Pub Date : 2025-03-01Epub Date: 2024-12-13DOI: 10.1177/08853282241306245
Yi Gui Zhou, Song Kai Li, Yun Xue, Bo Fan, Qiu Ming Gao, Long Wen Zhan, Rui Tang Liu, Yun Fei Li, Rui Long Sun, Yong Zheng Tian
The Diels-Alder reaction, a classical (4+2) cycloaddition process, holds significant standing within the realms of organic synthesis and polymer chemistry, frequently employed in areas such as pharmaceutical production and material science. Recently, hydrogels constructed via Diels-Alder reactions have garnered considerable attention from researchers. This review aims to summarize the advancements in utilizing the Diels-Alder reaction for hydrogel synthesis, exploring its impact on structural design, functionalization, and application domains. Initially, the fundamental principles of the Diels-Alder reaction are introduced alongside an examination of its benefits and characteristics in hydrogel fabrication. Subsequently, applications of Diels-Alder-generated hydrogels in biomedicine, smart responsive materials, drug delivery systems, among other fields, are comprehensively reviewed. Challenges and limitations encountered during hydrogel synthesis using this reaction are also discussed. Finally, prospective research directions and future prospects of Diels-Alder reactions in hydrogel synthesis are contemplated.
{"title":"Diels-Alder reaction in hydrogel synthesis: Mechanisms and functional aspects.","authors":"Yi Gui Zhou, Song Kai Li, Yun Xue, Bo Fan, Qiu Ming Gao, Long Wen Zhan, Rui Tang Liu, Yun Fei Li, Rui Long Sun, Yong Zheng Tian","doi":"10.1177/08853282241306245","DOIUrl":"10.1177/08853282241306245","url":null,"abstract":"<p><p>The Diels-Alder reaction, a classical (4+2) cycloaddition process, holds significant standing within the realms of organic synthesis and polymer chemistry, frequently employed in areas such as pharmaceutical production and material science. Recently, hydrogels constructed via Diels-Alder reactions have garnered considerable attention from researchers. This review aims to summarize the advancements in utilizing the Diels-Alder reaction for hydrogel synthesis, exploring its impact on structural design, functionalization, and application domains. Initially, the fundamental principles of the Diels-Alder reaction are introduced alongside an examination of its benefits and characteristics in hydrogel fabrication. Subsequently, applications of Diels-Alder-generated hydrogels in biomedicine, smart responsive materials, drug delivery systems, among other fields, are comprehensively reviewed. Challenges and limitations encountered during hydrogel synthesis using this reaction are also discussed. Finally, prospective research directions and future prospects of Diels-Alder reactions in hydrogel synthesis are contemplated.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"828-839"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-11-11DOI: 10.1177/08853282241300587
Jingzhi Li, Yuelin Chen, Mengru Wei, Ying Tang, Li Zhou, Xiaoxuan Quan, Ruina Ma, Nan Hou
Due to the absence of blood vessels, cartilage exhibits extremely limited self-repair capacity. Currently, repairing laryngeal cartilage defects, resulting from conditions such as laryngeal tumors, injury, and congenital structural abnormalities, remains a significant challenge in the Department of Otolaryngology, Head and Neck Surgery. Previous research has often focused on enhancing the mechanical properties of synthetic materials. However, their low biological activity and weak cell adhesion necessitate compensatory measures. This study aims to capitalize on the advantages of natural materials in cartilage tissue engineering. Sodium alginate, gelatin, tannic acid, and calcium chloride were utilized to prepare bioinks through cross-linking for application in 3D printing cartilage scaffolds. Bone marrow mesenchymal stem cells with multidirectional differentiation potential were chosen as seed cells, with appropriate growth factors incorporated to promote their differentiation into cartilage during in vitro culture. The scaffold laden cells was subsequently implanted into rabbit thyroid cartilage plate defects at the appropriate time. HE staining, toluidine blue staining, Masson staining, and collagen type II staining were employed to assess cartilage defect repair at 4, 8, and 12 weeks, respectively. Results demonstrated that scaffolds made from natural materials could emulate the mechanical properties of fresh cartilage with commendable biocompatibility. Stained sections further confirmed the efficacy of the composite hydrogel scaffolds identified in this study in promoting rabbit thyroid cartilage plate restoration. In summary, this study successfully fabricated a natural material scaffold for rabbit laryngeal cartilage tissue engineering, thereby furnishing a new idea and experience for the clinical application of laryngeal cartilage defect reconstruction.
{"title":"3D printed sodium alginate/gelatin/tannic acid/calcium chloride scaffolds laden bone marrow mesenchymal stem cells to repair defective thyroid cartilage plate.","authors":"Jingzhi Li, Yuelin Chen, Mengru Wei, Ying Tang, Li Zhou, Xiaoxuan Quan, Ruina Ma, Nan Hou","doi":"10.1177/08853282241300587","DOIUrl":"10.1177/08853282241300587","url":null,"abstract":"<p><p>Due to the absence of blood vessels, cartilage exhibits extremely limited self-repair capacity. Currently, repairing laryngeal cartilage defects, resulting from conditions such as laryngeal tumors, injury, and congenital structural abnormalities, remains a significant challenge in the Department of Otolaryngology, Head and Neck Surgery. Previous research has often focused on enhancing the mechanical properties of synthetic materials. However, their low biological activity and weak cell adhesion necessitate compensatory measures. This study aims to capitalize on the advantages of natural materials in cartilage tissue engineering. Sodium alginate, gelatin, tannic acid, and calcium chloride were utilized to prepare bioinks through cross-linking for application in 3D printing cartilage scaffolds. Bone marrow mesenchymal stem cells with multidirectional differentiation potential were chosen as seed cells, with appropriate growth factors incorporated to promote their differentiation into cartilage during in vitro culture. The scaffold laden cells was subsequently implanted into rabbit thyroid cartilage plate defects at the appropriate time. HE staining, toluidine blue staining, Masson staining, and collagen type II staining were employed to assess cartilage defect repair at 4, 8, and 12 weeks, respectively. Results demonstrated that scaffolds made from natural materials could emulate the mechanical properties of fresh cartilage with commendable biocompatibility. Stained sections further confirmed the efficacy of the composite hydrogel scaffolds identified in this study in promoting rabbit thyroid cartilage plate restoration. In summary, this study successfully fabricated a natural material scaffold for rabbit laryngeal cartilage tissue engineering, thereby furnishing a new idea and experience for the clinical application of laryngeal cartilage defect reconstruction.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"891-907"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-11-19DOI: 10.1177/08853282241299243
Li Zhang, Mingming Yang, Saman Jalili
Osteoarthritis (OA) presents a significant global health burden, necessitating innovative therapeutic strategies to address its multifaceted challenges. This study explores the potential of Citrus trifoliata extract-loaded chitosan nanoparticles (CTECNPs) as a novel treatment modality for OA. The encapsulation of Citrus trifoliata extract (CTE) within chitosan nanoparticles offers advantages such as enhanced bioavailability, sustained release kinetics, and targeted delivery to affected joints. In vitro evaluations demonstrate the biocompatibility and anti-inflammatory properties of CTECNPs, with significant anti-inflammatory and antioxidative effects observed. Moreover, in vivo studies in an OA-induced mouse model reveal promising therapeutic outcomes, including improvements in histological features and locomotor function. These findings highlight the potential of CTECNPs as a promising therapeutic approach for OA, offering hope for improved patient outcomes and quality of life. Further research is warranted to elucidate additional signaling pathways and potential synergistic effects of CTECNPs in OA management.
骨关节炎(OA)给全球健康带来沉重负担,需要创新的治疗策略来应对其多方面的挑战。本研究探讨了三叶柑橘提取物负载壳聚糖纳米粒子(CTECNPs)作为一种新型治疗 OA 方法的潜力。将三叶柑橘提取物(CTE)封装在壳聚糖纳米颗粒中具有多种优势,如生物利用度提高、释放动力学持续、可定向输送到受影响的关节。体外评估证明了 CTECNPs 的生物相容性和抗炎特性,并观察到了显著的抗炎和抗氧化效果。此外,在 OA 诱导的小鼠模型中进行的体内研究也显示出良好的治疗效果,包括组织学特征和运动功能的改善。这些发现凸显了 CTECNPs 作为治疗 OA 的一种有前途的方法的潜力,为改善患者的治疗效果和生活质量带来了希望。我们有必要开展进一步研究,以阐明 CTECNPs 在治疗 OA 方面的其他信号通路和潜在协同作用。
{"title":"Citrus trifoliata extract -loaded chitosan nanoparticles as a potential treatment for osteoarthritis: An in vitro evaluation.","authors":"Li Zhang, Mingming Yang, Saman Jalili","doi":"10.1177/08853282241299243","DOIUrl":"10.1177/08853282241299243","url":null,"abstract":"<p><p>Osteoarthritis (OA) presents a significant global health burden, necessitating innovative therapeutic strategies to address its multifaceted challenges. This study explores the potential of <i>Citrus trifoliata</i> extract-loaded chitosan nanoparticles (CTECNPs) as a novel treatment modality for OA. The encapsulation of <i>Citrus trifoliata</i> extract (CTE) within chitosan nanoparticles offers advantages such as enhanced bioavailability, sustained release kinetics, and targeted delivery to affected joints. In vitro evaluations demonstrate the biocompatibility and anti-inflammatory properties of CTECNPs, with significant anti-inflammatory and antioxidative effects observed. Moreover, in vivo studies in an OA-induced mouse model reveal promising therapeutic outcomes, including improvements in histological features and locomotor function. These findings highlight the potential of CTECNPs as a promising therapeutic approach for OA, offering hope for improved patient outcomes and quality of life. Further research is warranted to elucidate additional signaling pathways and potential synergistic effects of CTECNPs in OA management.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"908-919"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, silicon phthalocyanine dichloride (SiCl2Pc) was successfully encapsulated in β-cyclodextrin (β-CD) and hydroxy-propyl-β-cyclodextrin (HP-β-CD) using the kneading method. Dynamic Light Scattering (DLS) demonstrated complexes of various hydrodynamic diameters with moderate stability in aqueous solutions. Their structural characterization by Infrared Spectroscopy (FT- IR) indicated that a part of phthalocyanine is located inside the cyclodextrin cavity. Both photophysical and photochemical studies showed that phthalocyanine's encapsulation in cyclodextrins increased its aqueous solubility. The photodynamic studies against A431 cancer cell line indicated that the complexes are more effective than pure SiCl2Pc. Pure SiCl2Pc's photodynamic effect is characterized as dose-dependent, whereas both complexes presented a biphasic dose-response photodynamic effect. For the highest energy dose of 3.24 J/cm2, pure SiCl2Pc induced mild cell toxicity. SiCl2Pc-β-CD complex was the most promising photosensitizer, exhibiting the highest photodynamic effect when irradiated at 2.16 J/cm2.
{"title":"Cyclodextrins as nanocarriers of hydrophobic silicon phthalocyanine dichloride for the enhancement of photodynamic therapy effect.","authors":"Eleni Georgiopoulou, Eleni Kavetsou, Eleni Alexandratou, Anastasia Detsi, Konstantinos Politopoulos","doi":"10.1177/08853282241306858","DOIUrl":"10.1177/08853282241306858","url":null,"abstract":"<p><p>In this study, silicon phthalocyanine dichloride (SiCl<sub>2</sub>Pc) was successfully encapsulated in β-cyclodextrin (β-CD) and hydroxy-propyl-β-cyclodextrin (HP-β-CD) using the kneading method. Dynamic Light Scattering (DLS) demonstrated complexes of various hydrodynamic diameters with moderate stability in aqueous solutions. Their structural characterization by Infrared Spectroscopy (FT- IR) indicated that a part of phthalocyanine is located inside the cyclodextrin cavity. Both photophysical and photochemical studies showed that phthalocyanine's encapsulation in cyclodextrins increased its aqueous solubility. The photodynamic studies against A431 cancer cell line indicated that the complexes are more effective than pure SiCl<sub>2</sub>Pc. Pure SiCl<sub>2</sub>Pc's photodynamic effect is characterized as dose-dependent, whereas both complexes presented a biphasic dose-response photodynamic effect. For the highest energy dose of 3.24 J/cm<sup>2</sup>, pure SiCl<sub>2</sub>Pc induced mild cell toxicity. SiCl<sub>2</sub>Pc-β-CD complex was the most promising photosensitizer, exhibiting the highest photodynamic effect when irradiated at 2.16 J/cm<sup>2</sup>.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"933-951"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-01Epub Date: 2024-12-08DOI: 10.1177/08853282241305362
Chao Xu, Yuanmin Pei, Yanli Wang, Wenpeng Li, Liu Yang, Aimei Chai, Ying Wang, Wenrong Fan, Huiquan Tan
Auto-concentrated growth factor (CGF) constitutes the latest generation of plasma extract, and has high concentrations of growth factors and white blood cells. Due to the continuous variable speed centrifugation used during preparation, the tensile strength of the fibrin is also higher. CGF preparation does not involve the use of animal serum, minimizing the risk of infection and immune rejection. Therefore, it has wide potential applications in various fields of regenerative medicine. This paper summarizes the history behind CGF development, reviews the clinical applications and research progress concerning single CGF therapy and CGF used in combination with other treatments in multiple wound repair, and summarizes its potential value as therapeutic agent. Finally, some constructive suggestions and research perspectives for the application of CGF in wound healing are put forward. The available evidence indicates that CGF can promote the healing of chronic refractory wounds and acute wound, promote the growth of granulation, accelerate the speed and improve the quality of wound healing, reduce scar formation, minimize the need for repeated wound dressing, and ameliorate the pain experienced by patients.
{"title":"Progress in the application of auto-concentrated growth factor (CGF) in wound repair.","authors":"Chao Xu, Yuanmin Pei, Yanli Wang, Wenpeng Li, Liu Yang, Aimei Chai, Ying Wang, Wenrong Fan, Huiquan Tan","doi":"10.1177/08853282241305362","DOIUrl":"10.1177/08853282241305362","url":null,"abstract":"<p><p>Auto-concentrated growth factor (CGF) constitutes the latest generation of plasma extract, and has high concentrations of growth factors and white blood cells. Due to the continuous variable speed centrifugation used during preparation, the tensile strength of the fibrin is also higher. CGF preparation does not involve the use of animal serum, minimizing the risk of infection and immune rejection. Therefore, it has wide potential applications in various fields of regenerative medicine. This paper summarizes the history behind CGF development, reviews the clinical applications and research progress concerning single CGF therapy and CGF used in combination with other treatments in multiple wound repair, and summarizes its potential value as therapeutic agent. Finally, some constructive suggestions and research perspectives for the application of CGF in wound healing are put forward. The available evidence indicates that CGF can promote the healing of chronic refractory wounds and acute wound, promote the growth of granulation, accelerate the speed and improve the quality of wound healing, reduce scar formation, minimize the need for repeated wound dressing, and ameliorate the pain experienced by patients.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"819-827"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of this study is to develop and analyze dexamethasone-loaded poly hydroxybutyrate-stearic acid blend nanoparticles for the treatment of non-bacterial uveitis. Uveitis is a chronic inflammatory eye disease responsible for 10-15% of global blindness. While repeated intravitreal steroid injection is a successful treatment strategy, it has drawbacks such as cataracts and retinal detachment. Serious side effects and high costs caused by recurrent infections are important limiting factors. Controlled release systems are preferred to maintain therapeutic drug concentrations in the vitreous humor while minimizing the frequency of injections. In this study, PHB-stearic acid blend nanoparticles with varying ratios of dexamethasone suitable for intravitreal injection were fabricated. It was assessed the effects of the stearic acid ratio on loading efficiency, release profiles, size distribution, and thermal properties. The results indicated that an increase in the stearic acid ratio led to a reduction in nanoparticle diameter and an enhancement in the dexamethasone loading capacity. Additionally, higher stearic acid ratios resulted in a decrease in the melting enthalpy of the nanoparticles, which expedited dexamethasone release. Importantly, the nanoparticle formulations exhibited no toxicity to eye endothelial cells or THP-1 cells.
{"title":"Dexamethasone loaded blend poly hydroxybutyrate-stearic acid nanoparticles for ocular inflammation.","authors":"Ebru Erdal, Nagihan Uğurlu, Esin Akbay Çetin, Nelisa Laçin Türkoğlu, Cafer Çakal, Murat Demirbilek","doi":"10.1177/08853282251324619","DOIUrl":"https://doi.org/10.1177/08853282251324619","url":null,"abstract":"<p><p>The aim of this study is to develop and analyze dexamethasone-loaded poly hydroxybutyrate-stearic acid blend nanoparticles for the treatment of non-bacterial uveitis. Uveitis is a chronic inflammatory eye disease responsible for 10-15% of global blindness. While repeated intravitreal steroid injection is a successful treatment strategy, it has drawbacks such as cataracts and retinal detachment. Serious side effects and high costs caused by recurrent infections are important limiting factors. Controlled release systems are preferred to maintain therapeutic drug concentrations in the vitreous humor while minimizing the frequency of injections. In this study, PHB-stearic acid blend nanoparticles with varying ratios of dexamethasone suitable for intravitreal injection were fabricated. It was assessed the effects of the stearic acid ratio on loading efficiency, release profiles, size distribution, and thermal properties. The results indicated that an increase in the stearic acid ratio led to a reduction in nanoparticle diameter and an enhancement in the dexamethasone loading capacity. Additionally, higher stearic acid ratios resulted in a decrease in the melting enthalpy of the nanoparticles, which expedited dexamethasone release. Importantly, the nanoparticle formulations exhibited no toxicity to eye endothelial cells or THP-1 cells.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251324619"},"PeriodicalIF":2.3,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143523502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-25DOI: 10.1177/08853282251323198
Andrés Martínez-Santillán, José González-Valdez
Small extracellular vesicles, commonly referred to as exosomes, withhold a promising future in the pharmaceutical industry as carriers for targeted drug delivery due to their high specificity and bioavailability when compared to synthetic-based vectors. They, however, present some limitations for systematic administration because of natural organism defenses and their high-water solubility, ultimately making it difficult for them to reach the intended target. To improve the delivery capacity of these nanoparticles, the possibility for the construction of PEGylated versions was explored in this work. This process was performed, analyzed, and characterized using N-terminal specific PEGylation reactions targeted to the protein contents in the exosomal membrane. For this, two different mono-methoxy polyethylene glycols (mPEG) of 5 and 20 kDa were reacted with exosomes under alkylating conditions. The resulting 5k and 20k PEGylated exosome constructs were characterized and compared with unmodified exosomes, using size, morphology, and zeta potential as comparison parameters. Results after analysis showed an absorbance reduction of approximately 65% and 34% (for the 5 and 20 kDa conjugates respectively), a reduction of 10 to 20% in peak resolution, particle size increase corresponding to the polymer sizes used, and a slight reduction in electric distribution of about 2 to 3 mV less than the unmodified vesicles. The data obtained may provide insights for the optimization of exosome PEGylation strategies for therapeutic use.
{"title":"Physical characterization of PEGylated exosome constructs: Size, charge, and morphology changes in non-specific alkylating N-terminal reactions.","authors":"Andrés Martínez-Santillán, José González-Valdez","doi":"10.1177/08853282251323198","DOIUrl":"https://doi.org/10.1177/08853282251323198","url":null,"abstract":"<p><p>Small extracellular vesicles, commonly referred to as exosomes, withhold a promising future in the pharmaceutical industry as carriers for targeted drug delivery due to their high specificity and bioavailability when compared to synthetic-based vectors. They, however, present some limitations for systematic administration because of natural organism defenses and their high-water solubility, ultimately making it difficult for them to reach the intended target. To improve the delivery capacity of these nanoparticles, the possibility for the construction of PEGylated versions was explored in this work. This process was performed, analyzed, and characterized using N-terminal specific PEGylation reactions targeted to the protein contents in the exosomal membrane. For this, two different mono-methoxy polyethylene glycols (mPEG) of 5 and 20 kDa were reacted with exosomes under alkylating conditions. The resulting 5k and 20k PEGylated exosome constructs were characterized and compared with unmodified exosomes, using size, morphology, and zeta potential as comparison parameters. Results after analysis showed an absorbance reduction of approximately 65% and 34% (for the 5 and 20 kDa conjugates respectively), a reduction of 10 to 20% in peak resolution, particle size increase corresponding to the polymer sizes used, and a slight reduction in electric distribution of about 2 to 3 mV less than the unmodified vesicles. The data obtained may provide insights for the optimization of exosome PEGylation strategies for therapeutic use.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251323198"},"PeriodicalIF":2.3,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143501248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Blockage of the interaction between programmed death receptor-1 (PD-1) and programmed death ligand-1 (PD-L1) can restore T-cell activity and enhance antitumor immunity. PD-1/PD-L1 pathway inhibitors have promising applications in the treatment of advanced prostate cancer (PCa). We successfully developed a peptides-functionalized gold nanoconstruct (P-AuNS) consisted of PD-L1-binding peptide (PD-L1pep, P) and gold nanostar (AuNS), which could bind to cell-surface PD-L1 specifically and deliver PD-L1 into PCa cells with high efficiency. In PCa cells, P-AuNS can efficiently degrade PD-L1 in a lysosomal-dependent manner. In the co-culture system of Jurkat cells and DU145 cells, P-AuNS restored the proliferative capacity and interferon-gamma (IFN-γ) secretion level of Jurkat cells inhibited by co-cultured DU145 cells, indicating that P-AuNS effectively hampered the interaction between PD-1 and PD-L1. In addition, in PCa-bearing mice, P-AuNS can effectively inhibit tumor growth and down-regulate PD-L1 protein levels, and in vivo experimental results show that P-AuNS has no systemic toxicity. P-AuNS block the interaction between PD-1 and PD-L1 by efficiently degrading PD-L1, thus restoring the antitumor activity of T cells and inhibiting tumor progression of PCa. In all, P-AuNS has great promise as a potential immunotherapy strategy in the treatment of advanced PCa and even other solid tumors.
{"title":"Peptides-functionalized gold nanostars enhanced degradation of PD-L1 for improved prostate cancer immunotherapy.","authors":"Liangjun Tao, Yifei Zhang, Jingwei Zhang, Jianping Tao, Yu Gong, Jun Mao, Qixing Tian, Ping Ao, Dong Zhuo","doi":"10.1177/08853282251319473","DOIUrl":"https://doi.org/10.1177/08853282251319473","url":null,"abstract":"<p><p>Blockage of the interaction between programmed death receptor-1 (PD-1) and programmed death ligand-1 (PD-L1) can restore T-cell activity and enhance antitumor immunity. PD-1/PD-L1 pathway inhibitors have promising applications in the treatment of advanced prostate cancer (PCa). We successfully developed a peptides-functionalized gold nanoconstruct (P-AuNS) consisted of PD-L1-binding peptide (PD-L1pep, P) and gold nanostar (AuNS), which could bind to cell-surface PD-L1 specifically and deliver PD-L1 into PCa cells with high efficiency. In PCa cells, P-AuNS can efficiently degrade PD-L1 in a lysosomal-dependent manner. In the co-culture system of Jurkat cells and DU145 cells, P-AuNS restored the proliferative capacity and interferon-gamma (IFN-γ) secretion level of Jurkat cells inhibited by co-cultured DU145 cells, indicating that P-AuNS effectively hampered the interaction between PD-1 and PD-L1. In addition, in PCa-bearing mice, P-AuNS can effectively inhibit tumor growth and down-regulate PD-L1 protein levels, and in vivo experimental results show that P-AuNS has no systemic toxicity. P-AuNS block the interaction between PD-1 and PD-L1 by efficiently degrading PD-L1, thus restoring the antitumor activity of T cells and inhibiting tumor progression of PCa. In all, P-AuNS has great promise as a potential immunotherapy strategy in the treatment of advanced PCa and even other solid tumors.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251319473"},"PeriodicalIF":2.3,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143492164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-18DOI: 10.1177/08853282251321943
Haojiao Chen, Jianping Sun, Wenyang Liu
Background: Diabetic wound is one of the most common diabetic chronic complications. Effective treatments of diabetic wound remain limited. Here, we explored the effects of basic fibroblast growth factor (bFGF)-acellular dermal matrix (ADM) hydrogel on the diabetic wound. Methods: The bFGF-ADM hydrogel was manufactured by mixing 180 µL ADM hydrogel and 20 µL bFGF aqueous solution (10 mg/mL). The morphology of ADM hydrogel and bFGF-ADM hydrogel was observed under scanning electron microscope. The release property of bFGF-ADM hydrogel was determined by ELISA. CCK-8 assay was utilized to estimate the cell viability of mouse skin fibroblasts. The diabetes mellitus (DM) model was established in rats. The four wounds on the back of each DM rat were treated with the ADM hydrogel, bFGF-ADM hydrogel, bFGF aqueous solution and no solution (control), respectively. The wound healing rate of each rat was estimated. The traumatized skin tissue of each rat was observed by H&E staining and Sirius red staining. Results: The bFGF-ADM hydrogel displayed an interconnected pore structure and bFGF was gradually released from the bFGF-ADM hydrogel over time. The bFGF-ADM hydrogel could enhance the cell viability of skin fibroblasts and promote the wound healing rate, the re-epithelialization of wound and increase the collagen fiber content of dermis. And the bFGF-ADM hydrogel exhibited better therapeutic effects of diabetic wound than either bFGF or ADM alone. Conclusions: Our study revealed that the bFGF-ADM hydrogel could promote diabetic wound healing.
{"title":"Injectable ADM temperature-sensitive hydrogel loaded with bFGF in diabetic rat wound healing study.","authors":"Haojiao Chen, Jianping Sun, Wenyang Liu","doi":"10.1177/08853282251321943","DOIUrl":"https://doi.org/10.1177/08853282251321943","url":null,"abstract":"<p><p><b>Background:</b> Diabetic wound is one of the most common diabetic chronic complications. Effective treatments of diabetic wound remain limited. Here, we explored the effects of basic fibroblast growth factor (bFGF)-acellular dermal matrix (ADM) hydrogel on the diabetic wound. <b>Methods:</b> The bFGF-ADM hydrogel was manufactured by mixing 180 µL ADM hydrogel and 20 µL bFGF aqueous solution (10 mg/mL). The morphology of ADM hydrogel and bFGF-ADM hydrogel was observed under scanning electron microscope. The release property of bFGF-ADM hydrogel was determined by ELISA. CCK-8 assay was utilized to estimate the cell viability of mouse skin fibroblasts. The diabetes mellitus (DM) model was established in rats. The four wounds on the back of each DM rat were treated with the ADM hydrogel, bFGF-ADM hydrogel, bFGF aqueous solution and no solution (control), respectively. The wound healing rate of each rat was estimated. The traumatized skin tissue of each rat was observed by H&E staining and Sirius red staining. <b>Results:</b> The bFGF-ADM hydrogel displayed an interconnected pore structure and bFGF was gradually released from the bFGF-ADM hydrogel over time. The bFGF-ADM hydrogel could enhance the cell viability of skin fibroblasts and promote the wound healing rate, the re-epithelialization of wound and increase the collagen fiber content of dermis. And the bFGF-ADM hydrogel exhibited better therapeutic effects of diabetic wound than either bFGF or ADM alone. <b>Conclusions:</b> Our study revealed that the bFGF-ADM hydrogel could promote diabetic wound healing.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251321943"},"PeriodicalIF":2.3,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143449119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The development of injectable bio-stimulating polycaprolactone (PCL) microspheres for wound healing has strict requirement on size and morphology control, particularly favoring microspheres within the range between 20-50 µm. PCL microspheres with smaller sizes are phagocyted at rapid rate while larger microspheres could cause inflammation. Homogenization can be regarded as an irreversible process to generate microspheres of particular size range while it still remains as the most common approach for microspheres production. Membrane emulsification technology shows great potential in fine tailoring of microspheres while still holds promising ability for scale-up production. Membranes with uniform large pores and dual hydrophilicity might be capable of the production of large microspheres via emulsification with tailorable size distribution. The aim of this study is to verify the feasibility of PVDF membranes with large pores on the generation of PCL microspheres via the combined crystallization diffusion (CCD) approach. The effect of dope solution concentration and PVDF molecular weights on membrane morphologies and the corresponding microspheres characteristics were investigated. Results showed that concentration of 20 wt% produced microspheres at desirable size of 24.14 µm and the optimal span of 0.53. Microspheres with narrow distribution showed the highest drug loading efficiency of baicalin at 8.42 %. The baicalin loaded PCL microspheres presented gradual release of drug release over 33-day of in vitro testing and significantly improved cell growth rate of 111.67 % as compared to the ones prepared by homogenization approach. The wound healing ability was enhanced after the treatment of baicalin-loaded PCL microspheres as compared to empty loaded PCL microspheres.
{"title":"Baicalin loaded monodispersed polycaprolactone (PCL) microspheres preparation by polyvinylidene fluoride (PVDF) membrane emulsification for wound healing in dermal fibroblasts.","authors":"Wenwei Zhong, Xiang Cao, Haoran Zeng, Manqun Tang, Guizhen Li, Jia Xiong, Yunong Wang, Liwei Guo, Jing Ji","doi":"10.1177/08853282251321259","DOIUrl":"https://doi.org/10.1177/08853282251321259","url":null,"abstract":"<p><p>The development of injectable bio-stimulating polycaprolactone (PCL) microspheres for wound healing has strict requirement on size and morphology control, particularly favoring microspheres within the range between 20-50 µm. PCL microspheres with smaller sizes are phagocyted at rapid rate while larger microspheres could cause inflammation. Homogenization can be regarded as an irreversible process to generate microspheres of particular size range while it still remains as the most common approach for microspheres production. Membrane emulsification technology shows great potential in fine tailoring of microspheres while still holds promising ability for scale-up production. Membranes with uniform large pores and dual hydrophilicity might be capable of the production of large microspheres via emulsification with tailorable size distribution. The aim of this study is to verify the feasibility of PVDF membranes with large pores on the generation of PCL microspheres via the combined crystallization diffusion (CCD) approach. The effect of dope solution concentration and PVDF molecular weights on membrane morphologies and the corresponding microspheres characteristics were investigated. Results showed that concentration of 20 wt% produced microspheres at desirable size of 24.14 µm and the optimal span of 0.53. Microspheres with narrow distribution showed the highest drug loading efficiency of baicalin at 8.42 %. The baicalin loaded PCL microspheres presented gradual release of drug release over 33-day of in vitro testing and significantly improved cell growth rate of 111.67 % as compared to the ones prepared by homogenization approach. The wound healing ability was enhanced after the treatment of baicalin-loaded PCL microspheres as compared to empty loaded PCL microspheres.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251321259"},"PeriodicalIF":2.3,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143414331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}