首页 > 最新文献

Journal of Biomaterials Applications最新文献

英文 中文
Stimulation of macrophage cell lines confined with silica and/or silicon particles and embedded in structured collagen gels.
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-11 DOI: 10.1177/08853282251319875
Pedro U Muñoz-González, Jorge Delgado, Gerardo González-García, Birzabith Mendoza-Novelo

Macrophages encapsulated in composite gels are subjected to a three-dimensional (3D) microenvironment and material-related stimuli that allow modulation of their phenotypes. Herein, 3D collagen fibrillar networks structured with di- or tri-functionalized oligourethanes, including Si-O or Si-Si particles confined therein, are compared regarding their physicochemical properties and material-guided macrophage activation. Gelation kinetics, degradation/swelling, and rheometric results demonstrated that the properties of the composite gels depend on the oligourethane functionalization number (derived from diols/triols and L-Lysine diisocyanate, LDI) and silica incorporation. Human or murine macrophages seeded or encapsulated in the composite gels showed good viability and the adoption of an anti-inflammatory phenotype in response to the silica in the composite gel, showing accelerated gelation when cell culture components are present in the liquid precursors. An increase in cell viability proportional to the storage modulus was observed. ELISA tests strongly suggest that the Si-Si nanoparticles in the composites can antagonize the pro-inflammatory stimulation with lipopolysaccharides (LPS) and interferon-gamma (IFNγ), even promoting an anti-inflammatory response in embedded cells after 24 h. Silicon-doped and crosslinked collagen gels have good potential to modulate macrophage inflammatory response, serving as a 3D immunomodulatory scaffold.

{"title":"Stimulation of macrophage cell lines confined with silica and/or silicon particles and embedded in structured collagen gels.","authors":"Pedro U Muñoz-González, Jorge Delgado, Gerardo González-García, Birzabith Mendoza-Novelo","doi":"10.1177/08853282251319875","DOIUrl":"https://doi.org/10.1177/08853282251319875","url":null,"abstract":"<p><p>Macrophages encapsulated in composite gels are subjected to a three-dimensional (3D) microenvironment and material-related stimuli that allow modulation of their phenotypes. Herein, 3D collagen fibrillar networks structured with di- or tri-functionalized oligourethanes, including Si-O or Si-Si particles confined therein, are compared regarding their physicochemical properties and material-guided macrophage activation. Gelation kinetics, degradation/swelling, and rheometric results demonstrated that the properties of the composite gels depend on the oligourethane functionalization number (derived from diols/triols and L-Lysine diisocyanate, LDI) and silica incorporation. Human or murine macrophages seeded or encapsulated in the composite gels showed good viability and the adoption of an anti-inflammatory phenotype in response to the silica in the composite gel, showing accelerated gelation when cell culture components are present in the liquid precursors. An increase in cell viability proportional to the storage modulus was observed. ELISA tests strongly suggest that the Si-Si nanoparticles in the composites can antagonize the pro-inflammatory stimulation with lipopolysaccharides (LPS) and interferon-gamma (IFNγ), even promoting an anti-inflammatory response in embedded cells after 24 h. Silicon-doped and crosslinked collagen gels have good potential to modulate macrophage inflammatory response, serving as a 3D immunomodulatory scaffold.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251319875"},"PeriodicalIF":2.3,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143399008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research progress on intervertebral disc repair strategies and mechanisms based on hydrogel.
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-10 DOI: 10.1177/08853282251320227
Zekun Hua, Yinuo Zhao, Meng Zhang, Yanqin Wang, Haoyu Feng, Xiaochun Wei, Xiaogang Wu, Weiyi Chen, Yanru Xue

Intervertebral disc degeneration (IDD) arises from a complex interplay of genetic, environmental, and age-related factors, culminating in a spectrum of low back pain (LBP) disorders that exert significant societal and economic impact. The present therapeutic landscape for IDD poses formidable clinical hurdles, necessitating the exploration of innovative treatment modalities. The hydrogel, as a biomaterial, exhibits superior biocompatibility compared to other biomaterials such as bioceramics and bio-metal materials. It also demonstrates mechanical properties closer to those of natural intervertebral discs (IVDs) and favorable biodegradability conducive to IVD regeneration. Therefore, it has emerged as a promising candidate material in the field of regenerative medicine and tissue engineering for treating IDD. Hydrogels have made significant strides in the field of IDD treatment. Particularly, injectable hydrogels not only provide mechanical support but also enable controlled release of bioactive molecules, playing a crucial role in mitigating inflammation and promoting extracellular matrix (ECM) regeneration. Furthermore, the ability of injectable hydrogels to achieve minimally invasive implantation helps minimize tissue damage. This article initially provides a concise exposition of the structure and function of IVD, the progression of IDD, and delineates extant clinical interventions for IDD. Subsequently, it categorizes hydrogels, encapsulates recent advancements in biomaterials and cellular therapies, and delves into the mechanisms through which hydrogels foster disc regeneration. Ultimately, the article deliberates on the prospects and challenges attendant to hydrogel therapy for IDD.

{"title":"Research progress on intervertebral disc repair strategies and mechanisms based on hydrogel.","authors":"Zekun Hua, Yinuo Zhao, Meng Zhang, Yanqin Wang, Haoyu Feng, Xiaochun Wei, Xiaogang Wu, Weiyi Chen, Yanru Xue","doi":"10.1177/08853282251320227","DOIUrl":"https://doi.org/10.1177/08853282251320227","url":null,"abstract":"<p><p>Intervertebral disc degeneration (IDD) arises from a complex interplay of genetic, environmental, and age-related factors, culminating in a spectrum of low back pain (LBP) disorders that exert significant societal and economic impact. The present therapeutic landscape for IDD poses formidable clinical hurdles, necessitating the exploration of innovative treatment modalities. The hydrogel, as a biomaterial, exhibits superior biocompatibility compared to other biomaterials such as bioceramics and bio-metal materials. It also demonstrates mechanical properties closer to those of natural intervertebral discs (IVDs) and favorable biodegradability conducive to IVD regeneration. Therefore, it has emerged as a promising candidate material in the field of regenerative medicine and tissue engineering for treating IDD. Hydrogels have made significant strides in the field of IDD treatment. Particularly, injectable hydrogels not only provide mechanical support but also enable controlled release of bioactive molecules, playing a crucial role in mitigating inflammation and promoting extracellular matrix (ECM) regeneration. Furthermore, the ability of injectable hydrogels to achieve minimally invasive implantation helps minimize tissue damage. This article initially provides a concise exposition of the structure and function of IVD, the progression of IDD, and delineates extant clinical interventions for IDD. Subsequently, it categorizes hydrogels, encapsulates recent advancements in biomaterials and cellular therapies, and delves into the mechanisms through which hydrogels foster disc regeneration. Ultimately, the article deliberates on the prospects and challenges attendant to hydrogel therapy for IDD.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251320227"},"PeriodicalIF":2.3,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143390896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High α-lipoic acid-loaded hollow mesoporous prussian blue nanozymes for targeted therapy of nasopharyngeal carcinoma in mice.
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-05 DOI: 10.1177/08853282251318514
Ya Pan, Xiaofeng Wang, Xuejun Zhou, Haipeng Chen, Yuxia Zou

This study successfully constructs a tumor-targeting α-lipoic acid-loaded hollow mesoporous prussian blue nanozyme (AHPRzyme) for targeted therapy of nasopharyngeal carcinoma in mice. In these nanozymes, Arg-Gly-Asp (RGD) acts as a targeting ligand, enabling effective targeting of tumor cells. Additionally, AHPRzyme exhibits multiple anti-tumor mechanisms: ① The prussian blue nanozymes in AHPRzyme have catalase (CAT) activity, which decomposes H2O2 in human nasopharyngeal carcinoma CEN2 cells into non-toxic H2O, reducing H2O2 levels and minimizing damage to normal cells. The released O2 helps alleviate the hypoxic environment of the tumor, inhibiting lactate production due to hypoxia and consequently suppressing tumor growth. ② The prussian blue nanozymes also have peroxidase (POD) activity, which catalyzes H2O2 in tumor cells to generate ·OH, a reactive oxygen species, leading to tumor cell apoptosis. ③ The α-lipoic acid structure in AHPRzyme contains disulfide bonds that react with GSH, depleting excess glutathione (GSH) in tumor cells, disrupting the oxidative stress balance within the cells, and making them more sensitive to reactive oxygen species, thereby increasing tumor cell apoptosis. In summary, AHPRzyme can inhibit tumor cell growth and promote tumor cell apoptosis by improving the tumor microenvironment, achieving the goal of anti-nasopharyngeal carcinoma therapy.

{"title":"High α-lipoic acid-loaded hollow mesoporous prussian blue nanozymes for targeted therapy of nasopharyngeal carcinoma in mice.","authors":"Ya Pan, Xiaofeng Wang, Xuejun Zhou, Haipeng Chen, Yuxia Zou","doi":"10.1177/08853282251318514","DOIUrl":"https://doi.org/10.1177/08853282251318514","url":null,"abstract":"<p><p>This study successfully constructs a tumor-targeting α-lipoic acid-loaded hollow mesoporous prussian blue nanozyme (AHPRzyme) for targeted therapy of nasopharyngeal carcinoma in mice. In these nanozymes, Arg-Gly-Asp (RGD) acts as a targeting ligand, enabling effective targeting of tumor cells. Additionally, AHPRzyme exhibits multiple anti-tumor mechanisms: ① The prussian blue nanozymes in AHPRzyme have catalase (CAT) activity, which decomposes H<sub>2</sub>O<sub>2</sub> in human nasopharyngeal carcinoma CEN2 cells into non-toxic H<sub>2</sub>O, reducing H<sub>2</sub>O<sub>2</sub> levels and minimizing damage to normal cells. The released O<sub>2</sub> helps alleviate the hypoxic environment of the tumor, inhibiting lactate production due to hypoxia and consequently suppressing tumor growth. ② The prussian blue nanozymes also have peroxidase (POD) activity, which catalyzes H<sub>2</sub>O<sub>2</sub> in tumor cells to generate ·OH, a reactive oxygen species, leading to tumor cell apoptosis. ③ The α-lipoic acid structure in AHPRzyme contains disulfide bonds that react with GSH, depleting excess glutathione (GSH) in tumor cells, disrupting the oxidative stress balance within the cells, and making them more sensitive to reactive oxygen species, thereby increasing tumor cell apoptosis. In summary, AHPRzyme can inhibit tumor cell growth and promote tumor cell apoptosis by improving the tumor microenvironment, achieving the goal of anti-nasopharyngeal carcinoma therapy.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251318514"},"PeriodicalIF":2.3,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143189525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
pH-triggered small molecule nanodrugs self-assembled from tryptamine-cinnamaldehyde and fisetin for targeted sepsis-associated encephalopathy therapy.
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-02 DOI: 10.1177/08853282251318052
Ximing Deng, Jinyao Zhou, Wei Fang, Rao Sun, Guoqing Yan, Yun Sun

Sepsis-associated encephalopathy (SAE) is an acute diffuse brain dysfunction, but its clinical treatment just focuses on antibiotics and supportive therapy, which fail to directly limit the development of SAE. Herein, this work highlights the development of pH-triggered small molecule nanodrugs self-assembled from tryptamine (Try)-cinnamaldehyde (CA) and fisetin for targeted SAE therapy. The imine linkage in Try-CA and acid-dependent protonation of Try and fisetin endow the nanodrugs with pH-triggered dynamic changes of particle sizes, surficial charges, and drug release. Moreover, the combined use of Try-CA and fisetin also endows the nanodrugs with superior antioxidative, anti-inflammatory and antibacterial capabilities compared to their individual use. These characteristics of the nanodrugs facilitate long-term circulation stability, effective penetration through BBB, selective accumulation in the brain, and target to central and peripheral focal areas, thereby achieving comprehensive treatment or relief of SAE. Thus, these attractive experimental results illuminate the enormous potential of such pH-triggered small molecule nanodrugs for targeted SAE therapy, advancing their use in clinics.

{"title":"pH-triggered small molecule nanodrugs self-assembled from tryptamine-cinnamaldehyde and fisetin for targeted sepsis-associated encephalopathy therapy.","authors":"Ximing Deng, Jinyao Zhou, Wei Fang, Rao Sun, Guoqing Yan, Yun Sun","doi":"10.1177/08853282251318052","DOIUrl":"https://doi.org/10.1177/08853282251318052","url":null,"abstract":"<p><p>Sepsis-associated encephalopathy (SAE) is an acute diffuse brain dysfunction, but its clinical treatment just focuses on antibiotics and supportive therapy, which fail to directly limit the development of SAE. Herein, this work highlights the development of pH-triggered small molecule nanodrugs self-assembled from tryptamine (Try)-cinnamaldehyde (CA) and fisetin for targeted SAE therapy. The imine linkage in Try-CA and acid-dependent protonation of Try and fisetin endow the nanodrugs with pH-triggered dynamic changes of particle sizes, surficial charges, and drug release. Moreover, the combined use of Try-CA and fisetin also endows the nanodrugs with superior antioxidative, anti-inflammatory and antibacterial capabilities compared to their individual use. These characteristics of the nanodrugs facilitate long-term circulation stability, effective penetration through BBB, selective accumulation in the brain, and target to central and peripheral focal areas, thereby achieving comprehensive treatment or relief of SAE. Thus, these attractive experimental results illuminate the enormous potential of such pH-triggered small molecule nanodrugs for targeted SAE therapy, advancing their use in clinics.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251318052"},"PeriodicalIF":2.3,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143079191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibacterial nonwoven materials in medicine and healthcare. 医药和保健领域的抗菌无纺材料。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-01 Epub Date: 2024-11-06 DOI: 10.1177/08853282241297872
Lijuan Sun, Shixin Jin, Yan Feng, Yanling Liu

Bacterial infection has always been a severe challenge for mankind. The use of antibacterial nonwoven materials provides a lot of convenience in daily life and clinical practice grammar revision, it has become an important solution to avoid bacterial infection in clinical and daily life. This review systematically examines the spin bonding, melt blown, hydroneedling and electrospinning methods of nonwoven fabrication materials, and summarizes the antibacterial nonwoven materials fabrication methods. Finally, the review discusses the applications of antibacterial nonwoven materials for medical protection, external medical and healthcare, external circulation medical care implantable medical and healthcare and intelligent protection and detection. This comprehensive overview aims to provide valuable insights for the advancement of antibacterial nonwoven materials in the domain of medicine and health care. In the future, antibacterial nonwoven materials are expected to evolve towards biodegradability, composite materials, functionalization, minimally invasive techniques, diversification, and intelligence, thereby holding immense potential in healthcare.

细菌感染一直是人类面临的严峻挑战。抗菌非织造材料的使用为日常生活和临床实践语法修订提供了诸多便利,已成为临床和日常生活中避免细菌感染的重要解决方案。本综述系统研究了非织造材料的旋粘法、熔喷法、水刺法和电纺法,总结了抗菌非织造材料的制造方法。最后,综述讨论了抗菌非织造材料在医疗防护、外部医疗和保健、外部循环医疗植入式医疗和保健以及智能防护和检测方面的应用。本综述旨在为抗菌无纺布材料在医疗和保健领域的发展提供有价值的见解。未来,抗菌无纺材料有望向生物降解性、复合材料、功能化、微创技术、多样化和智能化方向发展,从而在医疗保健领域蕴藏巨大潜力。
{"title":"Antibacterial nonwoven materials in medicine and healthcare.","authors":"Lijuan Sun, Shixin Jin, Yan Feng, Yanling Liu","doi":"10.1177/08853282241297872","DOIUrl":"10.1177/08853282241297872","url":null,"abstract":"<p><p>Bacterial infection has always been a severe challenge for mankind. The use of antibacterial nonwoven materials provides a lot of convenience in daily life and clinical practice grammar revision, it has become an important solution to avoid bacterial infection in clinical and daily life. This review systematically examines the spin bonding, melt blown, hydroneedling and electrospinning methods of nonwoven fabrication materials, and summarizes the antibacterial nonwoven materials fabrication methods. Finally, the review discusses the applications of antibacterial nonwoven materials for medical protection, external medical and healthcare, external circulation medical care implantable medical and healthcare and intelligent protection and detection. This comprehensive overview aims to provide valuable insights for the advancement of antibacterial nonwoven materials in the domain of medicine and health care. In the future, antibacterial nonwoven materials are expected to evolve towards biodegradability, composite materials, functionalization, minimally invasive techniques, diversification, and intelligence, thereby holding immense potential in healthcare.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"671-695"},"PeriodicalIF":2.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monoclonal antibodies against jellyfish collagen. 针对水母胶原蛋白的单克隆抗体。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-01 Epub Date: 2024-11-22 DOI: 10.1177/08853282241298354
Keiko Momma, Takeyuki Shimizu, Takahiro Hayashi, Yuki Hirakawa, Masataka Kuroda, Masayuki Oda

Collagens are abundant structural proteins found in both mammalian and marine species, and attractive biomaterials used in various fields. Jellyfish collagen-based products have become increasingly popular because of their clinically proven health benefits such as the effects of skin wound healing and immune stimulation. To develop detection tools for jellyfish collagen, we generated four monoclonal antibodies, MCOL1, 2, 3, and 4, by immunizing mice with moon jellyfish collagen. The nucleotide and amino acid sequences of the variable regions of the monoclonal antibodies were determined. The antibody-binding kinetics toward collagens from moon jellyfish were evaluated using a surface plasmon resonance (SPR) biosensor, and the binding specificity was evaluated in comparison with binding to collagens from edible jellyfish, fish scales, and pig and cow skins. MCOL1, 3, and 4 specifically bound to moon jellyfish collagen, whereas MCOL2 bound to both moon and edible jellyfish collagens. Considering the results showing that the SPR responses of MCOL2 binding were greater than those seen with the other antibodies, MCOL2 could recognize the common and repetitive sequences of the two jellyfish collagens. Therefore, this monoclonal antibody will be most applicable for detecting jellyfish collagen.

胶原蛋白是哺乳动物和海洋生物中发现的丰富的结构蛋白,是各领域使用的极具吸引力的生物材料。以水母胶原蛋白为基础的产品越来越受欢迎,因为临床证明它们具有促进皮肤伤口愈合和免疫刺激等保健作用。为了开发水母胶原蛋白的检测工具,我们用月牙水母胶原蛋白免疫小鼠,产生了四种单克隆抗体 MCOL1、2、3 和 4。测定了单克隆抗体可变区的核苷酸和氨基酸序列。利用表面等离子体共振(SPR)生物传感器评估了抗体与月水母胶原蛋白的结合动力学,并与食用水母、鱼鳞、猪皮和牛皮胶原蛋白的结合进行了比较,评估了结合的特异性。MCOL1、3 和 4 与月水母胶原蛋白特异性结合,而 MCOL2 则与月水母和食用水母胶原蛋白均有结合。考虑到 MCOL2 结合的 SPR 反应大于其他抗体,MCOL2 可以识别两种水母胶原的共同和重复序列。因此,该单克隆抗体最适用于检测水母胶原蛋白。
{"title":"Monoclonal antibodies against jellyfish collagen.","authors":"Keiko Momma, Takeyuki Shimizu, Takahiro Hayashi, Yuki Hirakawa, Masataka Kuroda, Masayuki Oda","doi":"10.1177/08853282241298354","DOIUrl":"10.1177/08853282241298354","url":null,"abstract":"<p><p>Collagens are abundant structural proteins found in both mammalian and marine species, and attractive biomaterials used in various fields. Jellyfish collagen-based products have become increasingly popular because of their clinically proven health benefits such as the effects of skin wound healing and immune stimulation. To develop detection tools for jellyfish collagen, we generated four monoclonal antibodies, MCOL1, 2, 3, and 4, by immunizing mice with moon jellyfish collagen. The nucleotide and amino acid sequences of the variable regions of the monoclonal antibodies were determined. The antibody-binding kinetics toward collagens from moon jellyfish were evaluated using a surface plasmon resonance (SPR) biosensor, and the binding specificity was evaluated in comparison with binding to collagens from edible jellyfish, fish scales, and pig and cow skins. MCOL1, 3, and 4 specifically bound to moon jellyfish collagen, whereas MCOL2 bound to both moon and edible jellyfish collagens. Considering the results showing that the SPR responses of MCOL2 binding were greater than those seen with the other antibodies, MCOL2 could recognize the common and repetitive sequences of the two jellyfish collagens. Therefore, this monoclonal antibody will be most applicable for detecting jellyfish collagen.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"807-815"},"PeriodicalIF":2.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A nanofibrous polycaprolactone/collagen neural guidance channel filled with sciatic allogeneic schwann cells and platelet-rich plasma for sciatic nerve repair. 用于修复坐骨神经的纳米纤维聚己内酯/胶原蛋白神经引导通道,其中填充了坐骨神经异体施旺细胞和富含血小板的血浆。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-01 Epub Date: 2024-11-05 DOI: 10.1177/08853282241297446
Wenfeng Chen, Chenxiao Zheng

Sciatic nerve damage, a common condition affecting approximately 2.8% of the US population, can lead to significant disability due to impaired nerve signal transmission, resulting in loss of sensation and motor function in the lower extremities. In this study, a neural guidance channel was developed by rolling a nanofibrous scaffold produced via electrospinning. The scaffold's microstructure, biocompatibility, biodegradation rate, porosity, mechanical properties, and hemocompatibility were evaluated. Platelet-rich plasma (PRP) activated with 30,000 allogeneic Schwann cells (SCs) was injected into the lumen of the channels following implantation into a rat model of sciatic nerve injury. Recovery of motor function, sensory function, and muscle re-innervation was assessed using the sciatic function index (SFI), hot plate latency time, and gastrocnemius muscle wet weight loss. Results showed mean hot plate latency times of Autograft: 7.03, PCL/collagen scaffolds loaded with PRP and SCs (PCLCOLPRPSCs): 8.34, polymer-only scaffolds (PCLCOL): 10.66, and untreated animals (Negative Control): 12.00. The mean SFI values at week eight were Autograft: -49.30, PCLCOLPRPSCs: -64.29, PCLCOL: -75.62, and Negative Control: -77.14. The PCLCOLPRPSCs group showed a more negative SFI compared to the Autograft group but performed better than both the PCLCOL and Negative Control groups. These findings suggest that the developed strategy enhanced sensory and functional recovery compared to the negative control and polymer-only scaffold groups.

坐骨神经损伤是一种常见疾病,约占美国人口的 2.8%,由于神经信号传输受损,可导致下肢失去知觉和运动功能,从而导致严重残疾。在这项研究中,通过滚动电纺丝技术生产的纳米纤维支架,开发出了一种神经引导通道。研究人员对支架的微观结构、生物相容性、生物降解率、孔隙率、机械性能和血液相容性进行了评估。将富含 30,000 个异体许旺细胞(SCs)的血小板血浆(PRP)活化后注入通道内腔,然后植入坐骨神经损伤大鼠模型。通过坐骨神经功能指数(SFI)、热板潜伏时间和腓肠肌湿重损失来评估运动功能、感觉功能和肌肉再神经支配的恢复情况。结果显示,自体移植动物的平均热板潜伏时间为 7.03,含有 PRP 和 SCs 的 PCL/胶原支架(PCLCOLPRPSCs)为 8.34,纯聚合物支架(PCLCOL)为 10.66,而未经处理的动物则为 10.66:10.66,未经处理的动物(阴性对照组):12.00:12.00.第八周的平均 SFI 值分别为:自体移植:-49.30、PCLCOLPRPSCs:-64.29、PCLCOL:-75.62 和阴性对照:-77.14。与自体移植组相比,PCLCOLPRPSCs 组的 SFI 为负值,但表现优于 PCLCOL 组和阴性对照组。这些研究结果表明,与阴性对照组和纯聚合物支架组相比,所开发的策略增强了感觉和功能的恢复。
{"title":"A nanofibrous polycaprolactone/collagen neural guidance channel filled with sciatic allogeneic schwann cells and platelet-rich plasma for sciatic nerve repair.","authors":"Wenfeng Chen, Chenxiao Zheng","doi":"10.1177/08853282241297446","DOIUrl":"10.1177/08853282241297446","url":null,"abstract":"<p><p>Sciatic nerve damage, a common condition affecting approximately 2.8% of the US population, can lead to significant disability due to impaired nerve signal transmission, resulting in loss of sensation and motor function in the lower extremities. In this study, a neural guidance channel was developed by rolling a nanofibrous scaffold produced via electrospinning. The scaffold's microstructure, biocompatibility, biodegradation rate, porosity, mechanical properties, and hemocompatibility were evaluated. Platelet-rich plasma (PRP) activated with 30,000 allogeneic Schwann cells (SCs) was injected into the lumen of the channels following implantation into a rat model of sciatic nerve injury. Recovery of motor function, sensory function, and muscle re-innervation was assessed using the sciatic function index (SFI), hot plate latency time, and gastrocnemius muscle wet weight loss. Results showed mean hot plate latency times of Autograft: 7.03, PCL/collagen scaffolds loaded with PRP and SCs (PCLCOLPRPSCs): 8.34, polymer-only scaffolds (PCLCOL): 10.66, and untreated animals (Negative Control): 12.00. The mean SFI values at week eight were Autograft: -49.30, PCLCOLPRPSCs: -64.29, PCLCOL: -75.62, and Negative Control: -77.14. The PCLCOLPRPSCs group showed a more negative SFI compared to the Autograft group but performed better than both the PCLCOL and Negative Control groups. These findings suggest that the developed strategy enhanced sensory and functional recovery compared to the negative control and polymer-only scaffold groups.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"797-806"},"PeriodicalIF":2.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibitory effect of RGD peptide hydrogel on inflammation and angiogenesis in vitro. RGD 肽水凝胶对体外炎症和血管生成的抑制作用。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-01 Epub Date: 2024-11-03 DOI: 10.1177/08853282241296520
Binlin Chen, Licheng Liang, Dadong Jia, Mian Qin, Liye He, Shuai Liu, Yao Lv, Ruping Jiang, Liang Liang

Inflammatory reaction and neovascularization are crucial physiological processes that occur during postoperative wound healing. However, excessive inflammatory response and uncontrolled angiogenesis lead to scar formation, which severely limits the success rate of glaucoma filtration surgery. Peptide hydrogels were well-established to possess good biocompatibility, inherent biodegradability, extracellular matrix analog property, and high drug loading efficiency. Herein, we examined the potential of Arg-Gly-Asp (RGD) peptide hydrogel to inhibit inflammation and angiogenesis in vitro experiments. RGD peptide hydrogel exhibited significant inhibitory effects on the inflammatory response by ELISA and western blot and considerable prohibitive effects on neovascularization via inhibiting the proliferation and migration of vascular endothelial cells. In this study, we found a novel biomaterial, RGD peptide hydrogel, which has a certain anti-cell proliferation and anti-scarring effect in vitro experiments.

炎症反应和新生血管是术后伤口愈合的关键生理过程。然而,过度的炎症反应和不受控制的血管生成会导致疤痕形成,严重限制了青光眼滤过手术的成功率。肽水凝胶具有良好的生物相容性、固有的生物可降解性、细胞外基质类似物特性和较高的药物负载效率。在此,我们在体外实验中研究了 Arg-Gly-Asp (RGD) 肽水凝胶抑制炎症和血管生成的潜力。通过酶联免疫吸附试验(ELISA)和免疫印迹法(Western Blot),RGD 肽水凝胶对炎症反应有明显的抑制作用,并通过抑制血管内皮细胞的增殖和迁移对新生血管生成有相当大的抑制作用。本研究发现了一种新型生物材料--RGD 肽水凝胶,它在体外实验中具有一定的抗细胞增殖和抗瘢痕作用。
{"title":"Inhibitory effect of RGD peptide hydrogel on inflammation and angiogenesis in vitro.","authors":"Binlin Chen, Licheng Liang, Dadong Jia, Mian Qin, Liye He, Shuai Liu, Yao Lv, Ruping Jiang, Liang Liang","doi":"10.1177/08853282241296520","DOIUrl":"10.1177/08853282241296520","url":null,"abstract":"<p><p>Inflammatory reaction and neovascularization are crucial physiological processes that occur during postoperative wound healing. However, excessive inflammatory response and uncontrolled angiogenesis lead to scar formation, which severely limits the success rate of glaucoma filtration surgery. Peptide hydrogels were well-established to possess good biocompatibility, inherent biodegradability, extracellular matrix analog property, and high drug loading efficiency. Herein, we examined the potential of Arg-Gly-Asp (RGD) peptide hydrogel to inhibit inflammation and angiogenesis in vitro experiments. RGD peptide hydrogel exhibited significant inhibitory effects on the inflammatory response by ELISA and western blot and considerable prohibitive effects on neovascularization via inhibiting the proliferation and migration of vascular endothelial cells. In this study, we found a novel biomaterial, RGD peptide hydrogel, which has a certain anti-cell proliferation and anti-scarring effect in vitro experiments.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"723-733"},"PeriodicalIF":2.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reactive oxygen species-responsive nano gel as a carrier, combined with photothermal therapy and photodynamic therapy for the treatment of brucellosis. 以活性氧反应纳米凝胶为载体,结合光热疗法和光动力疗法治疗布鲁氏菌病。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-01 Epub Date: 2024-10-23 DOI: 10.1177/08853282241279340
Yuchang Qin, Yuanyuan Xu, Fuli Lin, Yinwei Qiu, Yujie Luo, Xuan Lv, Tianyu Liu, Yongsheng Li, Zhiyong Liu, Shengchao Yang

Brucellosis is an intracellular infectious disease that is primarily treated with antibacterial therapy. However, most antibacterial drugs struggle to penetrate the cell membrane and may be excluded or inactivated within the cell. In a recent study, researchers developed a nanogel coated with polydopamine (PDA) that responds to reactive oxygen species (ROS) and has enhanced adhesion properties. This nanogel encapsulates photosensitized zinc phthalocyanine (ZnPc) and an antibacterial drug, and is further modified with folic acid (FA) for active targeting. The resulting ROS-responsive nanogel, termed PDA@PMAA@ZnPc@DH-FA, can reach temperatures up to 50°C under near-infrared light, leading to a 72.1% improvement in drug release through increased ROS production. Cell staining confirmed a cell survival rate above 75%, with a low hemolysis rate of only 4.633%, indicating excellent biocompatibility. Furthermore, the study's results showed that the nanogel exhibited stronger killing effects against Brucella compared to administering the drug alone. Under near-infrared irradiation, the nanogel achieved a bacteriostatic rate of 99.8%. The combined approach of photothermal therapy and photodynamic therapy offers valuable insights for treating Brucella.

布鲁氏菌病是一种细胞内传染病,主要采用抗菌疗法进行治疗。然而,大多数抗菌药物很难穿透细胞膜,可能会在细胞内被排除或失活。在最近的一项研究中,研究人员开发出一种涂有聚多巴胺(PDA)的纳米凝胶,它能对活性氧(ROS)做出反应,并具有更强的粘附特性。这种纳米凝胶封装了光敏酞菁锌(ZnPc)和一种抗菌药物,并用叶酸(FA)进一步修饰,以实现主动靶向。由此产生的 ROS 响应型纳米凝胶被称为 PDA@PMAA@ZnPc@DH-FA,在近红外光下的温度可达 50°C,通过增加 ROS 的产生,药物释放率提高了 72.1%。细胞染色证实,细胞存活率超过 75%,溶血率低至仅 4.633%,显示出良好的生物相容性。此外,研究结果表明,与单独给药相比,纳米凝胶对布鲁氏菌具有更强的杀灭效果。在近红外照射下,纳米凝胶的抑菌率达到 99.8%。光热疗法和光动力疗法相结合的方法为治疗布鲁氏菌提供了宝贵的见解。
{"title":"Reactive oxygen species-responsive nano gel as a carrier, combined with photothermal therapy and photodynamic therapy for the treatment of brucellosis.","authors":"Yuchang Qin, Yuanyuan Xu, Fuli Lin, Yinwei Qiu, Yujie Luo, Xuan Lv, Tianyu Liu, Yongsheng Li, Zhiyong Liu, Shengchao Yang","doi":"10.1177/08853282241279340","DOIUrl":"10.1177/08853282241279340","url":null,"abstract":"<p><p>Brucellosis is an intracellular infectious disease that is primarily treated with antibacterial therapy. However, most antibacterial drugs struggle to penetrate the cell membrane and may be excluded or inactivated within the cell. In a recent study, researchers developed a nanogel coated with polydopamine (PDA) that responds to reactive oxygen species (ROS) and has enhanced adhesion properties. This nanogel encapsulates photosensitized zinc phthalocyanine (ZnPc) and an antibacterial drug, and is further modified with folic acid (FA) for active targeting. The resulting ROS-responsive nanogel, termed PDA@PMAA@ZnPc@DH-FA, can reach temperatures up to 50°C under near-infrared light, leading to a 72.1% improvement in drug release through increased ROS production. Cell staining confirmed a cell survival rate above 75%, with a low hemolysis rate of only 4.633%, indicating excellent biocompatibility. Furthermore, the study's results showed that the nanogel exhibited stronger killing effects against Brucella compared to administering the drug alone. Under near-infrared irradiation, the nanogel achieved a bacteriostatic rate of 99.8%. The combined approach of photothermal therapy and photodynamic therapy offers valuable insights for treating Brucella.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"748-761"},"PeriodicalIF":2.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142500915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of human amniotic membrane on the angiogenesis and healing of ischemic wounds in a rat model. 人羊膜对大鼠模型缺血伤口血管生成和愈合的影响。
IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-01 Epub Date: 2024-10-04 DOI: 10.1177/08853282241289919
Masato Sato, Kazuaki Tokodai, Kaoru Okada, Hiroyuki Ogasawara, Miyako Tanaka, Tetsuro Hoshiai, Masatoshi Saito, Hirofumi Sugawara, Daijirou Akamatsu, Michiaki Unno, Masafumi Goto, Takashi Kamei

Although the human amniotic membrane (hAM) has been demonstrated to promote angiogenesis, its efficacy in healing ischemic wounds remains unknown. Therefore, the current study aimed to evaluate the potential of hAM as a dressing for treating ischemic wounds. The inferior abdominal wall arteries and veins of male rats were divided, and an ischemic wound was created on each side of the abdominal wall. Of the two ischemic wounds created, only one was covered with hAM, and its wound healing effect was determined by measuring the wound area. Angiogenesis was assessed by measuring microvessel density (MVD). On day 5, the mean wound area changed from 400 mm2 to 335.4 (260-450) mm2 in the hAM group and to 459 (306-570) mm2 in the control group (p = 0.0051). MVD was 19.0 (10.4-24.6) in the hAM group and 15.1 (10.6-20.8) in the control group (p = 0.0026). No significant differences in local pro- and anti-inflammatory cytokine levels were observed between the two groups. Histological examination revealed no rejection of the transplanted hAM. Therefore, the hAM may serve as a novel wound dressing that can promote angiogenesis and healing in ischemic wounds.

虽然人羊膜(hAM)已被证实可促进血管生成,但其在缺血性伤口愈合方面的功效仍不为人所知。因此,本研究旨在评估人羊膜作为敷料治疗缺血性伤口的潜力。研究人员分割了雄性大鼠的腹壁下动脉和静脉,并在腹壁两侧各造成一个缺血伤口。在两个缺血伤口中,只有一个伤口覆盖了 hAM,并通过测量伤口面积确定其伤口愈合效果。血管生成通过测量微血管密度(MVD)进行评估。第 5 天,hAM 组的平均伤口面积从 400 平方毫米变为 335.4(260-450)平方毫米,对照组则变为 459(306-570)平方毫米(p = 0.0051)。hAM 组的 MVD 为 19.0(10.4-24.6),对照组为 15.1(10.6-20.8)(p = 0.0026)。两组的局部促炎和抗炎细胞因子水平没有明显差异。组织学检查显示,移植的 hAM 没有排斥反应。因此,hAM 可作为一种新型伤口敷料,促进缺血性伤口的血管生成和愈合。
{"title":"Effects of human amniotic membrane on the angiogenesis and healing of ischemic wounds in a rat model.","authors":"Masato Sato, Kazuaki Tokodai, Kaoru Okada, Hiroyuki Ogasawara, Miyako Tanaka, Tetsuro Hoshiai, Masatoshi Saito, Hirofumi Sugawara, Daijirou Akamatsu, Michiaki Unno, Masafumi Goto, Takashi Kamei","doi":"10.1177/08853282241289919","DOIUrl":"10.1177/08853282241289919","url":null,"abstract":"<p><p>Although the human amniotic membrane (hAM) has been demonstrated to promote angiogenesis, its efficacy in healing ischemic wounds remains unknown. Therefore, the current study aimed to evaluate the potential of hAM as a dressing for treating ischemic wounds. The inferior abdominal wall arteries and veins of male rats were divided, and an ischemic wound was created on each side of the abdominal wall. Of the two ischemic wounds created, only one was covered with hAM, and its wound healing effect was determined by measuring the wound area. Angiogenesis was assessed by measuring microvessel density (MVD). On day 5, the mean wound area changed from 400 mm<sup>2</sup> to 335.4 (260-450) mm<sup>2</sup> in the hAM group and to 459 (306-570) mm<sup>2</sup> in the control group (<i>p</i> = 0.0051). MVD was 19.0 (10.4-24.6) in the hAM group and 15.1 (10.6-20.8) in the control group (<i>p</i> = 0.0026). No significant differences in local pro- and anti-inflammatory cytokine levels were observed between the two groups. Histological examination revealed no rejection of the transplanted hAM. Therefore, the hAM may serve as a novel wound dressing that can promote angiogenesis and healing in ischemic wounds.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"789-796"},"PeriodicalIF":2.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Biomaterials Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1