of liver cancer. <b>Conclusion:</b> The B-SPSG prepared in this experiment can provide a new treatment method and research idea for the treatment of liver cancer.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"317-331"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141731147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sodium alginate hydrogel encapsulating microglia cell lysate subjected to serum starvation for mitigating glioma cells. 海藻酸钠水凝胶包裹血清饥饿状态下的小胶质细胞裂解液,用于缓解胶质瘤细胞的生长。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-01 Epub Date: 2024-07-29 DOI: 10.1177/08853282241268694
Shenzhong Luo, Jilong Wang, Meng Gao

Glioma is the most common malignant tumor in the brain, accounting for over 80% of all primary intracranial tumors. The current clinical treatment has shown certain limitations. Although M1 type microglia can secrete various pro-inflammatory cytokines and are expected to be used for glioma treatment, direct use of microglia may lead to overactivation and trigger immune storms. Therefore, we first found that serum starvation can stimulate the transformation of microglia into M1 type. Subsequently, we found through comparative experiments that the inhibitory effect of microglial cell lysis medium on glioma cells was stronger than that of microglial cell culture medium. Finally, we successfully prepared sodium alginate hydrogel loaded with microglia lysis solution to achieve sustained inhibitory effect on the growth of glioma and avoid its proliferation.

胶质瘤是脑部最常见的恶性肿瘤,占颅内原发性肿瘤的80%以上。目前的临床治疗存在一定的局限性。虽然 M1 型小胶质细胞能分泌多种促炎细胞因子,有望用于胶质瘤治疗,但直接使用小胶质细胞可能导致过度激活,引发免疫风暴。因此,我们首先发现血清饥饿能刺激小胶质细胞转化为 M1 型。随后,我们通过对比实验发现,小胶质细胞裂解液对胶质瘤细胞的抑制作用强于小胶质细胞培养液。最后,我们成功制备出了负载有小胶质细胞溶解液的海藻酸钠水凝胶,实现了对胶质瘤生长的持续抑制作用,避免了胶质瘤的增殖。
{"title":"Sodium alginate hydrogel encapsulating microglia cell lysate subjected to serum starvation for mitigating glioma cells.","authors":"Shenzhong Luo, Jilong Wang, Meng Gao","doi":"10.1177/08853282241268694","DOIUrl":"10.1177/08853282241268694","url":null,"abstract":"<p><p>Glioma is the most common malignant tumor in the brain, accounting for over 80% of all primary intracranial tumors. The current clinical treatment has shown certain limitations. Although M1 type microglia can secrete various pro-inflammatory cytokines and are expected to be used for glioma treatment, direct use of microglia may lead to overactivation and trigger immune storms. Therefore, we first found that serum starvation can stimulate the transformation of microglia into M1 type. Subsequently, we found through comparative experiments that the inhibitory effect of microglial cell lysis medium on glioma cells was stronger than that of microglial cell culture medium. Finally, we successfully prepared sodium alginate hydrogel loaded with microglia lysis solution to achieve sustained inhibitory effect on the growth of glioma and avoid its proliferation.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"396-405"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper ion-doped multifunctional hydrogel with mild photothermal enhancement promotes vascularized bone regeneration. 掺杂铜离子的多功能水凝胶具有温和的光热增强功能,可促进血管化骨再生。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-10-01 Epub Date: 2024-07-26 DOI: 10.1177/08853282241268683
Chao Han, Dingsong Lu, Suoping Yang, Chong Liu, Feng Guo, Kai Zhang, Peng Li

The design and construction of a new and excellent synthetic graft is of great significance in the field of bone defect repair and reconstruction. In this study, a dopamine modified chitosan hydrogel doped with Cu ions with a mild photothermal effect was designed to provide a better microenvironment to advance the bone repair via promote the angiogenesis and osteogenesis. Characterizations showed the successful synthesis of the material while it also presented excellent biocompatibility and mild photothermal effect under the irradiation of near-infrared light. Further, it could enhance the angiogenesis of HUVECs cells through promoting the ability of migration and tube formation and enhance the osteogenic differentiation of MC3T3-E1 cells via increasing the content of vital osteogenic factors including Runx2, Col-1, OPN, OCN, OSX, etc. The in vivo experiment also testified that it could promote the bone defect repair in rat models. These results indicate the multifunctional hydrogel is an ideal material for the treatment of bone defects and has good clinical application potential.

在骨缺损修复和重建领域,设计和构建一种新型、优良的合成移植物具有重要意义。本研究设计了一种掺杂铜离子的多巴胺修饰壳聚糖水凝胶,具有温和的光热效应,可通过促进血管生成和骨生成为骨修复提供更好的微环境。表征结果表明,该材料的合成非常成功,而且具有良好的生物相容性,在近红外线照射下具有温和的光热效应。此外,它还能通过促进迁移和管形成能力来增强 HUVECs 细胞的血管生成,并通过增加 Runx2、Col-1、OPN、OCN、OSX 等重要成骨因子的含量来增强 MC3T3-E1 细胞的成骨分化。体内实验也证明,它能促进大鼠模型的骨缺损修复。这些结果表明,多功能水凝胶是治疗骨缺损的理想材料,具有良好的临床应用潜力。
{"title":"Copper ion-doped multifunctional hydrogel with mild photothermal enhancement promotes vascularized bone regeneration.","authors":"Chao Han, Dingsong Lu, Suoping Yang, Chong Liu, Feng Guo, Kai Zhang, Peng Li","doi":"10.1177/08853282241268683","DOIUrl":"10.1177/08853282241268683","url":null,"abstract":"<p><p>The design and construction of a new and excellent synthetic graft is of great significance in the field of bone defect repair and reconstruction. In this study, a dopamine modified chitosan hydrogel doped with Cu ions with a mild photothermal effect was designed to provide a better microenvironment to advance the bone repair via promote the angiogenesis and osteogenesis. Characterizations showed the successful synthesis of the material while it also presented excellent biocompatibility and mild photothermal effect under the irradiation of near-infrared light. Further, it could enhance the angiogenesis of HUVECs cells through promoting the ability of migration and tube formation and enhance the osteogenic differentiation of MC3T3-E1 cells via increasing the content of vital osteogenic factors including Runx2, Col-1, OPN, OCN, OSX, etc. The in vivo experiment also testified that it could promote the bone defect repair in rat models. These results indicate the multifunctional hydrogel is an ideal material for the treatment of bone defects and has good clinical application potential.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"332-342"},"PeriodicalIF":2.3,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141758886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boric acid and zinc borate doped graphene hydrogels designed for burn treatment: In vitro viability-biocompatibility tests and microbiological analysis. 用于烧伤治疗的掺杂硼酸和硼酸锌的石墨烯水凝胶:体外活力-生物相容性测试和微生物分析。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-20 DOI: 10.1177/08853282241268673
Yasin Bayir, Beyzagül Erkayman, Abdulmecit Albayrak, Şaziye Sezin Palabiyik-Yücelik, Sümeyra Can, Hayrunisa Hanci, Fatih Tunç, Hamza Halici, Maide Sena Civelek, Melike Sevim, Emir Enis Yurdgülü, Önder Metin

Boron, an essential element for human, can be a key factor in wound healing. For this reason, in this study, role of boron products (boric acid and zinc borate) and boron product doped new synthesized graphene hydrogels was investigated for burn healing via in vitro viability-biocompatibility tests and microbiological analysis. It has been determined that boric acid and zinc borate are effective against microbial agents that are frequently seen in burns. In L929 mouse fibroblast cell line, BA, ZB and graphene hydrogels did not show any toxic effects, either alone or doped Graphene Hydrogel forms, except at very high doses. These substances showed antioxidant properties by protecting cells against H2O2 damage. The migration test performed on boron products also confirms the protective effect of boron products. In this study, the synthesis of graphene hydrogels was made for the first time, and their characterization was completed with appropriate instrumental analyses. The results of the biocompatibility tests of graphene hydrogels show that they are at least 96% biocompatible.

硼是人体必需的元素,也是伤口愈合的关键因素。因此,本研究通过体外活力-生物相容性测试和微生物分析,研究了硼产品(硼酸和硼酸锌)和掺杂硼产品的新合成石墨烯水凝胶对烧伤愈合的作用。结果表明,硼酸和硼酸锌对烧伤中常见的微生物有效。在 L929 小鼠成纤维细胞系中,无论是单独使用还是掺杂石墨烯水凝胶,硼酸、硼酸锌和石墨烯水凝胶都没有显示出任何毒性作用,除非剂量非常大。这些物质具有抗氧化特性,能保护细胞免受 H2O2 的损害。对硼产品进行的迁移测试也证实了硼产品的保护作用。本研究首次合成了石墨烯水凝胶,并通过适当的仪器分析完成了其表征。石墨烯水凝胶的生物相容性测试结果表明,其生物相容性至少达到 96%。
{"title":"Boric acid and zinc borate doped graphene hydrogels designed for burn treatment: In vitro viability-biocompatibility tests and microbiological analysis.","authors":"Yasin Bayir, Beyzagül Erkayman, Abdulmecit Albayrak, Şaziye Sezin Palabiyik-Yücelik, Sümeyra Can, Hayrunisa Hanci, Fatih Tunç, Hamza Halici, Maide Sena Civelek, Melike Sevim, Emir Enis Yurdgülü, Önder Metin","doi":"10.1177/08853282241268673","DOIUrl":"https://doi.org/10.1177/08853282241268673","url":null,"abstract":"<p><p>Boron, an essential element for human, can be a key factor in wound healing. For this reason, in this study, role of boron products (boric acid and zinc borate) and boron product doped new synthesized graphene hydrogels was investigated for burn healing via in vitro viability-biocompatibility tests and microbiological analysis. It has been determined that boric acid and zinc borate are effective against microbial agents that are frequently seen in burns. In L929 mouse fibroblast cell line, BA, ZB and graphene hydrogels did not show any toxic effects, either alone or doped Graphene Hydrogel forms, except at very high doses. These substances showed antioxidant properties by protecting cells against H<sub>2</sub>O<sub>2</sub> damage. The migration test performed on boron products also confirms the protective effect of boron products. In this study, the synthesis of graphene hydrogels was made for the first time, and their characterization was completed with appropriate instrumental analyses. The results of the biocompatibility tests of graphene hydrogels show that they are at least 96% biocompatible.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241268673"},"PeriodicalIF":2.3,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142287979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of self-assembled antibacterial nanofiber loaded oriented artificial skin in infected diabetic-related wound regeneration 自组装抗菌纳米纤维负载定向人造皮肤在糖尿病相关感染伤口再生中的应用
IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-14 DOI: 10.1177/08853282241270963
Jie Yang, Shengyun Li
Diabetic patients develop wounds that exhibit delayed healing, prolonged inflammatory responses, and slower epithelialization kinetics compared to non-diabetic patients. Diabetic foot ulcers(DFUs) affect approximately 18.6 million people worldwide. The presence of a high glucose microenvironment in DFUs results in the significant accumulation of bacterial infection and advanced glycation end products (AGEs). To solve this, a self-assemble antibacterial nanofiber(ANF) loaded oriential artificial skin (ANF@OAS) was introduced in this research, which is consisted of L/D-phenylalanine derivatives coupled the natural antimicrobial peptides.The ANF@OAS can effectively reduce AGEs production and suppress multiple resistant bacteria. Additionally, the ANF@OAS can suppress infection and stimulate wound healing in infected diabetic mice.
与非糖尿病患者相比,糖尿病患者的伤口愈合延迟、炎症反应持续时间长、上皮化速度慢。全球约有 1,860 万人患有糖尿病足溃疡。为了解决这一问题,本研究推出了一种自组装抗菌纳米纤维(ANF)负载的天然人工皮肤(ANF@OAS),它由L/D-苯丙氨酸衍生物和天然抗菌肽组成。此外,ANF@OAS 还能抑制感染,刺激受感染的糖尿病小鼠伤口愈合。
{"title":"Application of self-assembled antibacterial nanofiber loaded oriented artificial skin in infected diabetic-related wound regeneration","authors":"Jie Yang, Shengyun Li","doi":"10.1177/08853282241270963","DOIUrl":"https://doi.org/10.1177/08853282241270963","url":null,"abstract":"Diabetic patients develop wounds that exhibit delayed healing, prolonged inflammatory responses, and slower epithelialization kinetics compared to non-diabetic patients. Diabetic foot ulcers(DFUs) affect approximately 18.6 million people worldwide. The presence of a high glucose microenvironment in DFUs results in the significant accumulation of bacterial infection and advanced glycation end products (AGEs). To solve this, a self-assemble antibacterial nanofiber(ANF) loaded oriential artificial skin (ANF@OAS) was introduced in this research, which is consisted of L/D-phenylalanine derivatives coupled the natural antimicrobial peptides.The ANF@OAS can effectively reduce AGEs production and suppress multiple resistant bacteria. Additionally, the ANF@OAS can suppress infection and stimulate wound healing in infected diabetic mice.","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":"4 1","pages":"8853282241270963"},"PeriodicalIF":2.9,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and osteogenesis of a multiple crosslinking silk fibroin/carboxymethyl chitosan/sodium alginate composite scaffold loading with mesoporous silica/poly (lactic acid-glycolic acid) microspheres. 负载介孔二氧化硅/聚(乳酸-乙醇酸)微球的多重交联蚕丝纤维素/羧甲基壳聚糖/海藻酸钠复合支架的制备与成骨。
IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-12 DOI: 10.1177/08853282241281439
Yiwan Shi,Zhaozhen Wang,Weikang Xu,Xiaolu Yu,Botao Gao,Xinting Zhou,Jiwen Chen,Kunfeng Jia,Lek Hang Cheang,Man Seng Tam,Huajun Wang,Xiaofei Zheng,Tingting Wu
Large bone defect repair is a striking challenge in orthopedics. Currently, inorganic-organic composite scaffolds are considered as a promising approach to these bone regeneration. Silicon ions (Si4+) are bioactive and beneficial to bone regeneration and Si4+-containing inorganic mesoporous silica (MS) can effectively load drugs for bone repair. To better control the release of drug, we prepared biodegradable MS/PLGA (MP) microspheres. MP loaded organic silk fibroin/carboxymethyl chitosan/sodium alginate (MP/SF/CMCS/SA) composite scaffolds were further constructed by genipin and Ca2+ crosslinking. All MP/SF/CMCS/SA scaffolds had good swelling ability, degradation rate and high porosity. The incorporation of 1% MP significantly enhanced the compressive strength of composite scaffolds. Besides, MP loaded scaffold showed a sustained release of Si4+ and Ca2+. Moreover, the release rate of rhodamine (a model drug) of MP/SF/CMCS/SA scaffolds was obviously lower than that of MP. When culturing with rat bone marrow mesenchymal stem cells, scaffolds with 1% MP displayed good proliferation, adhesion and enhanced osteogenic differentiation ability. Based on the results above, the addition of 1% MP in SF/CMCS/SA scaffolds is a prospective way for drug release in bone regeneration and is promising for further in vivo bone repair applications.
大面积骨缺损修复是整形外科面临的一项严峻挑战。目前,无机-有机复合支架被认为是一种很有前景的骨再生方法。硅离子(Si4+)具有生物活性,有利于骨再生,而含 Si4+ 的无机介孔二氧化硅(MS)能有效负载药物,用于骨修复。为了更好地控制药物释放,我们制备了可生物降解的 MS/PLGA (MP)微球。通过基因素和 Ca2+ 交联,进一步构建了负载 MP 的有机丝纤维素/羧甲基壳聚糖/海藻酸钠(MP/SF/CMCS/SA)复合支架。所有 MP/SF/CMCS/SA 支架都具有良好的膨胀能力、降解率和高孔隙率。1% 的 MP 能显著提高复合材料支架的抗压强度。此外,负载 MP 的支架显示出 Si4+ 和 Ca2+ 的持续释放。此外,MP/SF/CMCS/SA 支架的罗丹明(一种模型药物)释放率明显低于 MP。在培养大鼠骨髓间充质干细胞时,含有 1%MP的支架显示出良好的增殖、粘附和成骨分化能力。基于上述结果,在 SF/CMCS/SA 支架中添加 1%的 MP 是骨再生中药物释放的一种前瞻性方法,有望进一步应用于体内骨修复。
{"title":"Preparation and osteogenesis of a multiple crosslinking silk fibroin/carboxymethyl chitosan/sodium alginate composite scaffold loading with mesoporous silica/poly (lactic acid-glycolic acid) microspheres.","authors":"Yiwan Shi,Zhaozhen Wang,Weikang Xu,Xiaolu Yu,Botao Gao,Xinting Zhou,Jiwen Chen,Kunfeng Jia,Lek Hang Cheang,Man Seng Tam,Huajun Wang,Xiaofei Zheng,Tingting Wu","doi":"10.1177/08853282241281439","DOIUrl":"https://doi.org/10.1177/08853282241281439","url":null,"abstract":"Large bone defect repair is a striking challenge in orthopedics. Currently, inorganic-organic composite scaffolds are considered as a promising approach to these bone regeneration. Silicon ions (Si4+) are bioactive and beneficial to bone regeneration and Si4+-containing inorganic mesoporous silica (MS) can effectively load drugs for bone repair. To better control the release of drug, we prepared biodegradable MS/PLGA (MP) microspheres. MP loaded organic silk fibroin/carboxymethyl chitosan/sodium alginate (MP/SF/CMCS/SA) composite scaffolds were further constructed by genipin and Ca2+ crosslinking. All MP/SF/CMCS/SA scaffolds had good swelling ability, degradation rate and high porosity. The incorporation of 1% MP significantly enhanced the compressive strength of composite scaffolds. Besides, MP loaded scaffold showed a sustained release of Si4+ and Ca2+. Moreover, the release rate of rhodamine (a model drug) of MP/SF/CMCS/SA scaffolds was obviously lower than that of MP. When culturing with rat bone marrow mesenchymal stem cells, scaffolds with 1% MP displayed good proliferation, adhesion and enhanced osteogenic differentiation ability. Based on the results above, the addition of 1% MP in SF/CMCS/SA scaffolds is a prospective way for drug release in bone regeneration and is promising for further in vivo bone repair applications.","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":"19 1","pages":"8853282241281439"},"PeriodicalIF":2.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic synthetic test system based on hydroxyapatite cement for adhesive strength evaluation of experimental mineral-organic bone adhesive materials 基于羟基磷灰石骨水泥的仿生合成测试系统,用于评估矿物-有机骨粘合剂实验材料的粘合强度
IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-10 DOI: 10.1177/08853282241283537
Paul Frederik Otto, Sebastian Hienz, Silvia Mittmann, Niklas Dümmler, Tobias Renner, Csaba Gergely, Juliane Carolin Kade, Uwe Gbureck
The development of bone adhesive materials is a research field of high relevance for the advancement of clinical procedures. Despite this, there are currently no material candidates meeting the full range of requirements placed on such a material, such as biocompatibility, sufficient mechanical properties and bond strength under biological conditions, practical applicability in a clinical setting, and no adverse effect on the healing process itself. A serious obstacle to the advancement of the field is a lack in standardized methodology leading to comparable results between experiments and different research groups. Natural bone samples are the current gold-standard material used to perform adhesive strength experiments, however they come with a number of drawbacks, including high sample variability due to unavoidable natural causes and the impossibility to reliably recreate test conditions to repeat experiments. This paper introduces a valuable auxiliary test method capable of producing large numbers of synthetic test specimens which are chemically similar to bone and can be produced in different laboratories so to repeat experiments under constant conditions across laboratories. The substrate is based on a hydroxyapatite forming cement with addition of gelatine as organic component. Crosslinking of the organic component is performed to improve mechanical properties. In order to demonstrate the performance of the developed method, various experimental and commercial bone/tissue adhesive materials were tested and compared with results obtained by established methods to highlight the potential of the test system.
骨粘合材料的开发是一个与临床手术进展密切相关的研究领域。尽管如此,目前还没有候选材料能满足对此类材料的全部要求,如生物相容性、生物条件下足够的机械性能和粘接强度、临床实际应用性以及对愈合过程本身无不良影响等。该领域发展的一个严重障碍是缺乏标准化的方法,导致实验和不同研究小组之间的结果不具可比性。天然骨样本是目前用于粘合强度实验的黄金标准材料,但也存在一些缺点,包括由于不可避免的自然原因导致的样本高变异性,以及无法可靠地再现测试条件以重复实验。本文介绍了一种有价值的辅助测试方法,该方法能够制作大量与骨骼化学性质相似的合成测试样本,并可在不同实验室制作,从而在不同实验室的恒定条件下重复实验。基质以羟基磷灰石成型水泥为基础,添加明胶作为有机成分。对有机成分进行交联可提高机械性能。为了证明所开发方法的性能,对各种实验用和商用骨/组织粘合剂材料进行了测试,并将测试结果与既定方法得出的结果进行了比较,以突出测试系统的潜力。
{"title":"Biomimetic synthetic test system based on hydroxyapatite cement for adhesive strength evaluation of experimental mineral-organic bone adhesive materials","authors":"Paul Frederik Otto, Sebastian Hienz, Silvia Mittmann, Niklas Dümmler, Tobias Renner, Csaba Gergely, Juliane Carolin Kade, Uwe Gbureck","doi":"10.1177/08853282241283537","DOIUrl":"https://doi.org/10.1177/08853282241283537","url":null,"abstract":"The development of bone adhesive materials is a research field of high relevance for the advancement of clinical procedures. Despite this, there are currently no material candidates meeting the full range of requirements placed on such a material, such as biocompatibility, sufficient mechanical properties and bond strength under biological conditions, practical applicability in a clinical setting, and no adverse effect on the healing process itself. A serious obstacle to the advancement of the field is a lack in standardized methodology leading to comparable results between experiments and different research groups. Natural bone samples are the current gold-standard material used to perform adhesive strength experiments, however they come with a number of drawbacks, including high sample variability due to unavoidable natural causes and the impossibility to reliably recreate test conditions to repeat experiments. This paper introduces a valuable auxiliary test method capable of producing large numbers of synthetic test specimens which are chemically similar to bone and can be produced in different laboratories so to repeat experiments under constant conditions across laboratories. The substrate is based on a hydroxyapatite forming cement with addition of gelatine as organic component. Crosslinking of the organic component is performed to improve mechanical properties. In order to demonstrate the performance of the developed method, various experimental and commercial bone/tissue adhesive materials were tested and compared with results obtained by established methods to highlight the potential of the test system.","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":"49 1","pages":"8853282241283537"},"PeriodicalIF":2.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
γ-Cyclodextrin-metal organic framework as a carrier for trans-N-p-coumaroyltyramine: A study of drug solubability, stability, and inhibitory activity against α-glucosidase. γ-环糊精-金属有机框架作为反式-N-对香豆酰酪胺的载体:药物可溶性、稳定性和对α-葡萄糖苷酶抑制活性的研究。
IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-10 DOI: 10.1177/08853282241284106
Dandan Niu,Danyang Zhou,Mengke Zhan,Lijing Lei,Jinhua Zhu,Xiuhua Liu
γ-Cyclodextrin-based metal-organic frameworks (γ-CD-MOF) were successfully synthesized using the solvent diffusion method and applied as carriers for trans-N-p-coumaroyltyramine (N-p-t-CT, NCT) to study the solubability, stability, sustained release and inhibitory activity against α-glucosidase. The solubilization effect of γ-CD-MOF on N-p-t-CT was performed using impregnation (NCT@CD-MOF-1) and co-crystallization (NCT@CD-MOF-2) methods. X-ray diffraction, scanning electron microscope (SEM), fourier transform infrared spectrometer (FTIR), and N2 adsorption/desorption were used to characterize the MOFs before and after loading NCT. The results showed that NCT@CD-MOF-2 had a better solubability for N-p-t-CT, 145.03 μg/mg of drug loading capacity could be achieved, and the solubility of NCT@CD-MOF-2 in water was 366 times higher than free N-p-t-CT. In addition, the stabilities of N-p-t-CT under temperature, UV light and pH conditions were greatly improved after encapsulation in γ-CD-MOF. Furthermore, NCT@CD-MOFs had a sustained release of N-p-t-CT over an extended period in vitro due to the primary encapsulation in pore structures. Notably, γ-CD-MOF loaded with N-p-t-CT showed superior inhibitory activity against α-glucosidase compared to free N-p-t-CT. Cytotoxicity studies demonstrated that NCT@CD-MOF-2 had low toxicity in vitro and perfect biocompatibility with HL-7702 cells, and γ-CD-MOF could reduce the toxicity of free N-p-t-CT at higher concentrations.
采用溶剂扩散法成功合成了基于γ-环糊精的金属有机框架(γ-CD-MOF),并将其作为反式-N-对香豆酰酪胺(N-p-t-CT,NCT)的载体,研究了其可溶性、稳定性、缓释性以及对α-葡萄糖苷酶的抑制活性。采用浸渍法(NCT@CD-MOF-1)和共结晶法(NCT@CD-MOF-2)研究了γ-CD-MOF 对 N-p-t-CT 的增溶作用。采用 X 射线衍射、扫描电子显微镜(SEM)、傅立叶变换红外光谱仪(FTIR)和 N2 吸附/解吸等方法对负载 NCT 前后的 MOFs 进行了表征。结果表明,NCT@CD-MOF-2对N-p-t-CT具有更好的溶解性,可达到145.03 μg/mg的载药量,NCT@CD-MOF-2在水中的溶解度是游离N-p-t-CT的366倍。此外,N-p-t-CT 被 γ-CD-MOF 包覆后,在温度、紫外光和 pH 条件下的稳定性也大大提高。此外,由于 NCT@CD-MOF 在孔隙结构中的主要封装作用,N-p-t-CT 可在体外长期持续释放。值得注意的是,与游离的 N-p-t-CT 相比,负载 N-p-t-CT 的 γ-CD-MOF 对 α-葡萄糖苷酶具有更强的抑制活性。细胞毒性研究表明,NCT@CD-MOF-2 在体外毒性低,与 HL-7702 细胞具有完美的生物相容性。
{"title":"γ-Cyclodextrin-metal organic framework as a carrier for trans-N-p-coumaroyltyramine: A study of drug solubability, stability, and inhibitory activity against α-glucosidase.","authors":"Dandan Niu,Danyang Zhou,Mengke Zhan,Lijing Lei,Jinhua Zhu,Xiuhua Liu","doi":"10.1177/08853282241284106","DOIUrl":"https://doi.org/10.1177/08853282241284106","url":null,"abstract":"γ-Cyclodextrin-based metal-organic frameworks (γ-CD-MOF) were successfully synthesized using the solvent diffusion method and applied as carriers for trans-N-p-coumaroyltyramine (N-p-t-CT, NCT) to study the solubability, stability, sustained release and inhibitory activity against α-glucosidase. The solubilization effect of γ-CD-MOF on N-p-t-CT was performed using impregnation (NCT@CD-MOF-1) and co-crystallization (NCT@CD-MOF-2) methods. X-ray diffraction, scanning electron microscope (SEM), fourier transform infrared spectrometer (FTIR), and N2 adsorption/desorption were used to characterize the MOFs before and after loading NCT. The results showed that NCT@CD-MOF-2 had a better solubability for N-p-t-CT, 145.03 μg/mg of drug loading capacity could be achieved, and the solubility of NCT@CD-MOF-2 in water was 366 times higher than free N-p-t-CT. In addition, the stabilities of N-p-t-CT under temperature, UV light and pH conditions were greatly improved after encapsulation in γ-CD-MOF. Furthermore, NCT@CD-MOFs had a sustained release of N-p-t-CT over an extended period in vitro due to the primary encapsulation in pore structures. Notably, γ-CD-MOF loaded with N-p-t-CT showed superior inhibitory activity against α-glucosidase compared to free N-p-t-CT. Cytotoxicity studies demonstrated that NCT@CD-MOF-2 had low toxicity in vitro and perfect biocompatibility with HL-7702 cells, and γ-CD-MOF could reduce the toxicity of free N-p-t-CT at higher concentrations.","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":"268 1","pages":"8853282241284106"},"PeriodicalIF":2.9,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142211115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of gelatin-methacryloyl composite carriers for bone morphogenetic Protein-2 delivery: A potential strategy for spinal fusion. 开发用于输送骨形态发生蛋白-2 的明胶-甲基丙烯酰复合载体:脊柱融合的潜在策略。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 Epub Date: 2024-06-15 DOI: 10.1177/08853282241258302
Tao Li, Xiaobo Zhang, Yicun Hu, Xidan Gao, Xin Yao, Zhengwei Xu

To reduce the risk of nonunion after spinal fusion surgery, the in situ transplantation of bone marrow mesenchymal stem cells (BMSCs) induced toward osteogenic differentiation by bone morphogenetic protein-2 (BMP2) has been proven effective. However, the current biological agents used for transplantation have limitations, such as a short half-life and low bioavailability. To address this, our study utilized a safe and effective gelatin-methacryloyl (GelMA) as a carrier for BMP2. In vitro, experiments were conducted to observe the ability of this composite vehicle to induce osteogenic differentiation of BMSCs. The results showed that the GelMA hydrogel, with its critical properties and controlled release performance of BMP2, exhibited a slow release of BMP2 over 30 days. Moreover, the GelMA hydrogel not only enhanced the proliferation activity of BMSCs but also significantly promoted their osteogenic differentiation ability, surpassing the BMP2 effects. To investigate the potential of the GelMA-BMP2 composite vehicle, a rabbit model was employed to explore its ability to induce in situ intervertebral fusion by BMSCs. Transplantation experiments in rabbits demonstrated the effective induction of intervertebral bone fusion by the GelMA-BMP2-BMSC composite vehicle. In conclusion, the GelMA-BMP2-BMSC composite vehicle shows promising prospects in preclinical translational therapy for spinal intervertebral fusion. It addresses the limitations of current biological agents and offers a controlled release of BMP2, enhancing the proliferation and osteogenic differentiation of BMSCs.

为了降低脊柱融合手术后发生骨不连的风险,通过骨形态发生蛋白-2(BMP2)诱导骨髓间充质干细胞(BMSCs)向成骨分化方向原位移植已被证明是有效的方法。然而,目前用于移植的生物制剂有其局限性,如半衰期短、生物利用度低等。为了解决这个问题,我们的研究采用了一种安全有效的明胶-甲基丙烯酰(GelMA)作为 BMP2 的载体。在体外实验中,我们观察了这种复合载体诱导 BMSCs 成骨分化的能力。结果表明,GelMA 水凝胶具有关键特性和 BMP2 的可控释放性能,可在 30 天内缓慢释放 BMP2。此外,GelMA 水凝胶不仅能增强 BMSCs 的增殖活性,还能显著促进 BMSCs 的成骨分化能力,其效果超过了 BMP2。为了研究 GelMA-BMP2 复合载体的潜力,我们采用了兔子模型来探讨其诱导 BMSCs 原位椎间融合的能力。兔子移植实验表明,GelMA-BMP2-BMSC 复合载体能有效诱导椎间骨融合。总之,GelMA-BMP2-BMSC 复合载体在脊柱椎间融合的临床前转化疗法中展现出了广阔的前景。它解决了现有生物制剂的局限性,可控制 BMP2 的释放,促进 BMSCs 的增殖和成骨分化。
{"title":"Development of gelatin-methacryloyl composite carriers for bone morphogenetic Protein-2 delivery: A potential strategy for spinal fusion.","authors":"Tao Li, Xiaobo Zhang, Yicun Hu, Xidan Gao, Xin Yao, Zhengwei Xu","doi":"10.1177/08853282241258302","DOIUrl":"10.1177/08853282241258302","url":null,"abstract":"<p><p>To reduce the risk of nonunion after spinal fusion surgery, the in situ transplantation of bone marrow mesenchymal stem cells (BMSCs) induced toward osteogenic differentiation by bone morphogenetic protein-2 (BMP2) has been proven effective. However, the current biological agents used for transplantation have limitations, such as a short half-life and low bioavailability. To address this, our study utilized a safe and effective gelatin-methacryloyl (GelMA) as a carrier for BMP2. In vitro, experiments were conducted to observe the ability of this composite vehicle to induce osteogenic differentiation of BMSCs. The results showed that the GelMA hydrogel, with its critical properties and controlled release performance of BMP2, exhibited a slow release of BMP2 over 30 days. Moreover, the GelMA hydrogel not only enhanced the proliferation activity of BMSCs but also significantly promoted their osteogenic differentiation ability, surpassing the BMP2 effects. To investigate the potential of the GelMA-BMP2 composite vehicle, a rabbit model was employed to explore its ability to induce in situ intervertebral fusion by BMSCs. Transplantation experiments in rabbits demonstrated the effective induction of intervertebral bone fusion by the GelMA-BMP2-BMSC composite vehicle. In conclusion, the GelMA-BMP2-BMSC composite vehicle shows promising prospects in preclinical translational therapy for spinal intervertebral fusion. It addresses the limitations of current biological agents and offers a controlled release of BMP2, enhancing the proliferation and osteogenic differentiation of BMSCs.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"195-206"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradable implant of magnesium/polylactic acid composite with enhanced antibacterial and anti-inflammatory properties. 具有增强抗菌和消炎特性的镁/聚乳酸复合材料可生物降解植入物。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-01 Epub Date: 2024-05-30 DOI: 10.1177/08853282241257183
Yuxin Qian, Xianli Wang, Ping Wang, Jin Wu, Yue Shen, Kunzhan Cai, Jing Bai, Mengmeng Lu, Chunbo Tang

Addressing fracture-related infections (FRI) and impaired bone healing remains a significant challenge in orthopedics and stomatology. Researchers aim to address this issue by utilizing biodegradable biomaterials, such as magnesium/poly lactic acid (Mg/PLA) composites, to offer antibacterial properties during the degradation of biodegradable implants. Existing Mg/PLA composites often lack sufficient Mg content, hindering their ability to achieve the desired antibacterial effect. Additionally, research on the anti-inflammatory effects of these composites during late-stage degradation is limited. To strengthen mechanical properties, bolster antibacterial efficacy, and enhance anti-inflammatory capabilities during degradation, we incorporated elevated Mg content into PLA to yield Mg/PLA composites. These composites underwent in vitro degradation studies, cellular assays, bacterial tests, and simulation of the PLA degradation microenvironment. 20 wt% and 40 wt% Mg/PLA composites displayed significant antibacterial properties, with three composites exhibiting notable anti-inflammatory effects. In contrast, elevated Mg content detrimentally impacted mechanical properties. The findings suggest that Mg/PLA composites hold promise in augmenting antibacterial and anti-inflammatory attributes within polymers, potentially serving as temporary regenerative materials for treating bone tissue defects complicated by infections.

解决骨折相关感染(FRI)和骨愈合受损问题仍然是整形外科和口腔科面临的重大挑战。研究人员旨在利用镁/聚乳酸(Mg/PLA)复合材料等可生物降解的生物材料,在可生物降解植入物降解过程中提供抗菌特性,从而解决这一问题。现有的镁/聚乳酸复合材料通常缺乏足够的镁含量,因此无法达到理想的抗菌效果。此外,有关这些复合材料在后期降解过程中抗炎效果的研究也很有限。为了在降解过程中增强机械性能、提高抗菌效果并增强抗炎能力,我们在聚乳酸中加入了较高的镁含量,从而得到了镁/聚乳酸复合材料。我们对这些复合材料进行了体外降解研究、细胞检测、细菌测试以及聚乳酸降解微环境模拟。20 wt% 和 40 wt% 的 Mg/PLA 复合材料具有显著的抗菌性能,其中三种复合材料还具有明显的抗炎效果。相反,镁含量的升高会对机械性能产生不利影响。研究结果表明,Mg/PLA 复合材料有望增强聚合物的抗菌和抗炎特性,有可能成为治疗感染并发骨组织缺损的临时再生材料。
{"title":"Biodegradable implant of magnesium/polylactic acid composite with enhanced antibacterial and anti-inflammatory properties.","authors":"Yuxin Qian, Xianli Wang, Ping Wang, Jin Wu, Yue Shen, Kunzhan Cai, Jing Bai, Mengmeng Lu, Chunbo Tang","doi":"10.1177/08853282241257183","DOIUrl":"10.1177/08853282241257183","url":null,"abstract":"<p><p>Addressing fracture-related infections (FRI) and impaired bone healing remains a significant challenge in orthopedics and stomatology. Researchers aim to address this issue by utilizing biodegradable biomaterials, such as magnesium/poly lactic acid (Mg/PLA) composites, to offer antibacterial properties during the degradation of biodegradable implants. Existing Mg/PLA composites often lack sufficient Mg content, hindering their ability to achieve the desired antibacterial effect. Additionally, research on the anti-inflammatory effects of these composites during late-stage degradation is limited. To strengthen mechanical properties, bolster antibacterial efficacy, and enhance anti-inflammatory capabilities during degradation, we incorporated elevated Mg content into PLA to yield Mg/PLA composites. These composites underwent in vitro degradation studies, cellular assays, bacterial tests, and simulation of the PLA degradation microenvironment. 20 wt% and 40 wt% Mg/PLA composites displayed significant antibacterial properties, with three composites exhibiting notable anti-inflammatory effects. In contrast, elevated Mg content detrimentally impacted mechanical properties. The findings suggest that Mg/PLA composites hold promise in augmenting antibacterial and anti-inflammatory attributes within polymers, potentially serving as temporary regenerative materials for treating bone tissue defects complicated by infections.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"165-178"},"PeriodicalIF":2.3,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Biomaterials Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1